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Abstract

We consider several dimensionality reduction methods for prediction in this paper. These
methods include reduced rank regression, principal component regression, canonical corre-
lation regression and partial least squares (sometimes referred to as projection to latent
spaces). We show how these methods can be linked through a common objective function.
All these methods are compared using a simulation study and they are also applied to a set

of published data.

1. Introduction

The traditional approach to multivariate regression is to estimate the coefficients by ordi-
nary least squares (OLS) and use the resulting model for prediction. Recently the availability
of inexpensive computer storage has created the néed for dealing with extremely large data
sets containing thousands of observations and many explanatory () variables. Some of these
variables may be highly correlated. In such contexts better predictions can be obtained by
approaches alternate to OLS. One such approach is to consider the matrix of regression
coefficients to be less than full rank. This is équivalent to predicting the response variables
from fewer linear combinations of the explanatory variables (latent variables) for prediction.
In other words the predictions are obtained from a subspace of L(X), the space spanned by

the columns of X. Such methods are also referred to as Dimensionality Reduction Methods



(DRMs). DRMs build a sequence of orthogonal linear combinations of the x variables and
an optimal number of them will be used for prediction.

The commonly used DRMs are reduced rank regression (RRR). principal component
regression (PCR) and partial least squares (PLS). The first one is obtained through the
maximization of a certain objective function of the prediction errors. The latter two are
heuristic methods because the latent variables are obtained by optimizing objective functions
that cannot be related to the prediction of the responses. Burnham et al. (1995) discuss a
framework for linking these DRMs. Merola (1998) and Merola and Abraham (1998) give a
common objective function from which the different DRMs can be obtained.

In section 2 we briefly discuss the different DRMs and an objective function from which
many of the DRMs can be obtained as special cases. Section 3 considers an alternate class
of DRMs. We compare these DRMs by a simulation study in section 4. Section 5 discusses

the application of these DRMs to a data set and section 6 gives some concluding remarks.

2. Dimensionality Reduction Methods and a

Common Objective Function

~ Let X be an (n x p) matrix of n independent observations on p explanatory variables and
Y be an (n x q) matrix of n independent observations on g response variables. Let us also
assume that the columns of these matrices are bmean centered and scaled to unit variance.
Let t, = X a; be the latent variables where the vectors a; contain unknown coefficients to
be determined subject to some criterion.

Now let us consider the linear regression model in the latent variables ¢, (k =1,2,...,d).

Then we have

Y=TQ+FE (2.1)



where T' = (t;,%9,....ts) = X (a1, ....,aq) = X A. That is

where M = AQ is a p X ¢ matrix of rank d. This is known as the reduced rank regression
(RRR) model (see for example Izenman (1975)) and the residual sum of squares (RSS) for
this model is '

|Y - XAA'X'XA)TAX'Y |? (2.2)
Given the matrix T, the matrix Q is taken to be the LS solution to model (2.1), that is
Q=TT 'TY.

Hence the reduced rank matrix of regression coefficients is M = A(T'T)~'T'Y . Therefore
the RRR problem is reduced to the estimation of the coefficients a,. Since we require that
rank (T) = d we can take without loss of generality the latent variables to be mutually
orthogonal.

The LS solutions to model (2.1) (known as RRR solutions (Izenman (1975))) minimize
the RSS (2.2). It turns out that the RRR latent variables are the principal components of the
OLS solutions ¥ = X (X'X)"'X'Y (Izenman (1975) and Merola (1998)). As mentioned
above the PLS and PCR solutions cannot be obtained from the optimization of a function
of RSS (2.2). The latent variables used in PCR are the ordinary principal components of
the matrix X. Hence the first d of them approximate the matrix X so that

I X = Tig(T}gT1a) " Tig X ||

is minimized.

PLS (Wold (1982)) is an algorithmic method whose objective funétion cannot be ex-
pressed in a closed form. This algorithm computes pairs of latent variables by maximizing
their covariance. Let us denote T'(;—1) the latent variables in the X-space after (k — 1) pairs

of latent variables have been determined. Then
X® =X~ T(k—l)(T/(k—l)T(k-l).)—lT,(k-—l)X
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represent the residuals from the X matrix at this stage and is referred to as the deflated X-

matrix. Then the coefficients of the k-the pair of latent variables are obtained by maximizing
d,Y'X®a, such that aja; =1= ddy.
The k-th pair of latent variables are given by
re=Yd, and t, = X®a,.

There are several PLS algorithms available, see Geladi and Kowalski (1986), Hoskuldsson
(1988). Helland (1988), Nomikos and MacGregor (1994), de Jong (1993) and Schmidli (1995).
Merola (1998) gives an improved algorithm.

The objective function of a variant of PLS, SIMNPLS (de Jong (1993)), can be expressed in
a closed form. If we let 7. = Y d), be unknown linear combinations of the response variables,
then the SIMPLS variables are the solutions to

a;ak=d;dk=1l:rclzl;ch ‘X a;=0j<k (@ XYy’

Hence the latent variables of SIMPLS, and apoproximately those of PLS, have maximal
covariance with linear combinations of the response variables.

Since the above DRMs optimize heterogeneous quantities it is not possible to compare
them in terms of prediction error. Merola (1998) and Merola and Abraham (1998) consider

the following objective function:
9(tk. i, 0, B) = cor® (b, 7)) (., t) 2 (i) P (2.3)

where a, J > 0 are scalar parameters. Maximizing this with respect to a; and dj, subject
to ajay = didy = 1;a,.X'Xa; = 0,5 < k, yields different solutions for different values of
the two parameters. The DRMs mentioned above can be obtained as special cases of (2.3).
If we set a = 3 = 0 then the maximization is that of the correlation between t; and 7, and

the resulting variables are called canonical correlation (CC) variables. One may use the first



d < p CC variables in X (i.e. t;) to predict y. If we set a = 0 and 8 = 1 then the objective

function (2.3) reduces to
g(tk,’l‘k,o,l) = (a’kX'de)Q/(aj\.X'Xak) (2.4)

The method corresponding to the maximization of (2.4) is called maximum redundancy
(MR) (see for example Van den Wolenberg (1977)).
Since we are not interested in the latent variables of the responses, we can simplify the

objective function (2.3) by discarding 3. Setting § =1,
gt T, 0, 3 = 1) = covi(te, 7)  (Ets) 2 (2.5)

Now if we set a = 1 the maximization of the objective function is the same as maximizing
cov(ty, Tx). This corresponds to SIMPLS.

If we let & — oo then the procedure simplifies down to obtaining the eigen-vectors of
X X' or the principal components of X. For prediction we choose the first few principal

components and the associated procedure is referred to as PCR.

3. Maximum Overall Redundancy (MOR)

~ Earlier we have indicated that

(i) the optimal set of d latent variables, in a least square sense, for predicting ¥y is given

by the principal components of Y, projection of Y onto L(X).

(i) the best rank d representation of the X-matrix is given by the first d principal com-

ponents of X.

Clearly there is a trade off between these two objectives. When some of the explana-
tory variables are highly correlated or measured with errors it is important to reduce the

dimension of the X space before predicting the responses. When the OLS predictions are
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reliable the first principal components of Y represent the most predictable rank d subspace
of the responses. In any case, in multivariate statistical process control (SPC) it is always
important to have a good representation of the explanatory space for diagnostic purposes.
PLS gives a compromise between objectives (i) and (ii) without asking for any particular
optimality. It can be shown (Phatak et al.(1993) and Merola (1998)) that the PLS latent
variables span the whole X space and are closer to the principal components of X than
the RRR latent variables. Objective function (2.3) represents a flexible tool for obtaining
intermediate solutions but it cannot be expressed in terms of rank deficient representation
of observed variables. In multivariate Statistical Process Control and similar contexts it is
often important to predict y as well as to reconstruct the X matrix.

Now let us consider the reduced rank regression model with some orthonormality con-

straints on the latent variables.
X=TP+F, Y=XB+E"=TQ+FE _ (3.1)

such that T'T = I;. T'E = 0, T'F = 0. We also require that T' € L(X) ie. T = X A. One
approach to estimating the unknown coefficients is to minimize simultaneously the ‘residuals’
E and F (the LS approach). Let us take Z = (Y, X), and choose a loss function which gives

equal weights for each of the residual matrices. Thus we minimize the objective function
I Z-XAQ.P)|? (3.2)

with respect to A subject to A'X’ XA=1 4. We will refer to this as the Maximum Over-
all Redundancy (MOR) method. Merola (1998) has shown that the corresponding latent

variables are solutions of
XX'X)"X'YY' +XX')T=TA (3.3)

where A is a diagonal matrix and (X'X)~ is a generalized inverse of X'X. It should be

noted that the latent sub-space would be uniquely determined even if X'X does not have



an inverse. Equation (3.2) can be re-written as
(VY + XX')T = TA (3.4)

Thus the resulting latent variables are the eigen-vectors corresponding to d largest eigen-
values of the sum of the matrices which give the latent variables in RRR and PCR. Note
that objective function (3.2) is the sum of || X — X AP ||?and | Y — X AQ || Since these
two norms may not be comparable we consider weighting them. To do this, it is enough
to consider a convex linear combaination of the two terms. The solutions are given by the

eigen-vectors of

1-ANYY +AX X' (3.5)

and the resulting procedures would be referred to as weighted MORs (WMOR). One can
choose A depending on the importance of the objective or use cross validation (Stone and
Brooks (1990)) to estimate an optimal value for a given set of data. For small ) the prediction
of y is given more importance. Merola and Abraham (1998) have shown that the maximiza-
tion of (2.5) with respect to a; and d; subject to ajay = 1 = d;d; and a},X'Xa; = 0.
j < k leads to solutions similar to those from (3.5).

One can consider different weighting schemes. Let £(y) = tr[(Y'Y)?], £1(y) = tr(Y'Y),
U) = tr[(V'V)Y), (7)) = tr(Y'Y), L(z) = tr[(X'X)?], li(z) = tr(X'X).

Based on these we define

1) A= /L)/ (/i) + =), () re=6()/(GY) + G(),

(3.6)

(iii) \/4 (\/é' + \/5 (iv) A =4(9)/(6(F) + Li(x))

As can be seen, the weights considered here are based on the norms of Y, Y and X. The
procedure corresponding to A; will be referred to as WMOR; (i = 1,2.3.4) and for the
comparisons in the next section we consider only WAORy and WAOR,. de Jong (1993)

proposes a similar method though derived from a different approach.



4. Simulation Study

We compare the performance of various DRMs for prediction using a simulation study.

Step 1. Generation of observations

We consider the model
X=TP+F, Y=XB+FE (4.1)

where T is a rank 3 matrix of independent latent variables with normal distribution and unit
variance. E and F' are independent errors with diagonal covariance matrices. The matrices
of coefficients P and B are generated as uniform (—1, 1) variables. We now consider p = 15
x-variables and ¢ = 6 y-variables. The x variables are taken as linear combinations of
3 latent components plus independent noises with signal to noise ratio (SNR) 3. The y
variables are linear combinations of the z-variables plus independent noise with SNR 5.
Each simulation consists of generating (n + s) = 60 independent observations on  and y
variables. The first n = 50 of these constitute the training sample from which the models
are estimated. The remaining s = 10 observations are taken as a test sample to compare

predictions.

Step 2. Analysis of the training sample

Different DRM’s are performed on the training set. Let ,,T'(x) be the matrix of the first &
latent variables obtained with method m and mf’(k) = mTw)(mT ) mT) ™ mT Y. As
a measure of goodness of fit for each training sample we consider the average residual sum

of squares (ARSS). Thus for the y variables we consider

ARSS,(k,m) Z Z[yw Uii(mT o)) (4.2)
n =1 j=
where k = 1,2, ... is the number of latent components used, ¢ the number of responses and

m the method. For the x’s it is

ARSS,(k,m) =122[ww & (mT(1))]? (4.3)

=1 j=1

3

8



and for the z’s and y's together we take

_ ARSS;(k.m) , ARSS,(k,m)

ARSS,(k,m)
p q

Step 3. Prediction of the test sample

As a measure of predictive efficiency we consider the average prediction error sum of
squares (PRESS) over the test (post training) sample obser\'ationls. Hence we have PRESS,,
PRESS, and PRESS; which are defined in a way analogous to the ARSS indices.

The procedure in Steps 1-3 are repeated N = 500 times resulting in 500 samples each
with 60 observations. The first 50 observations from each sample is used to estimate the
model using each DRM and to compute the corresponding ARSS,, ARSS; and ARSS,
indices. The remaining 10 observations from each sample are used as a test sample from
which PRESS,, PRESS, and PRESS, are obtained.

The distribution of ARSS,, ARSS;, and ARSS; over the N = 500 samples for 3 latent
components are given in Figure 4.1. As expected, the ARSS, for RRR is better than all
other methods and PCR has the worst. On the other hand PCR has the best ARSS, while
MOR is very close. PLS is also doing very well. MOR and the WMORs have the best
ARSS; while RRR has the worst. PLS is doing well also.

As a measure of distance between the latent spaces determined by the different methods
we consider the squared correlation between the latent variables and the principal directions
of X. Table 4.1 gives the squared correlations between the first four latent variables of each

method and the principal components.

Table 4.1: Squared correlation between the latent variables and principal components

cor® 1st PC | 2nd PC | 3rd PC | 4th PC
PLS 0.894 0.738 0.788 0.167
AMOR 0.965 0.901 0.904 0.134

WMOR2 | 0.886 0.727 0.728 | 0.119
WMOR4 || 0.860 0.692 0.697 | 0.118
RRR 0.544 0.432 0.372 | 0.103
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From Table 4.1 we see how the MOR variates are always closer than the PLS ones to
the principal components. The RRR variables are the most distant of all. Although this
is only a simulation on one fixed model, this confirms that the latent spaces determined by
the methods that are claimed to give better predictions than RRR tend to be closer to the
pfincipal components space.

Figures 4.2-4.3 show the distributions of PRESS,. PRESS, and PRESS; when 2 and 3
latent components are used. RRR seems to have the best PRESS, when 2 or 3 components
are used while PCR has the worst. All other methods are very close. PCR has an edge over
the other methods with respect to PRESS, although MOR and PLS are very close to PCR.
RRR’s performancé is not as good as the others. With respect to PRESS; MOR, WMORs
and PLS are equally good while RRR is the worst.

We also computed the average of the ARSS and PRESS values over the 500 samples for

“each DRM using k = 1,2, ..., 10 latent components. The results for WA{OR, and PLS are
shown in Figure 4.4. These indicate three as the “optimal” number of latent components.

~The other methods also confirm this.

5. Example: Poly-Ethylene Data

In this section we compaLre some of the dimensionality reduction techniques we discussed
on a set of data published in Skagerberg, MacGregor and Kiparissides (1992). The data
consist of a simulation of a Low-Density Poly-Ethylene (LDPE) production process. The
training sample consists of 32 observations reproducing different in-control conditions. The
test sample consists of 24 observations obtained by letting the inputs vary freely with the
addition of some impurities. Skagerberg et al. (1992) used this data to exemplify the im-
plementation of multivariate control charts. In that application the authors considered only
PLS which, they claim, provides good predictions. Breiman and Friedman (1997) used the

same data for comparing PLS with another predictive method. One of the features of this
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data is that the noises on the inputs and the outputs have been added after the measure-
ments were taken, that is they consist of independent measurement errors and there is no
transmission of the error from the explanatory variables to the responses. The data for the
training sample were obtained by setting 4 input variables according to a central composite
design around nominal conditions. Two of these input variables, heat transfer coefficient
and initial initiator concentration, were not used in the analyses. The other two input vari-
ables, wall temperature (z9;) and solvent flow rate (z22), were used as explanatory variables.
Additional readings were taken on 20 temperatures, (z1, ..., Z20), at equally spaced intervals
along the wall of the reactor. The 22 z variables are thus used to describe the functioning of
the process and to explain the properties of the output. The measurements on 6 properties

of the polymer were used as responses. These are

y1: number-average molecular weight

yo: weight-average molecular weight

y3: frequency of long chain branching

ys: frequency of short chain branching

ys: content of vinyl groups in the polymer chain

ys: content of vinyldilene groups in the polymer chain

* Uniform noises with £1% of the ranges have been added to all temperatures and cor-

respondingly uniform noises within +10% of the ranges were added to z; and all the y
variables. .

A total of 56 observations were generated. The 32 observations in the training sample
are used for the estimation of the parameters of the model and the 24 in the test sample for
prediction and monitoring. Further details can be found in the original paper. The variables
in the training sample are autoscaled. The wall temperatures z; — T are generally highly
or medium correlated with each other except for 19, T13 and 14 that are highly correlated
with each other but not with the other wall temperatures. In particular, ;2 is the only

additional temperature to have medium correlation with the preceding measurement and to

be uncorrelated with most of the other temperatures. The two controlled inputs, z2; and 22
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are uncorrelated with each other (this is due to the nature of the central composite design).
The solvent flow rate (z97) is uncorrelated with all temperatures but zg-r1; with which it
has low correlation. y; and yo are highly correlated with each other but not with the other

responses. The last four responses are gellerall}r highly correlated with each other.

5.1 Dimensionality Reduction and Predictions

Initially we look at the eigenvalues of X'X. The first eight of them and the corresponding

cumulative proportion of variance explained by the PC’s are given in Table 5.1.

Table 5.1: Eigenvalues of X'X and proportion of variance of X explained by the principal

components.
L [+ [ 2 [ 38 [ 4 [ 5 [ 6 [ 7 | 8 |
FEigenvalue 14.63 | 4.03 1.21 0.96 0.42 0.32 0.15 0.09

Cum. prop. var. || 0.6654 | 0.8489 | 0.9042 | 0.9480 | 0.9672 | 0.9817 | 0.9885 | 0.9929

Since the first 6 PC’s explain about 98% of the total variance of X, the rank of X may
be taken as 6. Burnham et al. (see discussion to Breiman and Friedman (1997)) suggest

taking the rank to be 5.

The 32 observations in the training sample are used to determine the latent space and
the predictive model for the DRMs PLS, MOR, WMOR2, RRR, and PCR. Only WMOR?2
will be considered since all the \’s are nearly the same (= .21). Hereafter we will refer to
this as WMOR.

Table 5.2 gives the correlation between the principal components of X and the y vari-

ables, the 7th column being the percentage of total variance of Y explained by each principal
tr(mT;k) m L () .

gy that 1S

t. YY)

the cumulative percentage of variance of the responses explained. By examining these it is

component and the last column being the Redundancy Index (RI),

evident that PCR would yield good predictions of the responses. In fact the first 4 principal

components explain almost 83% of the total variance of the y variables, and the first 6, 87%
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Table 5.2: Correlation between the responses and the principal components of X.

| Corr T vi [ vo [ vs [ ws | ws | we | % RSSexpl | RI |
1st comp 0221 032(-0.87| 0.85| 0.84 | 0.81 49.86 0.499
2nd comp 0.06 | 0.13| 0.03|-0.18 |-0.14 | -0.17 1.73 0.516

3rd comp | -0.61|-0.57 | 0.05|-0.25 |-0.25 | -0.32 15.32 0.669
4th comp | -0.66 | -0.66 | -0.15| 0.10 | 0.19 | 0.15 16.00 0.829
5th comp | -0.14 | -0.27 | 0.33 | -0.07 | -0.04 | -0.08 3.53 0.864
6th comp | -0.09 | -0.12 | 0.04 | -0.08 | -0.06 | -0.04 0.60 0.870
7th comp | -0.06 | -0.03 | -0.09 | 0.03 | -0.08 | 0.03 0.35 0.874
8th comp | -0.10| 0.05 | -0.11 | -0.20 | -0.18 | -0.21 2.38 0.898
9th comp 023 0.05| 0.16| 0.18| 0.19 | 0.26 3.66 0.934
10th comp || -0.11 | -0.05 | -0.03 | -0.10 | -0.08 | -0.08 0.63 0.941

of it.

Table 5.3 gives the correlations between the first six latent components of each DRM
with the first six principal components. We expect the first latent variables for all methods
to be close to the first principal component. The first latent components of PLS, MOR
and WMOR are highly correlated with the first principal component while that for RRR,
is slightly weaker. MOR behaves differently than the other methods, with respect to the
second principal component. For this method only the second latent variable is strongly
correlated with the second principal component, while the third latent variables of PLS, and
WMOR are highly correlated with the second principal component. Excluding the first two,
none of the other latent variables of RRR show a high correlation with a particular principal
component. PLS should give good predictions, since its latent space is close to the PC space.

Figure 5.1 gives the ‘weight’ vectors, which are the coefficients of the latent variables

scaled to unit length, for the first latent variables in the X space for the different DRMs.
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Table 5.3: Correlations between the first six latent variables obtained from different DRMN’s
and the first 6 principal components.

Corr Ist PC [ 2nd PC | 3rd PC | 4th PC | 5th PC | 6th PC
PLS
1st comp 1.00 -0.04 -0.03 0.00 -0.01 0.00
2nd comp 0.01 -0.36 0.71 0.60 0.08 0.03
3rd comp 0.04 0.91 0.40 0.07 0.07 0.04
4th comp -0.01 0.20 -0.57 0.79 -0.07 -0.03
5th comp 0.00 -0.03 -0.14 0.00 0.97 0.20
6th comp 0.00 -0.02 -0.06 0.03 -0.09 0.50
MOR
1st comp -1.00 0.03 0.07 -0.01 0.03 0.01
2nd comp | -0.03 -0.99 0.03 0.10 0.01 0.00
3rd comp -0.07 -0.08 -0.74 -0.61 -0.15 -0.09
4th comp 0.06 -0.07 0.59 -0.77 0.02| - 0.02
5th comp 0.02 0.01 -0.07 -0.09 0.93 0.08
6th comp -0.03 0.03 0.31 -0.03 -0.21 -0.36
WMOR _
1st comp -0.97 0.06 0.18 0.00 0.09 0.04
2nd comp 0.14 -0.20 0.62 0.70 0.16 0.09
3rd comp 0.14 0.94 0.23 -0.02 0.01 0.03
4th comp 0.13 -0.28 0.46 -0.61 -0.09 0.04
5th comp 0.07 0.02 0.31 -0.32 0.67 0.06
6th comp -0.05 0.04 0.47 -0.10 -0.62 -0.23
RRR
1st comp -0.85 0.10 0.38 0.06 0.17 0.08
2nd comp 0.29 -0.18 0.48 0.78 0.11 0.07
3rd comp 0.21 0.20 0.16 -0.13 -0.43 -0.01
4th comp 0.01 -0.13 0.12 -0.18 0.06 -0.13
5th comp 0.13 0.20 0.13 -0.04 0.17 -0.19
6th comp 0.08 -0.16 0.26 -0.26 -0.03 0.05
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Coefficient of the first latent variables

1234567 8 910111213141516171819202122
X variables

Figure 5.1 Coefficients in the First Latent variable for the DRMs

In all methods the absolute value of the weight for s, in the first latent variable is low,
compared with the others. The absolute weights for the other input variable, z1, are low
compared with others excépt for PLS and PCR, while the lowest are those of RRR, implying
that this variable is not very important in OLS subspace but has some importance in the
whole X-space. The weights on the temperatures for the first principal component are
similar, with the exception of those for ,2, ;3 and z14, which we have already noted behave
differently. Then the first principal component can be seen as an average temperature. PLS
can be interpreted in the same way. For the other methods the interpretation of the first

variables is not so clear. The weights for the second latent component (not shown here)
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are different for PLS from those of the other methods. In PLS a large part of the second
component (88.3%) is represented by z3s. For all other methods the importance of this
variable in the second latent component is fairly low. For all methods but PLS and PCR the
second variables are made up principally of x99, 19 and one or two of the first 5 -variables.
That is to say that they are mainly indicating temperature. Although the weighté for the
solvent flow rate (zy9) are never high, the second latent variables of PLS, WMOR. and RRR
are highly correlated with this variable (see Table 5.4).

Table 5.4: Correlations of the first 5 latent variables with the solvent flow rate (z19)

Corr PLS | MOR | WMOR | RRR | PCR
1st comp | -0.09 | -0.06 -0.01 | -0.18 | -0.10
2nd comp || -0.95| 0.31 -0.97 | -0.96 | 0.22

3rd comp || -0.08 | -0.90 0.08| 0.12] -0.54
4th comp | -0.26 | -0.27 0.18| 0.04| -0.79
5th comp | -0.09 | -0.04 -0.03 | 0.00| -0.14

In the training sample, for the y variables

ARSS 39 Z Z Yij — sz ))]

=1 j=1

and for the = variables

22 32
4RSS 3222[1&] xz] T(k))]

i=1j=
These are given in Figure 5.2. ARSS, is proportional to the RRR objective function and,
as expected, RRR achieves the lowest ARS Sy. for all k, lower than the corresponding value
of PLS and PCR. The ARSS, of RRR is very high.

In this context ARSS; is given by

ARSS.(k,m) 4 ARSS,(k,m)

ARSS,(k,m) = = :

and it is shown in Figure 5.3. As expected. WMOR has the lowest total ARSS. The values

for MOR are not the lowest because the objective function for this method is the sum of the
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Figure 5.2: ARSSy and ARSST for different DRMs
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Figure 5.3: ARSS; for different DRMs




RSS. Since we standardize each variable to unit variance, the sum of the variances in each
block is equal to the number of variables in the block. Hence, WMOR minimizes ARSS;.
Sometimes. predictive methods suffer from the Robin Hood effect, that is the effect for
which responses that are well predicted by OLS are made substantially worse to achieve
modest improvement in those that are poorly predicted (Breiman and Friedman (1997)). The
ratio of the RSS of each variable with the corresponding RSS obtained with OLS estimates
(which is the minimum) provides a way of studying the effect. That is we consider the index

32 :
=G (k,m))?

i ;(yl_] yz]( ,Tn)) 3 1 6 RSS(yJ,k‘ 'I’Tl-)

— & ) " 6% RSS(y,,0LS)

7= Z(yij - yij(OLS))2 7=t ’

=1

I,(k,m) =

D| =

where ¢,,(k, m) stands for the prediction of y,; with k latent variables obtained with method

m.

Table 5.5: JTa(k,m) Indices for the training sample

Ia(k.m) PLS | MOR | WMOR | RRR| PCR| CCR
1 comps || 55.776 | 52.928 | 47.137 | 40.374 | 57.072 | 60.283
2 comps | 20.953 | 50.377 | 10.281 | 7.864 | 55.527 | 8.188
3 comps | 16.958 | 12.615 8.338 | 2.032|36.772 | 2.525
4 comps | 13.438 | 8.553 5.150 | 1.466 | 15.737 | 1.764
5 comps || 10.890 | 5.792 2.334 | 1.276 | 12.116 | 1.347
6 comps | 6.156 | 3.061 2.069 | 1.000 | 11.427 | 1.000

The larger the values of the I, indices, the larger the Robin Hood effect. ITa(k, m) gives
a measure of the average effect and is given in Table 5.5. It indicates that PCR and PLS
suffer from the Robin Hood Effect more than the other methods and that RRR has the best
performance with respect to this index. It should also be noted that this measure is derived

from the prediction of y, and prediction of x is not taken into account.

Multivariate Control Charts
As mentioned before, the data were used to illustrate the implementation of multivariate

Control Charts on the latent space. Figures 5.4-5.5 give a comparison of the two dimensional
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representation of these data on the latent spaces of WMOR and PLS. Following Skagerberg,
MacGregor and Kiparissides (1992) we use six dimensions as the optimal number of latent
predictors. Each control chart consists of four plots. The two plots at the top are the
sequence of PRESS, one for the y variables and one for the = variables. The plot on the
left bottom corner gives the scatter of the observed values of the first two latent variables.
The contribution plot in the bottom right corner shows the contribution of each = variable
to the determination of a score value ofka. specific observation. For observation 7 and latent

component j the values are defined as .

tiy = (i — T)a; = fzp:](l"it — Z¢)aie
where Z; is the average of z, in the training sample and a;; is the £-element of the vector of
weights a;. In the plots the contribution plots of the second latent component for the 53-rd
observation are shown. ‘

The points in the test sample from 34 to 37 were generated under reactor wall fouling
conditions, the points from 38 to 40 were generated under coolant over heating and the last
seven, 50 to 56 adding increasing quantities of impurity.

The charts for WMOR and PLS given in Figures 5.4-5.5 seem to agree that points 35-
37 are “out of control” both for the y values and for the x predictions. The presence of
impurities in observations 50-56 is detected by the two methods on the ¢; — ¢, plane. Charts
corresponding to the other DRMs also lead to similar conclusions.

We chose the 53-rd observation for a diagnostic check using a contribution plot. Recall
that the contribution of each variable is its contribution to the score under investigation.
For the 53-rd observation the shift is more pronounced on the 3 axis. That is we consider
the contribution of each x variable to that score as (zs3¢ — Z¢)asse2 where asss is the weight
of z; in the latent variable to. All methods detect easily that the problem is caused by
the solvent flow rate, z9. Another point that is out of control is the 37-th observation
whose contribution plot (not shown here) indicates that the cause of the abnormal value is

connected with the temperature of the reactor. In short, all the DRMs detected the main
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“out-of-control” points in this example. It is however hard to draw conclusions as to which of
them performs the best. In fact, the test sample represents out-of-control situations, which
are not comparable with each other. |

It is also possible to consider a 3 dimensional control chart in the latent space in which .
the horizontal plane represents the t; — ¢, plane and the vertical axis the PRESS,. This
plot may not be very helpful when printed on paper. Instead, if there is the possibility of
plotting them on a high resolution monitor with a graphic interface that allows spinning and

zooming, then these can be more helpful in investigating the plot from different perspectives.

6. Concluding Remarks

In this paper we examined several DRMs most frequently used for prediction. We sug-
gested a new objective function which can be customized to derive solutions intermediate
between PCR and RRR. We compared these methods by simulation, showing that better
predictions can be achieved with WAOR. The methods which do well in the training sample
may not do as well in the out of sample predictions. The example in section 5 indicates
that most of the methods considered do a reasonable job of prediction in this context. The

procedures can be further applied for process monitoring using the plots shown.
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