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§2 A1 Manual

§2.1 

Chapter One: Random Events and Prob-

abilities

• 
Bayes’ Law: Given Event A and Event B, Bayes’

Law provides a formula to calculate conditional prob-

abilities:

P (A|B) =
P (B|A)P (A)

P (B)
.

• 
Certain Event: A certain event is the event occurs

with probability equal to 1.

• 
Bernoulli Trial: A Bernoulli Trial is an experiment

whose outcome is random and can be either of two

possible outcomes, ”success” and ”failure”.

• 
Impossible Event: An impossible event is the event

with no possibility to occur.

• 
Complementary Event: A complementary event of

any event A is the event that A does not occur. Note

P (A) + P (not A) = 1.

• 
De Morgan’s laws: De Morgan’s laws are rules re-

lating to logical operators ”and” and ”or” in terms of

each other via negation. In set theory, it is often stat-

ed as ”Union and intersubsection interchange under

implementation”, namely:

A ∩B = A ∪B,

A ∪B = A ∩B.

• 
Bernoulli Probability: Bernoulli probability de-

scribes probabilities associating with an event in

Bernoulli trial.

• 
Independence: In probability theory, if two random

events are independent, the occurrence of one event

does not influent the probability of the occurrence of

the other event. Mathematically,

P (A|B) = P (A), P (B|A) = P (B).

• 
Distributivity: In the context of set theory, distribu-

tivity refers to following properties for some arbitrary

sets:

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

• 
Probability: The probability of an event A is a mea-

sure of how likely the event will happen, mathemati-

cally, denote as: P (A).

• 
Probability Theory: Probability theory is a branch

of mathematics concerned with analysis of random

phenomena. The central objects of probability theory

are random variables, stochastic processes and events.

• 
Classic Probability: The classic probability de-

scribes an experiment with a sample space having

equally occurring sample points. In other words,

Events in such an experiment have same probabilities.

• 
Commutavity: In the context of set theory, the com-

mutavity names following relationship between sets:

A ∪B = B ∪A,A ∩B = B ∩A.

• 
Elementary Event: If the outcome set of an Even-

t only contains one single element, such an event is

called the elementary event.

• 
Associativity: In the context of set theory, associa-

tivity relates to following properties of some arbitrary

sets:

A ∩ (B ∩ C) = (A ∩B) ∩ C,

A ∪ (B ∪ C) = (A ∪B) ∪ C.

• 
Set: A set is a collection of distinct objects, consid-

ered as an object in its own right.

• 
Geometric Probability: Geometric probability is

a general topic studying probability associated with

probability problems in geometric sense. In late 20th

century, the topic has split to subtopics with different

emphases. Integral geometry sprang from the princi-

ple that the mathematically natural probability mod-

els are those that are invariant under certain transfor-

mation groups. Stochastic geometry emphasizes the

random geometrical objects themselves.
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• 
Pair Wise Independency: Let A, B, C be three

random events, then if A and B, B and C, A and C

are all independent, these three events are pair wise

independent.

• 
Discrete Probability Space: A probability space

with elements that are countable in discrete sense is

called discrete probability space.

• 
Partition Rule: Let A, B, C be three subsets of a

sample space, then

P (A) = P (A|B)P (B) + P (A|C)P (C)

is called the partition rule.

• 
Random Event (Event): In probability theory, an

event is a set of outcomes (a subset of the sample s-

pace) to which a probability is assigned.

• 
Random Trial (Random Experiment): A ran-

dom experiment of an event assigns random probabil-

ities to outcomes.

• 
Conditional Probability: The probability asso-

ciates to an event A given another event B happens

is named the conditional probability of A given B.

Mathematically, denote as P (A|B).

• 
Sample Point: The outcomes that make up the sam-

ple space are called sample points.

• 
Sample Space: A sample space is a set of distinct

outcomes for an experiment or process, with the prop-

erty that in a single trial, one and only one of these

outcomes occurs.

§2.2 

Chapter Two:Random Variables and Dis-

tribution Functions

• 
Marginal Distribution: For the discrete case, the

marginal distribution of bivariate random variables

(X,Y ) with the joint distribution pij = P{X =

xi, Y = yj} is defined as:

P{X = xi} =
�

j

pij , P{Y = yj} =
�

i

pij .

For the continuous case, the corresponding marginal

distribution of (X,Y ) with bivariate density f(x, y),

then

fX(x) =

�
f(x, y)dy, fY (y) =

�
f(x, y)dy

are called marginal distributions of variables X and

Y .

• 
Poisson Theorem: Let λ > 0 and n ∈ Z+, then if

npn = λ, we have

lim
n→∞

C
k
np

k
n(1− pn)

n−k =
λ
k
e
−λ

k!
,

for some k ∈ N. This theorem is usually applied to

approximate the probability of binomial random vari-

able X with large n and small p.

• 
Parameter: In mathematics, statistics, and the

mathematical sciences, a parameter is a quantity that

serves to relate functions and variables using a com-

mon variable when such a relationship would be dif-

ficult to explicate with an equation. For example, a

binomial random variable, X ∼ Bin(n, p), then n and

p are parameters.

• 
Bivariate Uniform Distribution: Let D be a

bounded field with area equal to A, then a pair of

random variables, (X,Y ), are uniformly distributed

in D if

f(x, y) =






1
A , (x, y) ∈ D

0, otherwise
.

• 
Bivariate Normal Distribution: If bivariate ran-

dom variables, (X,Y ), have joint probability density

function with the form of

f(x, y) =
1

2πσ1σ2

�
1− ρ2

exp{− 1
2(1− ρ2)

∗ [
(x− µ1)

2

σ
2
1

− 2ρ
(x−mu1)(y −mu2)

σ1σ2

+
(y − µ2)

2

σ
2
2

]},

where σ1 > 0,σ2 > 0, |ρ| < 1, then (X,Y ) is follow-

ing bivariate normal distribution, denote as (X,Y ) ∼
N(µ1, µ2,σ

2
1 ,σ

2
2 , ρ).

• 
Binomial Distribution: The discrete random vari-

able Y has a binomial distribution if its probability

mass function is of the form

fY (y) =

�
n

y

�
p
y(1− p)n−y

,

where y = 0, 1, ..., n, and p is another parameter with

0 < p < 1. This model arises in connection with

repeated independent trials, where each trial result-

s in either an outcome ”S”(with probability p) or
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”F” (with probability 1 − p). If Y equals the num-

ber of S outcomes in a sequence of n trials, it has

the probability mass function given above. We write

Y ∼ Bin(n, p).

• 
Inverse Function:In mathematics, if ? is a function

from a set A to a set B, then an inverse function for

f is a function from B to A, with the property that a

round trip (a composition) from A to B to A (or from

B to A to B) returns each element of the initial set to

itself. A function f that has an inverse is called invert-

ible; the inverse function is then uniquely determined

by f and is denoted by f
−1.

• ()

Probability Mass Function(pmf):For a discrete

random variable the probability mass function fY (y)

is defined as

fY (y) = Pr(Y = y), y ∈ R,

where R = {r1, r2, ...} is the range of Y .

• (,)

Probability Density Function(pdf): For a contin-

uous random variable the probability density function

is such that for any interval (a, b) contained in R,

Pr(a ≤ Y ≤ b) =

� b

a

fY (y)dy.

• 
Gaussian Distribution: The continuous random

variable Y has a Gaussian distribution if its proba-

bility density function is of the form

f(y) =
1√
2πσ

exp

�
− (y − µ)2

2σ2

�
,

where −∞ < y < ∞, −∞ < µ < ∞ and σ > 0. We

write Y ∼ G(µ,σ).

• 
Function: The mathematical concept of a function

expresses the intuitive idea that one quantity (the ar-

gument of the function, also known as the input) com-

pletely determines another quantity (the value, or the

output).

• 
Gamma Distribution: The continuous random

variable Y has a gamma distribution if its probability

density function is of the form

f(y) = y
α−1 e

−x/θ

θαΓ(α)
,

where α,β > 0, and we write Y ∼ Gamma(α,β).

• 
Geometric Distribution: For a discrete random

variable Y , it follows a geometric distribution if its

density function takes the form of

Pr(Y = k) = (1− p)k−1
p,

where k ∈ N.

• ()

Cumulative Distribution Function(cdf): The cu-

mulative distribution function is defined for a random

variable Y as

FY (y) = Pr(Y ≤ y).

If Y is discrete then FY (y) =
�

x≤y fY (x); if Y is

continuous then FY (y) =
�
x≤y

fY (x)dx.

• 
Convolution:In mathematics and, in particular,

functional analysis, convolution is a mathematical op-

eration on two functions f and g, producing a third

function that is typically viewed as a modified version

of one of the original functions.

• 
Uniform Distribution: For a continuous random

variable Y has a uniform distribution on (a, b) if its

probability density function is of form

f(y) =






1
b−a , x ∈ (a, b)

0, otherwise
.

We write X ∼ U(a, b).

• 
Joint Cumulative Distribution: Joint cumulative

distribution is the cumulative density function in mul-

tivariate cases.

• 
Continuous Random Variable: The random vari-

able of a continuous distribution is called continuous

random variable.

• 
Discrete Random Variable: The random variable

of a discrete distribution is called discrete random

variable.

• 
Negative Binomial Distribution: For a discrete

random variable Y has a negative binomial distribu-

tion if its probability mass function takes the form of

Pr(Y = y) =

�
r − 1
k − 1

�
p
r(1− p)k−r

, r ∈ Z+

where k = r, r + 1, ... and 0 < p < 1. We write

Y ∼ NB(p, k, r). When r = 1, Y is following geo-

metric distribution.
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• 
Random Variable:A random variable is a function

from the sample space of a random experiment to the

real numbers. We use the notation that Y refers to

the random variable, while y a particular realization,

i.e. the result of a particular experiment. If have

multiple independent experiments use y1, ..., yn as the

realisations. Random variables are usually discrete

or continuous. A discrete random variable Y is one

for which the range R (set of possible values) of Y is

countable. A continuous random variable is one whole

range R consists of one or more continuous intervals

of real numbers.

• 
Conditional Distribution:For the discrete case, the

conditional probability of event A given event B is de-

fined to be

Pr(A|B) =
Pr(A ∩B)
Pr(B)

.

In the continuous case the conditional density is given

by

f(x|Y = y) =
f(x, y)
f(y)

.

• 
Strictly monotonic function:In mathematics, a

monotonic function (or monotone function) is a func-

tion which preserves the given order. Moreover, given

a pair of arbitrary numbers in the range R, f(x) �=
f(y) if x �= y.

• 
Strictly Decreasing Function: A function f de-

fined on a subset of the real numbers with real values

is called strictly decreasing, if for all x and y such that

x < y one has f(x) < f(y).

• 
Strictly Increasing Function:A function f defined

on a subset of the real numbers with real values is

called strictly increasing, if for all x and y such that

x > y one has f(x) > f(y).

• 
Normal Distribution:The continuous random vari-

able Y has a Gaussian distribution if its probability

density function is of the form

f(y) =
1√
2πσ

exp

�
− (y − µ)2

2σ2

�
,

where −∞ < y < ∞, −∞ < µ < ∞ and σ > 0. We

write Y ∼ N(µ,σ2).

• 
Exponential Distribution: The continuous random

variable Y has an exponential distribution if its prob-

ability density function is of the form

f(y) =
1
θ
e
−y/θ

,

where θ > 0 and y > 0, and we write Y ∼ Exp(θ).

§2.3 

Chapter Three: Numerical Characteris-

tics of Random Variables

• 
Coefficient of Variation:Coefficient of Variation of

a random variable Y is defined as

CV (Y ) =

�
V ar(Y )

E(Y )
, E(Y ) �= 0,

where V AR(Y ) is the variance of Y and E(Y ) is the

expectation of Y .

• 
Standard Deviation: The standard deviation of a

random variable Y is defined as

SD(Y ) =
�

E([Y − E(Y )]2).

Also, it is denoted as σY or σ(Y ).

• 
Constant:

• 
Variance: The variance of a random variable Y is

defined as

V ar(Y ) = E([X − E(X)]2).

• 
Quartile: Let F (y) be the cumulative distribution

function of a random variable Y , we say xα is α(0 <

α < 1)-th quartile of X if

F (xα) = α.

• 
Weighted Average: An average in which each quan-

tity to be averaged is assigned a weight. These weight-

ings determine the relative importance of each quan-

tity on the average. Weightings are the equivalent of

having that many like items with the same value in-

volved in the average.

• 
Moments:Let k ∈ Z, we say E(Y k) is the k-th mo-

ment of a random variable Y .

• -

Cauchy-Schwarz Inequality: Assume the first and

the second moments of random variables X, Y exist,

then

[E(XY )]2 ≤ E(X2)E(Y 2)

holds if and only if there is a real number C that

P (Y = CX) = 1.
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• 
Chebyshev Inequality: For any random variable Y

with V ar(Y ) < ∞, we have

P{|Y − E(Y )| ≥ �} ≤ V ar(Y )
�2

,

where � is a positive number.

• 
Expectation Vector: In bivariate case, we say
�
E(X)
E(Y )

�
is the expectation vector for a random vector

(X,Y ).

• 
Double Expectation Formula: For all random

variables X and Y , we have

E(X) = E(E(X|Y )).

If Y is discrete, the above formula can be expanded

to

E(X) =
�

y

E(X|Y = y)P (Y = y).

If Y is continuous with density fY (y), then

E(X) =

� ∞

−∞
E(X|Y = y)fY (y)dy.

• ()

Expectation(Mean): The expectation for a random

variable Y is defined as

E(Y ) =






�
y yPr(Y = y), for discrete case,

�
yfY (y)dyfor continuous case.

Moreover, the expectation of a function of Y is defined

in a similar way.

• 
Conditional Variance: Given Y = y, the condition-

al variance of a random variable X is defined as

V ar(X|Y = y) = E[(X − E(X|Y = y))2|Y = y].

Also the condition variance can be calculated in an-

other way, that is

V ar(X|Y = y) = E(X2|Y = y)− (E(X|Y = y))2.

• 
Conditional Variance Formula: For all random

variables X and Y , we have the following relation

V ar(X) = E[V ar(X|Y )] + V ar[E(X|Y )].

• 
Conditional Expectation: For discrete random

variables X,Y , given Y = y the conditional expec-

tation of X is defined as

E(X|Y = y) =
�

x

xP [X = x|Y = y].

If X,Y both are continuous random variables, then

the conditional expectation given Y = y is defined as

E(X|Y = y) =

� ∞

−∞
xfX|Y (x|y)dy.

• 
zero dimension: A quantity is non-dimension or di-

mensionless if it has no units. For example, the corre-

lation coefficient is dimensionless.

• 
Correlation Coefficient: For random variable X,Y

with V ar(X) > 0andV ar(Y ) > 0, then

Cov(X,Y )�
V ar(X)V ar(Y )

is the correlation coefficient of X and Y , denoted as ρ

or ρxy.

• 
Covariance: If random variables X and Y ’s variance

exist, then the covariance of X and Y is defined as

Cov(X,Y ) = E[(X − E(X))(Y − E(Y ))].

For the case X = Y , then Cov(X,X) = V ar(X). In

practise, the covariance is calculated by

Cov(X,Y ) = E(XY )− E(X)E(Y ).

• 
Covariance Matrix: For the multivariate case, we

defined the covariance matrix in the form of





Cov(X1, X1) ... Cov(X1, Xn)

... ... ...

Cov(Xn, X1) ... Cov(Xn, Xn)





.

• 
Mode: Let X be a random variable, then the mod(X)

denotes that x makes corresponding probability mass

function or probability density function reaches the

maximum value.

• 
Median: Median essentially is the 50 percent quar-

tile.
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§2.4 

Chapter Four: Law of Large Numbers

and Central Limit Theorem

• 
Bernoulli’s Law of Large Numbers: In case of

Bernoulli distribution, fA is the frequency of occur-

rences of event A in n-times independent experiments,

p is the probability of event A in each trial, then for

any positive number � > 0, we have

lim
n→∞

P {|fA/n− p| < �} = 1.

Bernoulli’s Law of Large Numbers is a special case of

Khinchine’s Law of Large Numbers.

• 
Law of Large Numbers: In probability theory, the

law of large numbers (LLN) is a theorem that de-

scribes the result of performing the same experiment

a large number of times. According to the law, the

average of the results obtained from a large number of

trials should be close to the expected value, and will

tend to become closer as more trials are performed.

There are several expressions to formularies LLN, a-

mong which two most common ways are Khinchine’s

Law of Large Numbers and Bernoulli’s Law of Large

Numbers.

• -

De Moivre-Laplace’s Central Limit Theorem:

Let {X1, X2, ..., Xn} be a sequence of i.i.d random

variables and Xi ∼ Bin(1, p) for all i ≤ n, then for

any x, −∞ < x < ∞, we have

lim
n→∞

P

��
i Xi − np�
np(1− p)

≤ x

�
= Φ(x),

where Φ(.) is the cumulative density function of stan-

dard normal distribution.

• 
Independent Identical Distributed (I.I.D.): We

say a sequence of random variables are independen-

t identical distributed (i.i.d.) if each random variable

has the same probability distribution as the others and

all are mutually independent.

• 
Central Limit Theorem for i.i.d Random Vari-

ables: Let {X1, X2, ...} be a sequence of i.i.d ran-

dom variables and E(Xi) = µ, V ar(Xi) = σ
2
> 0, for

i = 1, 2, ..., then for any x, −∞ < x < ∞, we have

lim
x→∞

P

��
i Xi − nµ√

nσ
≤ x

�
= Φ(x),

where Φ(.) is the cumulative distribution function of

N(0, 1). This central limit theorem is also known as

Lindberg-Levy’s Central Limit Theorem.

• 
Limits: In mathematics, the concept of a ”limit” is

used to describe the value that a function or sequence

”approaches” as the input or index approaches some

value.

• -

Lindberg-Levy’s Central Limit Theorem: See

(Central Limit The-

orem for i.i.d Random Variables).

• 
Monte Carlo Methods: Monte Carlo methods are

a class of computational algorithms that rely on re-

peated random sampling to compute their results.

• 
Khinchine’s Law of Large Numbers: A sequence

of i.i.d random variables {X1, X2, ...} have expectation

of E(Xk) = µ, k = 1, 2, ..., then for any � > 0 we have

lim
n→∞

�
| 1
n

�

k

Xk − µ| < �

�
= 1.

• 
Arithmetic Average: The arithmetic average of a

sequence of numbers, {x1, x2, x3, ..., xn}, is defined as

�n
i=1 xi

n
.

• 
Central Limit Theorem: The term central limit

theorem is a generic name used to designate any the-

orem that asserts that the sums of large numbers of

random variables, after standardization(i.i, subtrac-

tion of the mean and division by standard deviation),

have approximately a standard normal distribution.

§2.5 

Chapter Five: Statistical Quantities and

Corresponding Distributions

• 0-1

0-1 Distribution: Refers to (Bernoulli

Distribution).

• 
Sampling Distribution: The distribution of a s-

tatistic is called a sampling distribution.

• 
Order Statistic: In statistics, the k-th order statistic

of a sample is equal to its k-th smallest value.

• 
Kurtosis: In probability theory and statistics, kur-

tosis is a measure of the ”peakedness” of the prob-

ability distribution of a real-valued random variable,
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although some sources are insistent that heavy tails,

and not peakedness, is what is really being measured

by kurtosis.

• 
Unit: A population consists of units.

• 
Simple Random Sampling: If elements in a ran-

dom sample is independently and identically distribut-

ed, the we say such sampling process the simple ran-

dom sampling. The sample is called i.i.d sample.

• 
Asymptotic Distribution: In mathematics and s-

tatistics, an asymptotic distribution is a hypothetical

distribution that is in s sense the ”limiting” distribu-

tion of a sequence of distributions.

• 
Step Function: In mathematics, a function on the

real numbers is called a step function if it can be writ-

ten as a finite linear combination of indicator functions

of intervals.

• 
Empirical Distribution Function: Let

{X1, ..., Xn} be i.i.d real random variables with the

common cdf F (t). Then the empirical distribution

function is defined as

F̂n(t) =
number of elements in the sample ≤ t

n
.

• 
Skewness: In probability theory and statistics, skew-

ness is a measure of the asymmetry of the probability

distribution of a real-valued random variable. The

skewness value can be positive or negative, or even

undefined. Qualitatively, a negative skew indicates

that the tail on the left side of the probability density

function is longer that the right side and the bulk of

the values(including the median) lie to the right of the

mean.

• 
Relative Frequency: Relative frequency of an even-

t is the normalized ratio of frequency over the total

number of events occurred in the experiment or the

study.

• 
Frequency: In statistics the frequency of an event is

the number of times the event occurred in the exper-

iment or the study.

• 
Statistic: A statistic, T = T (X) = T (X1, ..., Xn),

is a function of the data which does not depend on

any unknown parameter(s). For example, suppose

{X1, ..., Xn} is a random sample from a distribution.

Then the sample mean X̄ and the sample variance S
2

are statistics.

• 
Sample: The sample is the set of units actually se-

lected in the investigation.

• 
Sample Variance and Standard Deviation: If the

sample data is {x1, x2, ..., xn} then the sample vari-

ance is given by

σ
2
n−1 =

�n
i=1(xi − x̄)2

n− 1
.

The sample deviation is defined as σn−1 =
�

σ
2
n−1.

• 
Sample Range:Give a sample data, the range of the

sample is defined as the maximum value - minimum

value in the data.

• 
Sample Interquartile Range: Let Q1, Q3 be the

25-th and 75-th quartiles of a sample data according-

ly. The difference Q3 − Q1 is called the interquartile

range.

• 
Sample Mean: Given a sample data {x1, x2, ..., xn},
the sample mean is defined by

X̄ =

�n
i=1 xi

n
.

• 
Sample Size: The number of units in the sample is

called the sample size.

• 
Sample Mode: Given a sample data {x1, x2, ...xn},
the sample mode is the xi with the highest frequency.

• 
Sample Median: Given a sample data

{x1, x2, ..., xn}, the sample median is x such that

numberofxi < x = numberofxi > x.

• 
Orthogonal Matrix: Let M be a n by n matrix, we

say M is an orthogonal matrix if

M
T
M = I,

where I is an identity matrix.

• 
Population: In statistics, population is a set of units

in investigation.
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§2.6 

Chapter Six: Parameter Estimation

• 
Parameter Estimation: In statistics, parameter es-

timation is the process that sample statistics are em-

ployed to estimate the population parameters. It in-

cludes point estimation and interval estimation.

• 
Point Estimation: In statistics, point estimation in-

volves the use of sample data to calculate a single val-

ue (known as a statistic) which is to serve as a ”best

guess” for an unknown (fixed or random) population

parameter.

• 
Maximum Likelihood Estimation: Maximum

likelihood estimation (MLE) is a popular statistical

method used for fitting a statistical model to data,

and providing estimates for the model’s parameters.

To use the method of maximum likelihood, one first

specifies the joint density function or joint probability

mass function for all observations. For example, in

continuous case, we have

L(θ) = f(x1, x2, x3, ..., xn|θ),

where θ is a set of unknown parameters for a given dis-

tribution f(.), and {x1, x2, ..., xn} is the set of sample

data. Moreover, L(θ) is called the likelihood function.

The maximum likelihood function estimates for θ, θ̂,

is a set of values that maximize L(θ).

• 
Likelihood Function: In statistics, likelihood func-

tion for a specific distribution is the joint distribution

of a sample data given unknown parameters. For more

details, please see(Maximum Likelihood

Estimation).

• 
Moment Estimation: In statistics, the method of

moments is a method of estimation of population pa-

rameters such as mean, variance, median, etc. by e-

quating sample moments with unobservable popula-

tion moments and then solving those equations for

the quantities to be estimated.

For example, suppose {X1, X2, ..., Xn} is a sample

from an exponentially distributed population, f(x) =
1
θ e

−x/θ
, x > 0, then the moment estimate of unknown

parameter is

θ̂ = ˆE(X) = µ̂ = X̄

=
X1 +X2 + ...+Xn

n
.

• 
Mean Square Error: The mean square error (MSE)

of parameter estimator θ̂ with respect to the estimated

parameter θ is defined as

MSE(θ̂) = E[(θ̂ − θ)2] = V ar(θ̂) + bias
2(θ̂).

• 
Square of Bias: Suppose an unknown parameter θ

of a certain distribution has an estimator θ̂, then the

square of bias of θ̂ is defined as

bias
2(θ̂) = E[E(θ̂ − θ)]2 = [E(θ̂)− θ]2.

• 
Interval Estimation: In statistics, interval estima-

tion is the use of sample data to calculate an interval

of possible values of an unknown population parame-

ter. Suppose θ is a parameter of a population with its

parameter space Θ, and {X1, X2, ..., Xn} is a random

sample, then for a given α (0 < α < 1), we have two

statistics θ̂L and θ̂U such that

P (θ̂L ≤ θ ≤ θ̂U ) ≥ 1− α, for all θ ∈ Θ.

Then we call (θ̂L, θ̂U ) is the confidence interval for a

confidence level 1 − α, where θ̂L is called the lower

bound and θ̂U ) is called the upper bound of the con-

fidence interval.

• 
Unbiased Estimation: Let θ̂ is an estimator of the

parameter θ, if

E(θ̂) = θ, for allθ ∈ Θ,

where Θ is the parameter space. Then θ̂ is a unbiased

estimator of θ.

• 
Confidence Interval: For detail, please see 

(interval estimation).

• 
Upper Bound of Confidence Interval: For detail,

please see (interval estimation).

• 
Confidence Level: For detail, please see 

(interval estimation).

• 
Lower Bound of Confidence Interval: For detail,

please see (interval estimation).

§2.7 

Chapter Seven: Hypothesis Testing

• 
One-sided Test: A hypothesis testing with null hy-

pothesis in form of θ ≤ h or θ ≥ h is a one-sided

test.

33



• 
Alternative Hypothesis: The complementary hy-

pothesis to null hypothesis is called alternative hy-

pothesis, denoted as H1.

• 
Test Statistic: In hypothesis testing, a hypothesis is

typically specified in terms of a test statistic, which is

a function of the sample; it is considered as a numeri-

cal summary of a set of data that reduces the data to

one or a small number of values that can be used to

perform a hypothesis test.

• 
Hypothesis: In hypothesis testing, a hypothesis is

a statement that θ belongs to Θ0 and the statement

that θ does not belong to Θ0 are called hypothesis,

where θ is a random variable of a model’s parameter

and θ belongs to some special subset Θ0. For exam-

ple, suppose µ is a parameter of normal distribution

N(µ,σ2), then the statement µ = 1 or µ > 4 are both

hypotheses.

• 
Hypothesis Testing: A hypothesis test is the use

of statistics to determine the probability that a given

hypothesis is true. The usual process of hypothesis

testing consist of four steps.

1. Formulate the null hypothesis (H0) and the al-

ternative hypothesis (H1).

2. Identify the test statistic.

3. Compute the p-value, which is the probability

that a test statistic at least as significant as the

one observed would be obtained assuming the

null hypothesis is true. The small the p-value,

the stronger evidence against the null hypothe-

sis.

4. Compare p-value to a pre-determined significant

level. If p < α, the null hypothesis is rejected.

• 
Non-critical Region: In hypothesis testing, the

non-critical region is a complementary region to the

critical region.

• 
Critical Region: In hypothesis testing, if the p-value

corresponding to the test statistic falls into the critical

region, the null hypothesis is rejected.

• 
Critical Value: In hypothesis testing, a critical value

is the edge value between the critical region and the

non-critical region.

• 
Chi-square Goodness of Fit Test: A test of good-

ness of fit establishes whether or not an observed fre-

quency distribution differs from a theoretical distribu-

tion. The test statistic is followed chi-square distribu-

tion.

• 
Two-sided Test: In hypothesis testing, a test with

null hypothesis in form of θ = h is a two-sided test.

• 
Significance Level: In hypothesis testing, the

amount of evidence required to accept that an even-

t is unlikely to have arisen by chance is known as

the significance level. The significance level is pre-

determined, and usually denoted as α.

• 
Null Hypothesis: In hypothesis testing, a hypothe-

sis with equal signs is a null hypothesis. For example,

suppose θ is the parameter of exponential distribution

Exp(θ), then following statements, θ = 0.5, θ ≤ 3, and

θ ≥ 6, are all null hypothesis, while θ �= 0.5, θ < 3, and

θ > 6 are not null hypothesis. Usually, null hypothesis

is written as H0.

• 
Degrees of Freedom: In statistics, the number of

degrees of freedom is the number of values in the final

calculation of a statistic that are to vary.

§2.8 

Chapter Eight: Common Statistical

Analysis Method

• 
Regression Analysis: In statistic, regression analy-

sis includes any techniques for modeling and analyzing

several variables, when the focus is on the relationship

between a dependent variable and one or more inde-

pendent variables.

• 
Regression Model: In regression analysis, regres-

sion models involve the following variables:

1. The unknown parameters denoted as βl this may

be a scalar or a vector.

2. The independent variables, X.

3. the dependent variable, Y .

A regression model relates Y to a function of X and

β

Y ≈ f(X,β).

The approximation is usually formalized as

E(Y |X) = f(X,β).
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• 
Sum Square of Regression (SSR): In regression

analysis, let {y1, y2, ..., yn} be a sample of the response

random variable, then ŷi (i = 1, ..., n) is the fitted val-

ue by the regression model and ȳ is the sample mean.

The sum square of regression (SSR) is defined as

SSR =
n�

i=1

(ŷi − ȳ)2.

• 
Regression Forecasting:

• 
Fitted Value: In regression analysis, the regression

model is in form of Y = f(X,β), where X and Y are

explanatory variable and response variable according-

ly, and β is a set of parameters. Then estimates of

regression parameters β are essentially a function of

observed values, i.e.,β̂ = g(X,Y ). The fitted values of

Y is defined as

Ŷ = f(X, β̂).

• 
Residual: In regression analysis, residuals of the

model is defined as

R = Y − Ŷ ,

where Y and Ŷ are a sample of response variable and

corresponding fitted values.

• 
Sum Square of Error(SSE): In regression analysis,

let {y1, y2, ..., yn} be a sample of the response random

variable, then ŷi (i = 1, ..., n) is the fitted value by the

regression model. The sum square of Error (SSE) is

defined as

SSE =
n�

i=1

(yi − ŷi)
2
.

• 
Linear Regression: In statistic, linear regression is

an approach to modeling the relationship between a

scalar variable y and one or more variables denoted X.

In linear regression, data is modeled using linear func-

tions, and unknown model parameters are estimated

from the data. A generalized linear regression model

is in form of

Y ∼ β0 +
n�

i=1

βiXi.

• 
Response Variable: Also known as the dependent

variable.

• 
Simple Regression: In linear regression, the simple

regression model is defined as

Y ∼ α+ βX.

• 
Explanatory Variable: Also known as the indepen-

dent variable.

• 
Sum Square of Total(SST): In regression analysis,

let {y1, y2, ..., yn} be a sample of the response random

variable, then ȳ is the sample mean. The sum square

of Error (SST) is defined as

SSE =
n�

i=1

(yi − ȳi)
2
.

• 
Least Squares Estimation: In regression analysis,

the least squares methods finds the regression model

parameters β minimize sum of the squared residuals

S =
�

i

r
2
i .

The estimates of parameters using the least squares

method is called the least squares estimates.

§2.9 

Chapter Nine: Time Series Analysis

• AIC

AIC Criterion: The Akaike information criterion

(AIC) is a measure of the goodness of fit a statisti-

cal model. It was developed by Hirotsugu Akaike. In

general case, the AIC is

AIC = 2k − 2 ln(L),

where k is the number of parameters in the statistical

model, and L is the maximized value of the likelihood

function for the estimated model.

• (ARIMA)

Autoregressive Integrated Moving Average

Model: In statistics and econometrics, and in partic-

ular in time series analysis, an autoregressive integrat-

ed moving average (ARIMA) model is a generalization

of an autoregressive moving average (ARMA) model

with non-stationarity added.

• (AR)

Autoregressive Model: In statistics, an autoregres-

sive (AR) model is a type of random process which is

often used to predict various types of natural and so-

cial phenomena. The notation AR(p) refers to the

autoregressive model of order p. The AR(p) model is

defined as

Xt = c+
p�

i=1

ϕiXt−i + �t,

where ϕ1, ...,ϕp are the parameters of the model, c is

a constant and � is the white noise.
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• 
White Noise: A random vector W is a white noise

vector if and only if its mean vector and autocorrela-

tion matrix are the following:

µw = E(w) = 0

Rww = E(ww
T ) = σ

2
I

where I is the identity matrix.

• 
Sum Squares of Residual Errors: In time series

study, the sum squares of residual errors is defined as

n�

i=1

�
2
t ,

where �t is the residual error at Time t.

• 
Residual Errors: In ARIMA process, let β̃ be the set

of parameters and Ft(β̃) be the fitted value at Time t

using ARIMA model. Then the residual error at Time

t is defined as

�t = xt − Ft(β̃),

where xt is the observed value at Time t.

• 
Complex Roots

• LB

Ljung-Box Test Statistic: The Ljung-Box test is a

type of statistical test of whether any of a group of

autocorrelations of a time series are different from ze-

ro. Instead of testing randomness at each distinct lag,

it tests the ”overall” randomness based on a number

of lags, and is therefore a portmanteau test.

The hypothesis can be defined as follows:

– H0: The data is random.

– H1: The data is not random.

The test statistic is

Q = n(n+ 2)
h�

k=1

ρ̂
2
k

n− k
,

where n is the sample size, ρ̂k is the sample autocor-

relation at lag k, and h is the number of lags being

tested.

• (MA)

Moving Average Model (MA): In time series anal-

ysis, the moving average (MA) model is a common

approach for modeling univariate time series model-

s. The notation MA(q) refers to the moving average

model of order q.

Xt = µ+ �t + θ1�t−1 + θq�t−q,

where µ is the mean of the series, the θ1, ..., θq are pa-

rameters of the model, and �t, �t−1, ... are white noise

terms.

• 
Fitted Model

• 
Stationary Time Series: For a series of random

variables {Xt}, if it satisfies following three condition-

s, then {Xt} is stationary.

1. For any t ∈ T , E(Xt) = µ, where µ is a constant;

2. For any t ∈ T , E(X2
t ) < ∞;

3. For any t, s, k ∈ T , and k + s − t ∈ T , γ(t, s) =

γ(k, k+s−t), where γ(t, s) is the autocovariance

function of {Xt}.

If the series does not satisfy any above condition, it is

the non-stationary time series.

• SBC

SBC Criteria: In statistic, the Baysian information

criterion (BIC) is a criterion for model selection among

a class of parametric models with different numbers of

parameters. The formula for the BIC is

−2 · ln(L) + k ln(n),

where L is the maximized value of the likelihood func-

tion for the estimated model, k is the number of pa-

rameters to be estimated, and n is the number of ob-

servations.

• 
Real Roots

• 
Time Series: In statistics, a sequence of random vari-

ables in time order

..., X1, X2, ..., Xt, ...

are called the time series of a random event, denoted

as {Xt, t ∈ T} or {Xt}.

• 
Random Walk: In ARIMA process, ARIMA(0,1,0)

model is formulated as





xt = xt−1 + �t

E(�t) = 0, V ar(�t) = σ
2
� , E(�t�s) = 0, s �= t

E(xt�t) = 0, for all s < t

.

This model is also called Random Walk model.

• 
Autocorrelation Coefficient: Refer to 

(Autocovariance).
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• 
Autocovariance Function: Given a stationary time

series {Xt, t ∈ T}, for any t, t+k ∈ T , the autocovari-

ance function with Lag k, γ(k), is defined as

γ(k) = γ(t, t+ k).

Also we can extend autocovariance function to the

concept of autocorrelation coefficient, which takes the

form of

ρk =
γ(k)
γ(0)

.

• 
Partial Correlation Coefficient: In time series s-

tudy, the partial correlation coefficient with lag k is

defined as

ρxt,xt−k =
E[(xt − Êxt)(xt−k − ˆExt−k)]

E[(xt−k − ˆExt−k

,

where Êxt = E[xt|xt−1, ..., xt−k+1], and ˆExt−k =

E[xt−k|xt−1, ..., xt−k+1].

• 
Cosine

• 
Sine

• 
Exponential Smoothing: Exponential smoothing is

a technique that can be applied to time series data.

When the sequence of observations {x0, x1, ..., } be-

gins at time t = 0, the simplest form of exponential

smoothing is given by the formulas

s1 = x0

st = αxt−1 + (1− α)st−1, t > 1

where α is the smoothing factor, and 0 < α < 1.

• ARMA

Auto Regression Moving Average Model (AR-

MA): In time series study, autoregressive moving av-

erage models are typically applied to autocorrelated

time series data. The notation ARMA(p, q) refers to

the model with p autoregressive terms and q moving

average terms. This model contains the AR(p) and

MA(q) models,

Xt = c+ �t +
p�

i=1

ϕiXt−i +
q�

i=1

θi�t−i,

where �t is a white noise.

§2.10 

Chapter Ten: Fundamental Concepts

and Classification of Stochastic Process-

es

• 
Brownian Motion: In mathematics, Brownian mo-

tion is described by the Wiener process, a continuous-

time stochastic process. The Brownian motion Bt us

characterized by three facts:

1. B0 = 0

2. Bt is almost surely continuous

3. Bt has independent increment with distribution

Wt −Ws ∼ N(0, t− s) for 0 ≤ s ≤ t.

• 
Counting Process: Counting process is a stochastic

process {N(t)}t≥0 that possesses the following prop-

erties:

1. N(t) ≥ 0

2. N(t) is an integer

3. if s ≤ t, then N(s) ≤ N(t).

Poisson process is an example of counting process.

• 
Independent Increment Process

• 
Renewal Process: Let R1, R2, ... be a sequence of

positive i.i.d random variables such that

0 < E[Si] < ∞.

We refer to the random variable Si as the ”i-th” hold-

ing time. Define for each n > 0:

Jn =
n�

i=1

Si,

each Jn referred to as the ”n-th” jump time and the in-

tervals [Jn, Jn+1] being called renewal intervals. Then

the random variable {Xt}t≥0 given by

Xt =
∞�

n=1

1{Jn≤t} = sup{n : Jn ≤ t}

is called a renewal process.

• 
Weak Stationary Process: A continuous-time ran-

dom process Xt which is weak stationary process has

the following restrictions on its mean function

EXt = mx(t) = mx(t+ τ), for allτ ∈ R

and autocorrelation function

E[Xt1Xt2 ] = Rx(t1, t2) = Rx(t1 + τ, t2 + τ)

= Rx(t1 − t2, 0)for allτ ∈ R.
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• 
Markov Process: Let {Xt}t≥0 be a set of stochastic

random variables, then the process is called Markov

process if the condition

Pr[Xt = xt|Xs = xs, Xp1 = xp1 , Xp2 = xp2 , ...]

= Pr[Xt = xt|Xs = xs]

holds for all t > s > p1 > p2 > ....

• 
Random Process: In probability theory, a stochas-

tic process, or sometimes random process, is the coun-

terpart to a deterministic process (or deterministic

system). Instead of dealing with only one possible

reality of how the process might evolve under time, in

a stochastic or random process there is some indeter-

minacy in its future evolution described by probability

distributions. This means that even if the initial con-

dition (or starting point) is known, there are many

possibilities the process might go to, but some paths

may be more probable and others less so.

• 
Random Walks: In stochastic process, the random

walk is the most elementary process. Let {Xt} be a

time series of mutually independent random variables,

then the process is called random walks if

St = X1 +X2 + ...+Xt.

• 
Martingale: A discrete-time martingale is a discrete-

time stochastic process {Xt}t≥0 that satisfies for all n

E(Xn+1|X1, X2, ..., Xn) = Xn.

And a continuous-time martingale is a stochastic pro-

cess such that for all t

E(Xt|{Xτ , τ < s}) = Xs, for alls < t.

• 
Strong Stationary Process: In the mathematical

sciences, a stationary process (or strong stationary

process) is a stochastic process whose joint probabil-

ity distribution does not change when shifted in time

or space. Formally, let {Xt} be a stochastic process

and let FX(xt1+τ , ..., xtk+τ ) represent the cumulative

distribution function of joint distribution of {Xt} at

times t1+τ, ..., tk+τ . Then {Xt} is a strong stationary

process if for all k, τ and ti,

FX(xt1+τ , ..., xtk+τ ) = FX(t1, ..., tk).

So FX(.) is not a function of time.

§2.11 

Chapter Eleven: Several Widely-used S-

tochastic Process

• 
Poisson Process: Poisson process is a continuous-

time counting process{Nt}t≥0 that possesses the fol-

lowing properties:

– N0 = 0

– Independent increments(the numbers of occur-

rences counted in disjoint intervals are indepen-

dent from each other)

– Stationary increments(the probability distribu-

tion of the number of occurrences counted in any

time interval only depends on the length of the

interval)

– No counted occurrences are simultaneous.

Poisson process includes homogeneous Poisson pro-

cess, non-homogeneous Poisson process, compound

Poisson process, and conditional Poisson process.

• 
Brownian Bridge: Brownian bridge is a continuous-

time stochastic process built on Brownian motion.

Suppose {Bt}t≥0 is a Brownian motion, let

B
∗
t = Bt − tB1, 0 ≤ t ≤ 1,

then {B∗
t }0≤t≤1 is called Brownian bridge.

• 
Recurrent State: If a state i is not transient, then

it is said to be recurrent.

• Chapman-Kolmogorov 

Chapman-Kolmogorov Equation: Let P
(c)
ab be c-

step transition probability from State a to State b,

then Chapman-Kolmogorov equation is defined as

1. P
(m+n)
ij =

�
k∈S P

(m)
ik P

(n)
kj ;

2. P
(n) = P · P (n−1) = P · P · P (n−2) = ... = P

n,

for all n,m ≥ 0, i, j ∈ S, where S is the set of states.

• 
Non-homogenous Poisson Process: In Poisson

process, if the rate parameter for event arriving may

change over time, we call such a Poisson process non-

homogeneous Poisson process.

• 
Compound Poisson Process:A compound Poisson

process with rate λ > 0 and jump size distribution G

is a continuous-time stochastic process {Yt}t≥0 given

by

Yt =
Nt�

i=1

Xi
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where {Nt}t≥0 is a Poisson process with rate λ, and

{Xi}i≥1 are i.i.d random variables with distribution

function G, which are also independent of {Nt}t≥0.

• 
Gaussian Process: In probability theory and statis-

tics, a Gaussian process is a stochastic process whose

realizations consist of random values associated with

every point in a range of times such that random vari-

ables has a normal distribution.

• 
Renewal Equation: The renewal equation satisfies

K(t) = H(t) +

� t

0

k(t− s)dF (s),

where H(t) and F (t) are known, and H(t), F (t) equal

0 if and only if t < 0.

• 
Renewal-reward Process: Let W1,W2, ... be a se-

quence of i.i.d random variables satisfying

E|Wi| < ∞.

Then the random variable

Yt =
Xt�

i=1

Wi

is called a renewal-reward process. Note each Wi may

take negative values as well as positive values.

• 
Markov Chain: A Markov chain is a sequence of ran-

dom variableX1, X2, X3, ... with the Markov property,

namely that, given the present state, the future and

past states are independent. Formally,

Pr(Xn+1 = x|X1 = x1, ..., Xn = xn)

= Pr(Xn+1|Xn = xn).

• 
Homogeneous Markov Chain: If the transition

probability of a Markov chain P{Xn+1 = j|Xn = i}
only relates to State i, j not n, then we call such a

Markov chain the homogeneous Markov chain.

• 
Transient State: A state i is said to be transien-

t if, given that we start in state i, there is non-zero

probability that we will never return to i.

• 
Conditional Poisson Process: Let Λ > 0 be a ran-

dom variable, under the condition Λ = λ, the counting

process {Nt}t≥0 is a process process with parameter

λ, then such a counting process is called conditional

Poisson process.

• Wald 

Wald’s Equation: In probability theory, Wald’s e-

quation is an important identity that simplifies the

calculation of the expected value of the sum of a ran-

dom number of random quantities.

Suppose E(Xi) < ∞, i = 1, 2, ..., then

E(TN(t)+1) = E(X1+...+XN(t)+1) = E(X1)E[N(t)+1].

• 
Transition Probability: In Markov process, the

conditional probabilities associated with various state-

changes are called transition probabilities.

§2.12 

Chapter Twelve: Stochastic Calculus

• 
Quadratic Variation: Let {Xt}t≥0 be a stochastic

process, its quadratic variation at t is defined as

lim
n→∞

n�

k=1

(Xtk −Xtk−1)
2
,

where n is the number of partitions in time interval

[0, t].

• Fubini 

Fubini’s Theorem: In mathematical analysis Fubi-

ni’s theorem is a result which gives conditions under

which it is possible to compute a double integral us-

ing iterated integrals. Suppose A and B are complete

measure spaces. Suppose f(x, y) is A×B measurable.

If �

A×B

|f(x, y)|d(x, y) < ∞,

where the integral is taken with respect to a product

measure on the space over A×B, then
�

A

��

B

f(x, y)dy

�
dx =

�

B

��

A

f(x, y)dx

�
dy

=

�

A×B

f(x, y)d(x, y).

• 
Stochastic Calculus: Stochastic calculus is a branch

of mathematics that operates on stochastic processes.

• 
Ito’s Lemma: Ito’s lemma is the version of the chain

rule or change of variables formula which applies to

the Ito’s integral. Let Y (t) = f(t, S(t)), then

dY (t) = ft(t, S(t))dt+ fS(t, S(t))dS(t)

+
1
2
fSS(t, S(t))(dS(t))

2

• 
Ito Calculus: Ito calculus extends the methods of

calculus to stochastic processes such as Brownian mo-

tion. The usual notation for the Ito stochastic integral

is:

Yt =

� t

0

HsdXs = lim
n→∞

�

[ti−1,ti]∈πn

Hti−1(Xti −Xti−1)

where πn is a sequence of partitions of [0, t] with mesh

going to zero and Xt is a Brownian motion.
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§3 A3 Manual

§3.1 

Chapter One: Introduction

This chapter contains reading materials, and most of

technique terms can be found in previous context.

§3.2 

Chapter Two: Basic Functions of Sur-

vival Analysis and Survival Models

• 
Adjoint Random Variable

• 
Initial Event: The event or status at the beginning

of the period t = 0 is called the initial event.

• 
Independent Rate of Decrement: In associated

single decrement model, tq
�(j)
x is called independen-

t rate of decrement, because cause j does not com-

plete with other causes in determining tq
�(j)
x . It is also

named as net probability of decrement and absolute

rate of decrement.

• Gompertz

Gompertz Distribution: In survival analysis and

mortality modeling, Gompertz distribution for hazard

rate is defined as

h(x) = Bc
x
, x ≥ 0, B > 0, c > 1.

with survival function

S(x) = exp(
B

ln c
(1− c

x)).

• 
Gamma Function: Gamma function is an important

function in mathematics, which is defined in integral

form

Γ(z) =

� ∞

0

t
z−1

e
−t

dt.

If z is a positive integer, gamma function also can be

simplified as

Γ(z) = (z − 1)!.

• 
Mean Excess Loss Distribution: Mean excess loss

random variable is defined as X|X > y, and its cor-

responding distribution is called the mean excess loss

distribution.

• 
Associated Single Decrement Model: In mortal-

ity study, we define the associated single decrement

model functions as follows:

tp
�(j)
x = exp

�
−
� t

0

µ
(j)
x (s)ds

�
,

tq
�(j)
x = = 1−t p

�(j)
x .

• Makeham

Makeham Distribution: Makeham’s law is pro-

posed to improve Gompertz’s model, which encoun-

ters a systematic underestimation for mortality curve

in older ages. Makeham’s distribution assumes the

hazard rates for different ages have independent parts

to ages; therefore, an additional age-independent con-

stant is added to Gompertz’s distribution.

h(x) = A+Bc
x
,

and its survival function is

S(x) = exp

�
B

ln c
(1− c

x)−Ax

�
.

• 
Survival Model: Models employed in survival anal-

ysis to study survival random variables are called sur-

vival models.

• 
Survival Analysis: Survival analysis is a branch of

statistics which deals with death in biological organ-

isms and failure in mechanical system.

• 
Survival Time Random Variable: In survival

analysis, we are interested in the time of an individual

or a group terminating a status or an event since be-

ginning, and the associated random variable is called

survival time random variable, usually denote as T .

• 
Weibull Distribution: Weibull distribution is a

continuous-time distribution with density function in

form of

f(x) =
k

λ

�
x

λ

�k−1
e
−(x/λ)k

, x ≥ 0

where λ > 0 is the scale parameter and k > 0 is the

shape parameter.

• 
Future Lifetime Random Variable: Let Tx be the

length of time till death of an Age (x), then we call

Tx the future lifetime random variable for an Age (x).

• 
Hazard Rate Function: Let T be a lifetime ran-

dom variable and S(T ) be the corresponding Survival
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distribution function, then the hazard rate is defined

as

h(t) =
−S(t)�

S(t)
=

f(t)
S(t)

where f(t) is the density function of T .

• 
Remaining Function: In multiple decrement mod-

eling, the probability function of Age (x) survives for

t years is called the remaining function and denoted

as tp
(τ)
x .

• 
Memoryless Property (of Exponential Distri-

bution): IfX is an exponential random variable, then

it has memoryless property, i.e.,

P (X > x+ y|X > x) = P (X > y).

• 
Central Death Rate: Central death rate is a mea-

sure of death rate within a age interval (x, x+n], which

is in form of

nMx =

� x+n

x
S(y)h(y)dy

� x+n

x
S(y)dy

,

where h(.) and S(.) are density function and survival

function accordingly.

• 
Primary Random Variable

§3.3 

Chapter Three: Life Tables

• Balducci

Balducci’s Assumption: Under Balducci’s As-

sumption, survival function in fractional age interval

has following property

1
S(x+ t)

=
1− t

S(x)
+

t

S(x+ 1)
, 0 < t < 1

where S(x) is the survival function at age x.

• 
Constant Force of Mortality Assumption: In

mortality modeling and survival analysis, the constant

force of mortality (CFM) assumes mortality rates un-

change in fractional age, that is,

lnS(x+ t) = (1− t) lnS(t) + t lnS(x+ 1), 0 < t < 1

or equivalently

S(x+ t) = S(x)1−t · S(x+ 1)t, 0 < t < 1.

• 
Uniform Distribution at Deaths Assumption:

In mortality modeling and survival analysis, uniform

distribution at deaths (UDD) assumption assumes the

death time in a unit interval (x, x+1] is uniformly dis-

tributed. In this case, the survival function is a linear

function

S(x+ t) = (1− t)S(x) + tS(x+ 1), 0 < t < 1,

leading to

tpx = 1− tqx

and

s|tqx = tqx.

• 
Select Period: In life contingency study, an individ-

ual who enters the group at, say, age x, is said to be

selected, or just select, at age x. The period d after

which the age at selection has no effect on future sur-

vival probabilities is called select period for the model.

The mortality that applies to lives after the select pe-

riod is complete is called the ultimate mortality.

• 
Select Life Table: A life table only containing infor-

mation of insurers in select period is called the select

life table.

• 
Select-Ultimate Life Table: A select-ultimate life

table contains the death and survival information of

insurers in select period as well as thereafter.

• 
Ultimate Life Table: A life table only with survival

information after select period is a ultimate life table.

§3.4 

Chapter Four: Distributions of Claim

Amounts and Frequencies

• (a,b,0)

(a,b,0) Class of Distributions: In probability the-

ory, the distribution of a discrete random variable N

is said to be a member of the (a, b, 0) class of distri-

butions if its probability mass function obeys

pk

pk−1
= a+

b

k
, k = 1, 2, 3, ...

where pk = Pr(N = k).

• (a,b,1)

(a,b,1) Class of Distributions: Let pk be the prob-

ability function of a discrete random variable. It is a

member of the (a,b,1) class of distributions provided

that there exists constants a and b such that

pk

pk−1
= a+

b

k
, k = 2, 3, 4, ...

Note that the only difference from the (a,b,0) class is

that the recursion begins at p1 rather than p0.
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• (a,b,k)

(a,b,k) Class of Distribution : Let pi be the prob-

ability function of a discrete random variable. It is a

member of the (a,b,k) class of distributions provided

that there exists constants a and b such that

pi

pi−1
= a+

b

i
, i = k + 1, k + 2, k + 3, ...

Note (a,b,k) class of distributions start recursion at

pk.

• 
Policy Limit: The opposite of a deductible is a pol-

icy limit. The typical policy limit arises in a contract

where for losses below u the insurance pays the full

loss, but for losses above u the insurance pays for u.

• 
Coinsurance: In this case the insurance company

pays a proportion, α, of the loss and the policyholder

pays the remaining fraction.

• 
Poisson-Inverse Gaussian Distribution:

• 
Log-normal Distribution: In probability theory, a

log-normal distribution is a probability distribution of

a random variable whose logarithm is normally dis-

tributed. If X is a random variable with a normal

distribution, then Y = exp(X) has a log-normal dis-

tribution; likewise, if Y is log-normally distributed,

then X = log(Y ) is normally distributed. Formally, Y

has probability density function

f(x) =
1

xσ
√
2π

e
− (ln x−µ)2

2σ2 ,

where µ and σ are parameters.

• 
Multinomial Distribution: In probability theory,

the multinomial distribution is a generalization of the

binomial distribution. The binomial distribution is

the probability distribution of the number of ”success-

es” in n independent Bernoulli trials, with the same

probability of ”success” on each trial. The probability

mass function of multinomial distribution is

f(x1, ..., xk) = Pr(X1 = x1, ...,AND Xk = xk)

=






n!
x1!...xk!

p
x1
1 ...p

xk
k ,when

�k
i=1 xi = n

0, Otherwise
.

for non-negative integers x1, ..., xk.

• 
Negative Binomial: In probability theory and s-

tatistics, a discrete random variable N said to have

negative binomial distribution, N ∼ NB(r, p) if its

probability mass function takes the form

pk = Pr(N = k) =

�
r + k − 1

k

�
p
r(1− p)k

where 0 < p < 1 and k ∈ N are parameters.

• 
Compounded Random Variable: In aggregate

claim process, let

S = X1 +X2 + ...+XN

where Xis are i.i.d claim amount random variables

and N is claim frequency random variable. Then S is

the compound random variable.

• 
Probability Generating Function: Suppose a dis-

crete random variable N has the probability distribu-

tion pk = Pr(N = k), k = 0, 1, 2, ..., then its probabil-

ity generating function is defined as

PN (t) = E(tk) =
∞�

k=0

pkt
k
.

• 
Mixed Poisson Distribution: In Poisson distribu-

tion, if the poisson rate, Λ is a density function u(λ)

instead of deterministic value, then such a distribution

is called mixed Poisson distribution/ Formally,

P (N = k) =

� ∞

0

e
−λ

λ
k

k!
u(λ)dλ, k = 0, 1, 2, ...

• 
Moment Generating Function: In probability the-

ory and statistics, the moment-generating function of

any random variable is an alternative definition of it-

s probability distribution. The definition of moment

generating function is as follows

MX(t) = E(etX), t ∈ R

whenever this expectation exists.

• 
Zero-truncated Distribution:In (a,b,1) class of dis-

tributions, if p0 = 0, then this distribution is also

called zero-truncated distribution. It is can be viewed

as a mixture of a truncated distribution and a degen-

erate distribution with all the probability at zero.

• 
Zero-modified Distribution: In (a,b,1) class of dis-

tributions, zero-modified distribution has probability

at zero p0 > 0.

• 
Claim Amount
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• 
Deductible: Insurance policies are often sold with a

per-loss deductible of d. When the loss x, is at or be-

low d, the insurance pays nothing. When the loss is

above d, the insurance pays x− d.

• 
Pareto Distribution: A continuous random variable

X is said to have Pareto distribution if its probability

density function obeys

f(x) =
αθ

α

(x+ θ)α+1
, x > 0,α > 0, θ > 0

and denote as X ∼ Pareto(α, θ).

• 
Loss Amount

• 
Right Truncation: An observation is right truncat-

ed at u if when it is above u it is not recorded, but

when it is below u it is recorded at its observed value.

• 
Right Censoring: An observation is right censored

at u if when it is above u it is recorded as being e-

qual to u, but when it is below u it is recorded at its

observed value.

• 
Limited Expected Function: For a random vari-

able X and a pre-determined real number u, the lim-

ited loss variable is defined as

Y = X

�
u =





X,X < u

u,X ≥ u

Then its expected value,

E(X
�

u) =

� u

∞
xf(x)dx+ u[1− F (u)]

is called the limited expected function.

• 
Left Truncation: An observation is left truncated at

d if when it is below d it is not recorded, but when it

is above d it is recorded at its observed value.

• 
Left Censoring: An observation is left censored at

d if when it is below d it is recorded as being equal to

d, but when it is above d it is recorded as its observed

value.

§3.5 

Chapter Five: Short-term Individual

Risk Model

• 
Bernoulli Distribution: Refer to 0-10-1 Dis-

tribution).

• 
Individual Risk Model: The individual risk model

represents the aggregate loss as a sum, S = X1 + ...+

Xn, of a fixed number, n, of insurance contracts. The

loss amounts for the n contracts are (X1, X2, ..., Xn),

where the Xjs are assumed to be independent but are

not assumed to be identically distributed. The dis-

tribution of the Xjs usually has a probability mass

at zero, corresponding to the probability of no loss or

payment.

• 
Lindeberg’s Condition: In probability theory, Lin-

deberg’s condition is a sufficient condition for the

central limit theorem to hold for a sequence of in-

dependent random variables. Suppose X1, X2, ..., Xn

are sequence of independent random variables with

E(Xk) = µk, V ar(Xk) = σ
2
k, and Fk(x) is the dis-

tribution function. Also, let s
2
n =

�n
k=1 σ

2
k. If this

sequence satisfies the Lindeberg’s condition:

lim
n→∞

1
s2n

n�

k=1

�

{|Xk−µk|>�Sn}
(Xk − µk)

2
dFk(x),

for all � > 0, then the central limit theorem holds.

§3.6 

Chapter Six: Short-term Aggregate Risk

Model

• 
Proportional Reinsurance: Proportional reinsur-

ance involves one or more reinsurers taking a stated

percent share of each policy that an insurer produces.

This means that the reinsurer will receive that stated

percentage of each dollar of premiums and will pay

the percentage of each dollar of losses.

• 
Compound Poisson Model: Refer to 

(Compound Poisson Process).

• 
Compound Negative Binomial Distribution: In

aggregate claim process, if the claim frequency em-

ploys negative binomial distribution, then the aggre-

gate claim random variable follows the compound neg-

ative binomial distribution.

• 
Aggregate Claim Random Variable: In insurance

risk study, the sum of i.i.d claim amount random vari-

ables Xis

S =
N�

i=1

Xi

is the aggregate claim random variable, where N is

the claim frequency random variable.
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• 
Claim Frequency Random Variable: Let N ∈ N
which satisfies P (N = 0) > 0 represent the number

of claims generated by insurance policies, then N is

called the claim frequency random variable.

• 
Claim Amount Random Variable: Let {N(t)}t≥0

be the claim number process. For a determined

N(t) = n > 0, we have a sequence of random variables

Xi, i = 1, 2, ..., n representing the i-th claim amoun-

t, and we call such random variables claim amount

random variables.

• 
Horizontally-shifted Gamma Distribution: Let

Gamma(x;α,β) be the cumulated density function of

Gamma random variable X with parameters α and β.

Then the horizontally-shifted Gamma distribution is

defined as

H(x;α,β, x0) = Gamma(x− x0;α,β), x ≥ x0.

The new distribution shifts the original distribution

horizontally by x0 units.

• 
Stop-loss Reinsurance: Stop loss is a nonpropor-

tional type of reinsurance and works similarly to

excess-of-loss reinsurance. While excess-of-loss is re-

lated to single loss amounts, either per risk or per

event, stop-loss covers are related to the total amount

of claims X in a year.

§3.7 

Chapter Seven: Ruin Model

:

• 
Poisson Surplus Process: Poisson surplus process

is defined as

U(t) = u+ ct− S(t), t ≥ 0

where

1. u is the initial surplus, and u ≥ 0;

2. {S(t), t ≥ 0} is a compounded Poisson process

with Poisson parameter λ, and claim amount

random variable X ∼ F (x);

3. and c is the premium rate.

• 
Initial Surplus: In surplus process, the surplus at

time t is denoted as U(t), t > 0. The initial surplus

then is defined as U(0) and simply written as u.

• 
Brownian Motion with Drift: The Brownian mo-

tion with a drift {W (t), t ≥ 0} is defined as follows:

1. W (0) = 0;

2. {W (t), t ≥ 0} has independent and stationary

increments;

3. For any t > 0, W (t) ∼ N(µt,σ2
t), where µ ≥ 0.

• 
Waiting-time Random Variable: In a counting

process, the time difference between two events is

called the waiting-time random variable.

• 
Compound Poisson Process: Let the number of

claim process {Nt : t ≥ 0} be a Poisson process with

rate λ. let the individual losses {X1, X2, ...} be inde-

pendent and identically distributed positive random

variables, independent of Nt, each with cumulative

distribution function F (x) and mean µ < ∞. Thus

Xj is the amount of the jth loss. Let St be the to-

tal loss in (0, t]. It is given by St = 0 if Nt = 0

and St =
�Nt

j=1 Xj if Nt > 0. Then, for fixed t, St

has a compound Poisson distribution. The process

{St : t ≥ 0} is said to be a compound Poisson process.

Because {Nt : t ≥ 0} has stationary and independent

increments, so does {St : t ≥ 0}. Also,

E(St) = E(Nt)E(Xj) = (λt)(µ) = λµt.

• 
Liability

• 
Counting Process: Refer to (Counting

Process).

• 
Claim Number Process: Let N(t) ∈ N represent

the aggregate claim numbers in time interval [0, t], and

N(0) = 0, then we call {N(t)}t≥0 the claim amount

process.

• lundberg

Lundberg Coefficient (Adjust Coefficient): For

the Poisson surplus process, the non-negative root R

satisfying the following equation

λ+ cr = λMX(r)

is the adjust coefficient.

• 
Ruin Time: In a surplus process, the ruin time T is

the time surplus revealing a negative value. Mathe-

matically,

T = inf{t, t ≥ 0, U(t) < 0}
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where U(t) is the surplus at time t.

• 
Intensity Function: Let {N(t), t ≥ 0} be a counting

process. Then define

λ(t) = lim
∆t→0+

1
∆t

P [N(t+∆t)−N(t) = 1|N(s), 0 < s ≤ t],

if the limit exists. λ(t) is the intensity function of the

counting process.

• 
Infinite Time Ruin Probability: Ruin probability

is sometimes called infinite time ruin probability.

• 
Surplus: Surplus is defined as the difference between

assets and liabilities, written as:

U(t) = A(t)− L(t), t ≥ 0

where A(t) and L(t) are assets and liabilities at time

t accordingly.

• 
Finite Time Ruin Probability: Given a surplus

process {U(t)}t≥0, the finite time ruin probability is

defined as

ψ(u, t) = P (∃s ∈ (0, t], U(s) < 0).

This is the probability to ruin within time interval

(0, t] given initial surplus u.

• 
Ruin Probability: For a surplus process {U(t)}t≥0,

ψ(u) = P (∃t ≥ 0, U(t) < 0)

is called the ruin probability given initial surplus u.

• 
Survival Probability: For a surplus process

{U(t)}t≥0, the survival probability given initial sur-

plus u is defined mathematically as

φ(u) = P (U(t) ≥ 0, ∀t ≥ 0).

• 
Asset

• 
Aggregate Claim Process: Define the process

{S(t), t ≥ 0} be the aggregate claim process if

S(t) =
N(t)�

i=1

Xi

where {N(t), t ≥ 0} is the claim number process and

Xis are claim amount random variables.

• 
Maximal Aggregate Loss Random Variable: In

a surplus process {U(t), t ≥ 0}, the maximal aggregate

loss random variable of the process is

L = max[S(t)− ct].

§3.8 

Chapter Eight: Empirical Models

• 
Bandwidth: In kernel density estimation, especially

uniform kernel and triangular kernel, there is a pa-

rameter that relates to the spread of the kernel, which

is called the bandwidth.

• 
Log-transformed Confidence Interval: For

Kaplan-Meier product-limit estimator, the log-

transformed confidence interval for a confidence level

of α is defined by (Sn(t)
1/U

, Sn(t)
U ), where

U = exp




z0.5+α/2

�
ˆV ar[Sn(t)]

Sn(t) lnSn(t)



 .

For Nelson-Aalen estimator for cumulative hazard

rate, the corresponding log-transformed confidence in-

terval is (Ĥ(t) exp(−U), Ĥ(t) exp(U)), where

U =
z0.5+α/2

�
ˆV ar[Ĥ(yj)]

Ĥ(t)

z0.5+α/2 is the 0.5 + α/2-th quartile of standard nor-

mal distribution, and Sn(t) is the empirical survival

distribution.

• 
Multiple Decrement Probability:

• 
Risk Set: In survival analysis, the risk set at jthe

ordered observation yj is denoted rj . When thinking

in terms of a mortality study, the risk set comprises

the individuals who are under observation at that age.

Included are all who die at that age or later and all

who are censored at that age or later. However, those

who are first observed at that age or later were not

under observation at that time.

• 
Grouped Data: Grouped data is a statistical term

used in data analysis. A raw data set can be orga-

nized by constructing a table showing the frequency

distribution of the variable. Such a frequency table is

often referred to as a grouped data.

• Greenwood

Greenwood Approximation: In survival analysis,

the survival distribution is estimated by Kaplan-Meier

product-limit estimator, then the variance of the esti-

mator can be simplified by Greenwood approximation:

ˆV ar[Sn(yj)] = Sn(yj)
2

j�

i=1

si

ri(ri − si)
,

where yj , sj , rj are defined as follows:
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– let y1 < y2 < ... < yk be the k unique values that

appear in the sample;

– let sj be the number of times the uncensored ob-

servation yj appears in the sample;

– rj is the risk set at time t.

• 
Kernel Density Estimation: In empirical model-

ing, Kernel density estimation is a method of obtain-

ing a smooth, empirical-like distribution. Let p(yj) ne

the probability assigned to the value yj(j = 1, ..., k) by

the empirical distribution. Let Ky(x) be a distribu-

tion function for a continuous distribution such that

its mean is y. Let ky(x) be the corresponding density

function. A kernel density estimator of a distribution

function is

F̂ (x) =
k�

j=1

p(yj)Kyj (x),

and the estimator of the density function is

f̂(x) =
k�

j=1

p(yj)kyj (x).

The function ky(x) is called the kernel. Three kernels

are commonly used: uniform, triangular and gamma.

• 
Gamma Kernel Function: In kernel density esti-

mation, a gamma kernel function is a kernel densi-

ty function employing the gamma distribution with

shape parameter α and scale parameter y/α, i.e., its

kernel is given by:

ky(x) =
x
α−1

e
−xα/y

(y/α)αΓ(α)
.

Note that the gamma distribution has a mean of

α(y/α) = y and a variance of α(y/α)2 = y
2
/α.

• 
Truncated Data: Truncated data includes left-

truncated data and right-truncated data. For more

details and formal definitions of both types of da-

ta refer to (Left Truncation) and (Right

Truncation).

• 
Empirical Distribution: The empirical distribution

is obtained by assigning probability 1/n to each data

point. Mathematically,

Fn(x) =
number of observations ≤ x

n
,

where n is the total number of observations.

• 
Empirical Distribution Probability Function:

Let {x1, x2, ..., xn} be a set of observation data, and

let y1 < y2 < ... < yk be k different observation val-

ues. Define sj be the number of xi having the value

of yj , i.e. sj =
�n

i=1 I(xi), where I(.) is the indicator

function. The the empirical distribution probability

function is given by

pn(x) =






sj
n , x = yj

0, otherwise.

• 
Ogive: For grouped data, the distribution function

obtained by connecting the values of the empirical

distribution function at the group boundaries with s-

traight lines is called the ogive. The formula is

Fn(x) =
cj − x

cj − cj−1
Fn(cj−1) +

x− cj−1

cj − cj−1
Fn(cj),

for cj−1 ≤ x ≤ cj .

• 
Empirical Survival Function: The empirical sur-

vival function is given by

Sn(x) =
number of observations > x

n

where n is the total number of observations.

• 
Uniform Kernel Function: In kernel density esti-

mation, a uniform kernel function is a kernel density

function employing the uniform distribution, i.e., its

kernel is given by:

ky(x) =






0, x < y − b,

1
2b , y − b ≤ x ≤ y + b,

0, x > y + b,

Ky(x) =






0, x < y − b,

x−y+b
2b , y − b ≤ x ≤ y + b,

1, x > y + b.

where ky(x) is the kernel density function and Ky(x)

is the corresponding distribution function. There is

a parameter that relates to the spread of the kernel,

b > 0, which is called the bandwidth.

• Kaplan-Meier

Kaplan-Meier Product-limit Estimator: In sur-

vival analysis, the estimate function for survival func-

tion can be obtained by Kaplan-Meier product-limit

estimator. The general formula is

Sn(t) =






1, 0 ≤ t < y1,

�j−1
i=1

ri−s1
ri

, yj−1 ≤ t < yj , j = 2, ..., k,
�k

i=1
ri−si

ri
or0, t ≥ yk,

where yj , sj , rj are defined as follows:

47



– let y1 < y2 < ... < yk be the k unique values that

appear in the sample;

– let sj be the number of times the uncensored ob-

servation yj appears in the sample;

– rj is the risk set at time t.

• 
Cumulative Hazard Rate Function: The cumu-

lative hazard rate function is defined as

H(x) = − lnS(x).

The name comes from the fact that, if S(x) is differ-

entiable,

H
�(x) = −S

�(x)
S(x)

=
f(x)
S(x)

= h(x),

then

H(x) =

� x

−∞
h(y)dy.

Note S(x) is the survival distribution function and

h(x) is the hazard rate.

• Nelson-Aalen

Nelson-Aalen Estimator: Given a data set

{x1, x2, ..., xn}, the Nelson-Aalen estimate of the cu-

mulative hazard rate function is

Ĥ(x) =






0, x < y1,

�j−1
i=1

si
ri
, yj−1 ≤ x ≤ yj , j = 2, ..., k,

�k
i=1

si
ri
, x ≥ yk,

where yj , rj and sj are defined as follows:

– let y1 < y2 < ... < yk be the k unique values that

appear in the sample;

– let sj be the number of times the observation yj

appears in the sample;

– let rj =
�k

i=j si be the number of observations

greater than or equal to yj .

• 
Complete Data: A complete data set is a set of da-

ta without any truncation and censoring. It includes

individual data and grouped data.

• 
Triangular Kernel Function: In kernel density es-

timation, a triangular kernel function is a kernel den-

sity function employing the triangular-shaped density

function, i.e., its kernel is given by:

ky(x) =






0, x < y − b

x−y+b
b2

, y − b ≤ x ≤ y,

y+b−x
b2

, y ≤ x ≤ y + b,

0, x > y + b,

Ky(x) =






0, x < y − b,

(x−y+b)2

2b2
, y − b ≤ x ≤ y,

1− (y+b−x)2

2b2
, y ≤ x ≤ y + b,

1, x > y + b.

where ky(x) is the kernel density function and Ky(x)

is the corresponding distribution function. There is

a parameter that relates to the spread of the kernel,

b > 0, which is called the bandwidth.

• 
Censored Data: Censored data includes left-

censored data and right-censored data. For more de-

tails and formal definitions of both types of data refer

to (Left Censoring) and (Right Censor-

ing).

• 
Indicator Function: Indicator takes value of 1 if a

designed event occurs and value of 0 otherwise. For-

mally, let S be a set of designed events and A be a

certain event, then

I(A) =





1, if A ⊆ S

0, otherwise
.

• 
Data-Dependent Distribution: A data-dependent

distribution is at least as complex as the data or

knowledge that produced or, and the number of ”pa-

rameters” increases as the number of data points or

amount of knowledge increases.

• 
Complete Individual Data: A complete individual

data set is a set of non-grouped complete data.

• 
Linear Interpolation: Linear interpolation is a

method of curve fitting using linear polynomials. If

the two known points are given by the coordinates

(x0, y0) and (x1, y1), the linear interpolant is the s-

traight line between these points. For a value x in the

interval (x0, x1), the value y along the straight line is

given from the equation

y − y0

x− x0
=

y1 − y0

x1 − x0
,

then

y =
x− x0

x1 − x0
y1 +

x1 − x

x1 − x0
y0.

• 
Right-Truncated Data: Refer to (Right

Truncation).

• 
Right-Censored Data: Refer to (Right Cen-

soring).
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• 
Histogram

• 
Left-Truncated Data: Refer to (Left Trun-

cation).

• 
Right-Censored Data: Refer to (Left Cen-

soring).

§3.9 

Chapter Nine: Parametric Model Esti-

mation

• 
Proportional Hazards Assumption: In Cox mod-

el, any pairs of individuals should satisfy the propor-

tional hazards assumption, that is, the proportion of

any two hazard rates are unchanged with respect to

time.

hi(t)
hj(t)

= exp(a�(zi − zj)), j = 1, ..., n,

where hi(t) = h(t|zi).

• Cox

Cox Proportional Hazards Model: Given a base-

line hazard rate function h0(t) and values z1, ..., zp as-

sociated with a particular individual, the Cox propor-

tional hazards model for that person is given by the

hazard rate function

h(x|z) = h0(x)c(β1z1 + ...+ βpzp) = h0(x)c(β
T z),

where c(y) is any function that takes on only positive

values; z = (z1, z2, ..., zp)
T is a column vector of the

z values (called covariates); and β = (β1, ...,βp)
T is

a column vector of coefficients. Usually, Cox model

takes the case of c(y) = exp(y).

• Delta

Delta Method: In statistics, the delta method is a

method for deriving an approximate probability dis-

tribution for a function of an asymptotically normal

statistical estimator from knowledge of the limiting

variance of that estimator. Let X1, X2, ..., Xn be a

sequence of random variables such that

n
b(Xn − a) →D X

for some b > 0. Suppose the function g(x) is differen-

tiable at a and g
�(a) �= 0. Then

n
b[g(Xn)− g(a)] →D g

�(a)X,

where → D means converges in distribution.

• 
Loglikelihood Function: Let L(Θ) =

f(x1, ..., xn|Θ) be likelihood function, then the log-

likelihood function is

l(Θ) = ln(L(Θ)) = ln(f(x1, ..., xn|Θ)).

• 
Percentile Matching Estimation: A percentile

matching estimate of θ is any solution of the p equa-

tions

πgk (θ) = π̂gk , k = 1, 2, ..., p,

where g1, g2, ...gp are p arbitrarily chosen percentiles,

and π̂k is the sample estimate of k-th moment. From

the definition of percentile, the equations can also be

written

F (ĝk|θ) = gk, k = 1, 2, ..., p.

• Fisher

Fisher’s Information: Let l(θ) be the loglikelihood

function, then the Fisher’s information is defined as

I(θ) = −E

�
∂
2

∂θ2
l(θ)

�
.

• Frank

Frank Copula: Frank copula is a commonly used

copula, and it takes the form

C(u, v) = logα

�
1 +

(αu − 1)(αv − 1)
α− 1

�
.

• 
Individual Life Annuity

• 
Generalized Linear Regression Model: In a gen-

eralized linear regression model, each outcome of the

dependent variables, Y, is assumed to be generated

from a particular distribution in the exponential fam-

ily, a large range of probability distributions that in-

cludes the normal, binomial and poisson distributions,

among others. The mean, µ, of the distribution de-

pends on the independent variables, X, through:

E(Y) = µ = g
−1(Xβ)

where E(Y) is the expected value of Y; Xβ is the linear

predictor, a linear combination of unknown parame-

ters, β; g is the link function, and its inverse function

g
−1 is called the mean function.

• 
Ordinary Linear Regression Model: In ordinary

linear regression, the random variable, X, has a nor-

mal distribution with mean = µ and variance = σ
2.

Then the model is µ = β
T z, where β is a vector of

coefficients and z is a vector of covariates for an indi-

vidual.
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• 
Mean Function: Refer to 

(Generalized Linear Regression Model).

• 
Method of Moments: In statistics, the method of

moments is a method of estimation of population pa-

rameters such as mean, variance, media, etc., by e-

quating sample moments with unobservable popula-

tion moments and then solving those equations for

the quantities to be estimated.

• 
Joint Life Annuity

• 
Link Function: Refer to 

(Generalized Linear Regression Model).

• Logistic

Logistic Model: Logistic model employs the logis-

tic distribution as its underlying model. The logistic

distribution is a continuous distribution whose cumu-

lative distribution is a logistic function. The logistic

distribution has density function

f(x) =
e
−(x−µ)/β

β[1 + e−(x−µ)/β ]2

where β > 0 and µ are parameters.

• 
Copula Distribution: In statistic, a copula is used

as a general way of formulating a multivariate distri-

bution in such a way that various general types of

dependence can be represented. It is a multivariate

joint distribution defined on the n-dimensional unit

cube [0, 1]n such that every marginal distribution is

uniform on the interval [0, 1]. Some common copu-

las include Gaussian copulas, Archimedean copulas,

and periodic copula. Suppose FX(x), FY (y) be two

marginal distributions for random variables X and Y .

Let C(u, v) be the copula function. Then following

relationship holds

FX,Y (x, y) = C[FX(x), FY (y)].

• 
Partial Derivative: In mathematics, a partial

derivative of a function of several variables is its

derivative with respect to one of those variables, with

the others held constant. The partial derivative of a

function f with respect to the variable x is variously

denoted by

f
�(x), fx, ∂xf, or

∂f

∂x
.

• 
Predetermined Weights

• 
Exponential Family of Distributions: We say a

distribution belongs to the exponential family if its

density distribution has the form of

f(yi; θi,φ) = exp

�
yiθi − b(θi)

a(φ)
+ c(yi,φ)

�

where a(.), b(.), c(.) are functions and θi and φ are

parameters.

The alternative presentation is

f(yj ;Θ) =
p(yj)e

r(Θ)yj

q(Θ)

where Θ is a set of parameters.

§3.10 

Chapter Ten: Parametric Model Selec-

tion

• Anderson-Darling

Anderson-Darling Test: In statistics, the

Anderson-Darling test is a statistical test of whether

there is a evidence that a given sample of data did

not arise from a given probability distribution. The

test statistic is

A
2 = n

� u

t

[Fn(x)− F
∗(x)]2

F ∗(x)[1− F ∗(x)]
f
∗(x)dx.

That is, it is a weighted average of the squared differ-

ences between the empirical and model distribution

function. This test statistic tends to place more em-

phasis on good fit in the tails than in the middle of

the distribution.

• Bull

Bull Distribution:

• χ
2 

Chi-square Goodness of Fit Test: Refer to 

(Chi-square Goodness of Fit Test).

• K-S

K-S Test: In statistics, the Kolmogorov-Smirnov test

(K-S test) is a nonparametric test for the equality of

continuous, one-dimensional probability distributions

that can be used to compare a sample with a refer-

ence probability distribution (one-sample K-S test).

The test statistic is

D = max
t≤x≤u

|Fn(x)− F
∗(x)|,

where t is the left truncation point (t = 0 if there is no

truncation) and u is the right censoring point (u = ∞
if there is no censoring).

• p-p

P-P Plot: In statistics, a P-P plot (probability-

probability plot or percent-percent plot) is a probabil-

ity plot for assessing how closely two data sets agree,
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which plots the two cumulative distribution functions

against each other.

• q-q

Q-Q Plot: In statistics, a Q-Q plot (quartile-quartile

plot) is a probability plot, which is a graphical method

for comparing two probability distributions by plot-

ting their quartiles against each other.

• 
Likelihood Ratio Test: Likelihood ratio test is test-

ing the null hypothesis (H0) that ”the data came from

a population with distribution A and alternative hy-

pothesis (H1) that ”the data came from a population

with distribution B. Let the likelihood function be

written as L(θ). Let θ0 and θ1 be the values of the pa-

rameters that maximizes the likelihood function under

null hypothesis and alternative hypothesis correspond-

ingly. Then the test statistic is

T = 2 ln(L(θ1)/L(θ0)).

§3.11 

Chapter Eleven: Theory of Smoothing

• Baysian

Baysian Graduation Method: Let T be the vector

of unknown true values of interest, and U be the vec-

tor of sample data. Then Baysian graduation method

uses V = E(T |U) to have the best estimates of T .

The underlying concept is very similar to Baysian es-

timation.

• Dirichlet

Dirichlet Smoothing: Dirichlet smoothing method

is a modification of Baysian graduation method.

• Everett

Everett’s Formula

• 
Spline Smoothing: The smoothing spline is a

method of smoothing using a spline function.

• Kimeldorf-Jones

Kimeldorf-Jones Graduation Method:

Kimeldorf-Jones graduation method, whose prior dis-

tribution is a multi-normal distribution, is a special

case of Baysian graduation method

• Whittaker

Whittaker Graduation: Let wx be the weight on

index x, vx and ux be the estimated value and real-

ized value for index x correspondingly. Then Whit-

taker graduating method produces the best estimates

via minimizing the form

M =
n�

x=1

wx(vx − ux)
2 + h

n−z�

x=1

[∆Z
vx]

2
,

where h is the parameter, and ∆k is the k-th moment

different quotient.

• 
Smoothing Process

• 
Smoothing Error

• m-w-a

Moving-Weighted-Average Smoothing: Let ux

be the realized data value at index x, then the moving-

weighted-average smoothing employs the form

vx =
n�

r=−n

arux+r,

with the condition ar = a−r, where vx is the estimate

after smoothing, and ar’s are the weights.

§3.12 

Chapter Twelve: Credibility Theory

• 
Semi-parametric Estimation

• 
Baysian Credibility Estimation: Given the past

claim experience X1, X2, ..., Xn, the Baysian Credibil-

ity Estimation is essentially the conditional expecta-

tion given the past data, formally,

P = E(Xn+1|X1 = x1, ..., Xn = xn).

• 
Partial Credibility: In limited fluctuation credibil-

ity theory, if one individual does not qualified for the

full credibility, he is charged for premium

Pc = zX̄ + (1− z)M,

where X̄ is the average experience of this individual,

M is the manual premium, and z is the credibility

factor. Furthermore, z is taking the form of

z = min

�
ξ

σ

�
n

λ0

�

where ξ = E(X), σ =
�

V ar(X), and λ0 = (yp/r)
2,

and n is the number of past data for the individual.

• Buhlmann

Buhlmann Credibility: Let Xi be the i.i.d claim

amount random variable for i-th claim, define

µ(θ) = E(Xi|Θ = θ); v(θ) = V ar(Xi|Θ = θ).

Let we have

µ = E(µ(θ)), v = E(v(θ)), a = V ar(µ(theta)).

The Buhlman credibility factor is in form of

z =
n

n+ v/a
,

where n is the number of past claims.
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• Buhlmman

Buhlmann Credibility Factor: Buhlmann cred-

ibility factor is the the credibility factor defined in

Buhlmann model to calculate the premium. Refer to

Buhlmann(Buhlmann Model).

• Buhlmman

Buhlmann Model:In Buhlmann model, let Xi be

the i.i.d claim amount random variable for i-th claim,

define

µ(θ) = E(Xi|Θ = θ); v(θ) = V ar(Xi|Θ = θ).

Let we have

µ = E(µ(θ)), v = E(v(θ)), a = V ar(µ(theta)).

The Buhlmann credibility factor is in form of

z =
n

n+ v/a
,

where n is the number of past claims. The Buhlmann

premium is

P = zX̄ + (1− z)µ.

• Buhlmman-straub

Buhlmann-Straub Model: Buhlmann-Straub

model extends Buhlmann model to groups of individ-

uals.

• Buhlmann

The Credibility Premium: In the way to calcu-

late the credibility premium, a linear approximation

is employed. Mathematically,

˜Xn+1 = α0 +
n�

j=1

αjXj ,

where α0,α1, ...,αn should satisfy following equations

1. E(Xn+1) = α0 +
�n

j=1 αjE(Xj),

2. Cov(Xi, Xn+1) =
�n

j=1 αjCov(XiXj).

• 
Manual Premium

• 
Classic Credibility Model: Limited fluctuation

credibility model is also called the classic credibility

model. Refer to (Limited Fluctuation

Credibility).

• 
Exact Credibility: When Bulhmann credibility es-

timation matches the Baysian Credibility estimation,

then we can the estimation has the exact credibility.

• 
Empirical Baysian Estimation: Empirical

Baysian Estimator gives the credibility premium from

empirical data.

• 
Full Credibility: In limited fluctuation theory, the

full credibility is assigned to the insurer if following

conditions are satisfied:

Pr(−rξ ≤ X̄ − ξ ≤ rξ) ≥ p,

where X̄ is the average of past experience of the indi-

vidual, ξ = E(X), r and p are predetermined quanti-

ties (commonly r = 0.05, p = 0.9).

Then the insurance company charge the individual

premium equating X̄.

• 
Prior Distribution: In greatest accuracy credibility

theory, let θ be unknown risk factors effecting the in-

surers’ claim experience, we assume the distribution of

θ, π(θ), is known or predetermined, and π(θ) is called

the prior distribution.

• 
Credibility Estimation: The credibility premium

sometimes is called the credibility estimation.

• 
Credibility Theory: Credibility theory is a set of

quantitative tools that allows an insurer to perform

prospective experience rating (adjust future premiums

based on past experience) on a risk or group of risks.

• 
Credibility Factor: In credibility theory, the credi-

bility premium usually takes the form

Pc = zX̄ + (1− z)M,

where X̄ is the average claim experience and M is the

manual premium. The proportional assigned to aver-

age past experience is called the credibility factor.

• 
Limited Fluctuation Credibility: In credibili-

ty theory, limited fluctuation credibility theory is a

branch represents the first attempt to quantify the

credibility problem.

• 
Greatest Accuracy Credibility Model:

Buhlmann credibility model is also named the greatest

accuracy credibility model.

§3.13 

Chapter Thirteen: Random Simulation

• Bootstrap

Bootstrap Simulation: In Statistic, bootstrapping

is a computer-based, method for assigning measures
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of accuarcy to sample estimates. This technique al-

lows estimation of the sample distribution of almost

any statistic using only very simple method.

• Box-Muller

Box-Muller Method: A Box-Muller transform is a

method of generating pairs of independent standard

normally distributed random numbers.

• 
Congruential Method: The one of the most com-

mon pseudorandom number generator is linear con-

gruential generator which is employed so-called ”con-

gruential method”. It uses the recurrence

Xn+1 = (aXn + b) mod m

to generate numbers. The starting value X0 is called

the seed.

• 
Variance Deduction Method: In Monte Carlo sim-

ulation method, variance reduction is a procedure

used to increase the precision of the estimates that

can be obtained for a given number of iteration. The

main variance deduction methods are: common ran-

dom numbers, antithetic variates, control variates, im-

portance sampling, and stratified sampling.

• 
Inversion Method: For a continuous random vari-

ableX with cumulative distribution function FX , then

we can simulate X by inversion method described as

follows:

1. draw a uniform random number U

2. Xsim = F
−1(U).

• 
Gibbs Sampling: In statistics, Gibbs sampling is an

algorithm to generate a sequence of samples from the

joint probability distribution of two or more random

variables. In its basic version, Gibbs sampling is a

special case of the Metropolis-Hasting algorithm.

• MCMC

Markov Chain Monte Carlo Method: Markove

chain Monte Carlo methods are a class of algorithm

for sampling from probability distributions based on

constructing a Markov chain that has the desired dis-

tribution as its equilibrium distribution.

• metropolis-hasting

Metropolis-Hasting Algoritm: In statistics, the

Metropolis-Hasting algorithm is a Markov chain

Monte Carlo method for obtaining a sequence of ran-

dom samples from a probability distribution for which

direct sampling is difficult.

• 
Pseudorandom Number: A pseudorandom num-

ber generator, also known as a deterministic random

bit generator, is an algorithm for generating a se-

quence of numbers that approximates the properties

of random number.

• 
Seed: Refer to (Congruential Method).

§3.14 

Chapter Fourteen: Case Study

This chapter contains reading materials, and most of

technique terms can be found out in previous context.
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§4 A5 Manual

§4.1 : 

Chapter One: Survival Distributions and

Life Tables

• De Moivre 

De Moivre’s Law: De Moivre’s Law is a survival

model applied in actuarial science, named for Abra-

ham de Moivre. It is a simple law of mortality based

on a linear survival function. Under De Moivre’s law,

the force of mortality takes the form

µ(x) =
1

ω − x
, 0 ≤ x < ω,

where ω is the parameter indicating the limiting age.

• 
Fractional Age Assumption: Fractional age as-

sumptions postulate analytical forms about the dis-

tribution between integer ages.

• Gompertz

Gompertz’s Law: Gompertz’s Law is a mortality

model applied in actuarial science. It is based on the

observation that mortality rate over ages reveals ex-

ponential type increasing. According to Gompertz’s

law, the force of mortality is defined as

µ(x) = Bc
x
, x ≥ 0

where B > 0 and c > 1 are model parameters.

• 
Curtate Future Lifetime Random Variable: In

actuarial science, a discrete random variable associ-

ated with the future lifetime is the number of future

years completed by (x) prior to death. It is called the

curtate-future0lifetime of x and is denoted by K(x).

Thus, the corresponding random variable is called the

curtate future lifetime random variable.

• 
Uniform Distribution of Deaths Assumption:

UDD fractional age assumption is also known as linear

interpolation assumption. Refer to (Linear

Interpolation Assumption).

• Makeham

Makeham’s Law: Makeham’s Law is a mortality

model applied in actuarial science, and it is an im-

proved version of Gompertz’s Law. In Makeham’s law,

the force of mortality has the form of

µ(x) = A+Bc
x
, x ≥ 0

where B > 0, c > 1, A ≥ −B are parameters.

• 
Expected Future Lifetime: The expected future

lifetime of age (x) is denoted by
◦
ex equating to

◦
ex =

� ∞

0
tpxdt.

• 
Limiting Age: Limiting age is the maximum age an

age (x) can live to, which is denoted by ω. Mathemat-

ically,

S(ω) = 0.

• 
Survival Function: Refer to (Survival Dis-

tribution).

• 
Life Table:

• 
Survival Distribution: Let FX(x) denote the dis-

tribution function of X, and set

S(x) = 1− FX(x) = Pr(X ≥ x).

The function S(x) is called the survival function, and

the corresponding distribution is called the survival

distribution.

• 
Age Random Variable: In actuarial science, the

age random variable is always denoted by (x) mean-

ing a life at age x.

• 
Actuarial Mathematics for Life Contingent

Risks:

• Balducci

Harmonic Interpolation Assumption (Balduc-

ci Assumption): Under harmonic interpolation as-

sumption, the survival function between ages has the

relationship with two ended integer ages as follows:

1
S(x+ t)

=
1− t

S(t)
+

t

S(x+ 1)
,

where 0 < t < 1. This is what is known as the hy-

perbolic or Balducci assumption, for under it tpx is a

hyperbolic curve.

• 
Mortality Law: The analytical forms for mortality

or survival functions are called mortality laws.

• 
Force of Mortality: Let F (x) and f(x) be the cu-

mulative distribution function and the corresponding
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probability density function associated with future

lifetime random variable for age (x), then the force

of mortality of (x) is defined as

µ(x) =
fX(x)

1− FX(x)
.

• Weibull

Weibull’s Law: Weibull’s Law is a mortality model

in actuarial science, which is defined as:

µ(x) = kx
n
, x ≥ 0

where k > 0, n > 0 are parameters.

• 
Year Lived in This and All Subsequent Age In-

tervals:

• 
Future Lifetime Random Variable: The future

lifetime random variable of (x) is denoted by T (x).

• 
Linear Interpolation Assumption: The linear in-

terpolation assumption on fractional ages is often

known as the uniform distribution, or, perhaps more

properly, a uniform distribution of deaths assumption

within each year of age. Under this assumption, tpx

is a linear function.

• 
Curtate Expectation of Life: The expected value

of curtate future lifetime, K(x), is denoted by ex and

is called the curtate expectation of life. By definition,

we have

ex = E[K] =
∞�

k=0

kkpxqx+k.

• 
Exponential Interpolation Assumption (Con-

stant Force of Mortality): Exponential interpola-

tion, or linear interpolation on logS(x+t) is consistent

with the assumption of a constant force of mortality

within each year of age. Under this assumption tpx is

exponential.

§4.2 

Chapter Two: Actuarial Present Values

of Life Insurance

• 
Insurance Benefit: Insurance benefit is the contrac-

tual payout agreed to by the carrier for the policy

holder.

• 
Insurance Premium: The amount to be charged

for a certain amount of insurance coverage is called

the premium.

• 
Benefit Function: Usually, benefit payout of a insur-

ance contract can be expressed as a function of years

that contract is in force and denoted by bt, which is

called the benefit function.

• 
Sum of Insured: The insurance coverage is also

known as the sum of insured.

• 
Varying Benefit Insurance: A varying benefit in-

surance policy agrees to pay non-leveled benefit at the

claim.

• 
Level Benefit Insurance: In life insurance, level

Benefit Insurance provides the same amount of bene-

fits whenever an age (x) is dead.

• 
Term Life Insurance: An n-year term life insurance

provides for a payment only if the insured dies within

the n-year term of an insurance commencing at issue.

If a unit is payable at moment of death of (x), then

actuarial present value random variable Z is

Z =





v
T
, T ≤ n,

0, T > n.

• 
Single Net Premium

• 
Acturial Discount Factor: The actuarial present

value of the unit pure endowment insurance present

random variable is also denoted by nEx and called

the actuarial discount factor in annuity context.

• 
Actuarial Present Value: In actuarial science, the

expectation of the present value random variable, Z,

of a certain insurance contract is called the actuarial

present value of the insurance.

• 
Endowment Insurance: An n-year endowment in-

surance provides for an amount to be payable either

following the death of the insured or upon the survival

of the insured to the end of the n-year term, whichever

occurs first. If the insurance is for a unit amount and

the death benefit is payable at the moment of death,

then

Z =





v
T
, T ≤ n

v
n
, T > n.
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• 
Annually Decreasing Life Insurance: An annu-

ally decreasing n-year term life insurance provides n

at the moment of death during the first year, n − 1

at the moment of death during the second year, and

so on, with coverage terminating at the end of the n-

th year, Such an insurance has the following present

value random variable

Z =





v
T (n− �T �), T ≤ n

0, T > n,

where the �� denote the greatest integer function.

• 
Annually Increasing Whole Life Insurance: An

annually increasing whole life insurance providing 1

at the moment of death during the first year, 2 at the

moment of death in the second year, and so on, is

characterized by present value random variable:

Z = �T + 1�vT , T ≥ 0,

where the �� denote the greatest integer function.

• 
Life Insurance

• 
Pure Endowment: An n-year pure endowment pro-

vides for a payment at the end of the n years if and

only if the insured survives at least n years from the

time of policy issue. If the amount payable is unit,

then

Z =





0, T ≤ n,

v
n
, T > n.

• 
Discount Function: Discount function is the func-

tion of time used to discount cash flows, usually de-

noted by v(t).

• 
Policyholder

• 
Deferred Insurance: An m-year deferred insurance

provides for a benefit following the death of the in-

sured only if the insured dies at least m years follow-

ing policy issue. The benefit payable and the term of

the insurance may be any of those discussed above.

For example, an m-year deferred whole life insurance

with a unit amount payable at the moment of death

has

Z =





v
T
, T > m

0, T ≤ m.

• 
Whole Life Insurance: Whole life insurance pro-

vides for a payment following the death of the insured

at any time in the future. If the payment is to be a

unit amount at the moment of death of (x), then

Z = v
T
, T ≥ 0.

§4.3 

Chapter Three: Actuarial Present Values

of Life Annuity

• 
Temporary Life Annuity: For the continuous pay-

ment case, the present value of a benefits random

variable for an n-year temporary life annuity of 1 per

year, payable continuously while (x) survives during

the next n years, is

Y =





āT |, 0 ≤ T < n,

ān|, T ≥ n.

For the discrete case, the present value of a benefit

random variable can be retrieved in a similar way.

• 
Actuarial Accumulated Value: Actuarial accumu-

lated value for the benefit cash flows represents the

accumulated value considering the survival probabili-

ty of an age. For example,

s̄x:n| =
āx:n|

nEx
=

� n

0

1

n−tEx+t
dt,

representing the actuarial accumulated value at the

end of the term of an n-year temporary life annuity of

1 per year payable continuously while (x) survives.

• 
Apportionable Annuity-Due: This type of annu-

ity due, one with a refund for the period between the

time of death and the end of the period represented

by the last full regular payment, is called an appor-

tionable annuity-due.

• 
Annually decreasing Term Life Annuity: An n-

year annually decreasing term life annuity, say, with

payable of unit value 1, has a stream of payable of

amount n, n − 1, ..., 1 given the life is survival at the

payable date for n-year.

• 
Annually Increasing Whole Life Annuity: This

type of life annuity, say, with first payable of unit val-

ue 1, has a stream of payable of amount 1, 2, 3, 4, ...

given the life is survival at the payable date.

• 
Annuity: Annuity refers to any terminating stream

of fixed payments over a specified period of time.
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• 
Life Annuity Due: If the payments of a life annuity

is due at the beginnings of the payment intervals, this

type of annuity is called the life annuity due.

• 
Life Annuity Immediate: If the payments of a life

annuity is due at the ends of the payment interval-

s, then this type of annuity is called the life annuity

immediate.

• 
Guaranteed Life Annuity: A guaranteed life annu-

ity is also called an n-year certain and life annuity. In

this case, it is a whole life annuity with a guarantee of

payments for the first n years. The present value of

annuity payments is

Y =





ān|, T ≤ n

āT |, T > n.

Other types of guaranteed life annuities share the sim-

ilar concepts.

• 
Life Annuity: A life annuity is a series of pay-

ments made continuously or at equal intervals (such

as months, quarters, years) while a given life survives.

• 
Complete Annuity-Immediate: This type of life

annuity immediate, one with a partial payment for

the period between the last full payment and the time

of death, is called a complete annuity-immediate.

• 
Deferred Life Annuity: For a deferred life annu-

ity, the payable is delivered by a deferred period. For

example, an n-year deferred whole life annuity with

continuous payments has the present value random

variable Y defined as

Y =





0, 0 ≤ T < n,

v
n
āT−n|, T ≥ n.

Other types of deferred life annuities share the similar

concepts.

• 
Whole Life Annuity: For a continuous whole life

annuity, the payable is lasted until (x) is dead. Thus,

the present value of benefit random variable can be

expressed as

Y = āT |.

A discrete whole life annuity shares the similar con-

cept.

§4.4 

Chapter Four: Equivalent Net Premiums

• 
Sum of Insured: Refer to (Sum of Insured).

• 
The Portfolio Percentile Premium Principle:

The portfolio percentile premium principle requires

that the loss random variable be positive with no more

than a specified probability.

• 
Utility Function: In economics, utility is a measure

of relative satisfaction. Given this measure, one may

speak meaningfully of increasing or decreasing utili-

ty, and thereby explain economic behavior in terms

of attempts to increase one’s utility. Given a wealth

amount of ω, then the function associated with ω,

u(ω), is called the utility function.

• 
The Equivalence Premium Principle: Using the

equivalence premium principle, the premium amount

of an insurance product requires the condition

E[L] = 0

to be satisfied, where L is the loss random variable.

Equivalently, benefit premiums will be such that

E[present value of benefits]

= E[present value of benefit premiums].

• 
Single Benefit Premium: When the equivalent

principle is used to determine a single premium at

policy issue for a life insurance or a life annuity, the

premium is equal to the actuarial present value of ben-

efit payments and is called the single benefit premium.

• 
Expense-loaded Premium: If the premium calcu-

lation allows for the insurance company’s expenses,

the proportion of gross premium to cover expenses is

called the expense-loaded premium, i.e.,

Gross Premium = Net Premium

+Expense-loaded Premium.

• 
Net Premium: If the premium calculation does not

allow for the insurance company’s expenses, in this

case we refer to a net premium.

• 
Apportionable Premium: The apportionable pre-

mium is a type of fractional premium. Here, at death,
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a refund is made of a portion of the premium related

to the length of time between the time of death and

the time of the next scheduled premium payment.

• 
Loss Function: In calculating the benefit premium-

s using the equivalent principle, we always first con-

sider the loss function of the insurance product. For

example, for a whole life insurance with unit payable

immediately on the death of (x), the loss function at

time t is defined as

l(t) = v
t − P āt|,

which is the present value of the loss to the insurer if

death occurs at time t. The corresponding loss ran-

dom variable is

L = l(t) = v
T − PaT |.

• 
Loss Random Variable: Loss random variables are

random variables corresponding to the loss function

of insurance products. Refer to (Loss Func-

tion).

• 
Exponential Premium: Premiums based on the ex-

ponential premium principle, using an exponential u-

tility function, are known as exponential premiums.

• 
Exponential Premium principle: Exponential

premium principle is based on the expected utility of

the insurer’s wealth employing the exponential utility

function to calculate premiums.

§4.5 

Chapter Five: Benefit Reserves

• 
Premium-difference Formula: For the continuous-

ly n-year term life insurance, the benefit reserve at

time t, tV̄ (Āx:n|), can be obtained by the premium-

difference formula

tV̄ (Āx:n|) = [P̄ (Āx+t:n−t|)− P̄ (Āx:n|)]āx+t:n−t|.

• 
Net Amount at Risk: bh −h V is called the net

amount at risk for policy year h, where bh is the benefit

payable in policy year h and hV is the corresponding

reserve.

• 
Retrospective Formula: For the continuously n-

year term life insurance, the benefit reserve at time s,

sV̄ (Āx:n|), can be obtained by the retrospective for-

mula

sV̄ (Āx:n|) = Ā
1
x+s:t| + tEx+ss+tV̄ (Āx:n|)

−P̄ (Āx:n|)āx+s:t|,

for t < n− s.

• 
Paid-up Insurance Formula: For the continuously

n-year term life insurance, the benefit reserve at time

t, tV̄ (Āx:n|), can be obtained by the paid-up insurance

formula

tV̄ (Āx:n|) =

�
1−

P̄ (Āx:n|)

P̄ (Āx+t:n−t|)

�
Āx+t:n−t|.

• 
Accumulated Cost of Insurance: For continuous

case, the accumulated cost of insurance is defined as

tk̄x =
Ā

1
x:t|

tEx
.

The discrete case shares the similar concept.

• 
Prospective Loss

• 
Initial benefit Reserve: Let πh be the benefit pre-

mium for the policy year h, the sum hV +πh is called

the initial benefit reserve for policy year h.

• 
Terminal benefit Reserve: h+1V stands for the ter-

minal benefit reserve for policy year h.

• 
Benefit Reserve: The benefit reserve, also known

as the actuarial reserve, is a liability equal to the net

present value of the future expected cash flows of a

contingent event.

• 
Exponential Reserve: The type of reserves calcu-

lated by the exponential principle, which utilizes the

utility function of wealth, is called the exponential re-

serve.

§4.6 

Chapter Six: Gross Premiums and Mod-

ified Reserves

• 
Policy Fee: In calculating the gross premium, some

parts of expenses do not vary directly with the death

benefit b, these type of expenses are included in gross

premium and called the policy fee.
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• 
Renewal Expense: Renewal expenses are normal-

ly incurred by the insurer each time a premium is

payable, and in the case of an annuity, they are nor-

mally incurred when an annuity payment is made.

• 
Equivalent Level Renewal Amount

• 
Termination Expense: In calculating the gross pre-

mium, the termination expenses occur when a policy

expires, typically on the death of a policyholder or on

the maturity date of a term insurance or endowmen-

t insurance. Generally these expenses are small, and

are largely associated with the paperwork required to

finalize and pay a claim.

• 
Profit Margin: In life insurance, the profit margin is

the net present value expressed as a proportion of the

expected present value of the premiums, evaluated at

the risk discount rate.

• 
Gross Premium: The gross premium is calculated

incorporating expenses.

• 
Commission Expense: Commission if often paid to

an agent in the form of a high percentage of the first

year’s premiums plus a much lower percentage of sub-

sequent premiums, payable as the premiums are paid.

• 
Modified Reserve

• 
Initial Expense: Initial expenses are incurred by the

insurer when a policy is issued. There are two major

types of initial expenses - commission to agents for

selling a policy and underwriting expenses.

• 
Surplus

• FPF

Full Preliminary Term Method

§4.7 

Chapter Seven: Multiple Life Functions

• Common Shock

Common Shock Model: Let T
∗(x) and T

∗(y) de-

note two future lifetime random variable that, in the

absence of the possibility of a common shock, are in-

dependent; that is

ST∗(x)T∗(y)(s, t) = Pr[T ∗(x) > s ∩ T
∗(y) > t]

= ST∗(x)(s)ST∗(y)(t).

In addition, there is a common shock random vari-

able, to be denoted by Z, that can affect the joint

distribution of time-until-death of lives (x) and (y).

This common shock random variable is independent

of [T ∗(x), T ∗(y)] and has an exponential distribution;

that is

sZ(z) = e
−λz

, z > 0,λ ≥ 0.

The model described above is called the common

shock model.

• 
Multiple Life Functions

• Frank Copula

Frank Copula Model: Frank copula model has fol-

lowing settings. Given marginal distribution functions

for time-until-death of lives (x) and (y), FT (x)(s) =

sqx and FT (y)(t) = tqy, and a parameter α �= 0, T (x)

and T (y) have joint distribution function

FT (x),T (y)(s, t) =
1
α
ln[1 +

(eαsqx − 1)(eαtqy − 1)
eα − 1

].

• 
Joint Life Status: A status that survives as long as

all members of a set of lives survive and fails upon the

first death is called a joint life status.

• 
Marginal Distribution Function: Refer to 

(Marginal Distribution).

• 
Last Survivor Status: A survival status that exists

as long as at least one member of a set of lives is alive

and fails upon the last death is called the last survivor

status.

§4.8 

Chapter Eight: Multiple Decrement

Models

• 
Associated Single Decrement Model: For each of

the causes of decrement recognized in a multiple decre-

ment model, it is possible to define a single decrement

model that depends only on the particular cause of

decrement. We define the associated single decrement

model functions as follows:

tpx
�(j) = exp

�
−
� t

0

µ
(j)
x (s)ds

�
,

tqx
�(j) = 1− tpx

�(j)
.

• 
Multiple Decrement Table: In a random survivor-

ship group, let us consider a group of l(τ)a lives age a

years. Each life is assumed to have a distribution of
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time-until-decrement and cause of decrement specified

by the p.d.f

fT,J(t, j) = tpa
(τ)

µ
(j)
a (t), t ≥ 0, j = 1, 2...,m.

Let nd
(j)
x denote the expected number of lives who

leave the group between ages x and x + n, x ≥ a.

Then we can derive following relationships

l
(τ)
x = l

(τ)
a x−ap

(τ)
a ,

d
(j)
x = l

(τ)
x q

(j)
x .

This result allow us to display a table of p(τ)x and q
(j)
x

values in a corresponding table of l(τ)x and d
(j)
x . Either

table is called a multiple decrement table.

• 
Multiple Decrement Theory: The theory associ-

ated with multiple decrement model is called the mul-

tiple decrement theory.

• 
Multiple Decrement Model: The model used to

construct the multiple decrement table is called the

multiple decrement model.

• 
Deterministic Survivorship Group

• 
Random Survivorship Group

• 
Central Rate of Decrement: The central rate of

decrement from all causes is defined by

m
(τ)
x =

� 1

0 tpx
(τ)(t)dt

� 1

0 tpx
(τ)dt

.

• 
Force of Decrement: In multiple decrement model,

the force of decrement due to cause j is defined as

µ
(j)
x (t) =

fT,J(t, j)
1− FT (t)

=
fT,J(t, j)

tP
(τ)
x

,

where fT,J(t, j) is the joint distribution of future life-

time random variable and the cause of decrement ran-

dom variable.

§4.9 

Chapter Nine: The Actuarial Calculation

for Pension Plans

• 
Withdraw

• 
Contribution: Pension contribution shares the sim-

ilar concept of premiums in life insurance contract.

• 
Defined Benefit Plan: The defined benefit plan

specifies a level of benefit, usually in relation to salary

near retirement, or to salary throughout employment.

The contributions, from the employer and, possibly,

employee are accumulated to meet the benefit. If the

investment or demographic experience is adverse, the

contributions can be increased; if experience is favor-

able, the contributions may be reduced.

• 
Defined Contribution Plan: The defined contri-

bution plan specifies how much the employer will con-

tribute, as a percentage of salary, into a plan. The

employee may also contribute, and the employer’s con-

tribution may be related to the employee’s contribu-

tion. The contributions are accumulated in a notional

account, which is available to the employee when he

or she leaves the company. The contributions may be

set to meet a target benefit level, but the actual retire-

ment income may be well below or above the target,

depending on the investment experience.

• 
Theory of Pension Funding

• 
Pension Plan: The pension plan is usually sponsored

by an employer. Pension plans typically offer employ-

ees either lump sums or annuity benefits or both on

retirement, or deferred lump sum or annuity benefits

(or both) on either withdrawal.

§4.10 

Chapter Ten: Multiple States Transi-

tion Models

• 
Irreducible: A Markov chain is said to be irreducible

if its state space is a single communicating class; in

other words, if it is possible to get to any state from

any state.

• 
Recurrent State: Refer to(Recurrent State).

• 
Transient State: Refer to (Transient State).

• 
Fundamental Matrix: The fundamental matrix of

the Markov chain is defined as

Q = (I − S)−1

where I is the identity matrix and S is the transition

probability matrix.
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• 
Absorbing State: A state i is called absorbing if it

is impossible to leave this state. Therefore, the state

i is absorbing if and only if

Pr(Xn+1 = i|Xn = i) = 1,

and

Pr(Xn+1 = j|Xn = i) = 0, for i �= j.

• 
Limiting Probability: If the limiting probabilities

of a Markov chain exist, then it can be expressed as

πj = lim
n→∞

P
(n)
ij ,

where P
(n)
ij is the n-step transition probability matrix

from state i to j. Moreover, (π0, ...,πn) satisfy the

condition

(π0, ...,πn) = (π0, ...,πn) · P.

• 
Discrete-time Markov Chain:

• 
Indicator Random Variable: In statistics, an indi-

cator random variable only takes value 0 and 1 with

probability p and 1− p.

• 
Communicating State: In a Markov chain, a state

i is said to communicate with state j if state j is ac-

cessible from state i and state i is also accessible from

state j. A state i accessible from state j means

Pr(Xn = i|X0 = j) > 0.

• 
Transition Probability Matrix: n-step transition

probabilities can be collected in a matrix form, which

is namely the transition probability matrix and denot-

ed by P
(n).

§4.11 

Chapter Eleven: Main Types of Life In-

surance

• 
Reversionary Bonuses: In participating insurance,

Reversionary bonuses are awarded during the term of

the contract; once a reversionary bonus is awarded it

is guaranteed.

• 
Participating Insurance: Participating insurance

is also known as with-profit insurance. Under with-

profit arrangements, the profits earned on the invested

premiums are shared with the policyholders. In North

America, the with-profit arrangement often takes the

form of cash dividends or reduced premiums. In the

UK and in Australia the traditional approach is to

use the profits to increase the sum insured, through

bonuses called ”reversionary bonuses” and ”terminal

bonuses”.

• 
Equity-linked Insurance: Equity-linked insurance

has a benefit linked to the performance of an invest-

ment fund. There are two different forms. The first

is where the policyholder’s premiums are invested in

an open-ended investment company style account; at

maturity, the benefit is the accumulated value of the

premiums. The is a guaranteed minimum death bene-

fit payable if the policyholder dies before the contract

matures. In some cases, there is also a guaranteed

maturity benefit. The second form of equity-linked

insurance is the equity-indexed annuity(EIA) in USA.

Under an EIA the policyholder is guaranteed a mini-

mum return on their premium. At maturity, the poli-

cyholder receives a proportion of the return on a spec-

ified stock index, if that is greater than the guaranteed

minimum return.

• 
Universal Life Insurance: Universal life insurance

combines investment and life insurance. The policy-

holder determines a premium and a level of life insur-

ance over. Some of premium is used to fund the life

insurance; the remainder is paid into an investment

fund. Premiums are flexible, as long as they are suffi-

cient to pay for the designated sum insured under the

term insurance part of the contract. Under variable

universal life, there is a range of funds available for

the policyholder to select from.

§4.12 

Chapter Twelve: Special Life Annuities

and Insurance

• 
Installment Refund Annuity: For the installment

refund annuity contract, a sufficient number of pay-

ments is guaranteed so that the annuitant receives at

least as much as the contract premium that was paid.

Thus, for such a continuous annuity with contract pre-

mium, G, the actuarial present value of benefits is

āG| + GExāx+G.

• 
Assumed Investment Return
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• 
Family Income Insurance: An n-year family in-

come insurance provides an income from the data of

death of the insured, continuing until n years have

elapsed from the date of issue of the policy. It is typ-

ically paid for by premiums over the n-year period,

or some period shorter than n years, to keep benefit

reserves positive. For a continuous annuity, if T is

the time of death of the insured, the present value of

benefits is

Z =





v
T
ān−T |, T ≤ n

0, T > n.

• 
Retirement Income Insurance

• 
Partial Cash Refund Annuity: In a cash refund

annuity contract, the death benefit is defined as the

excess, if any, of the contract premium paid over the

annuity payments received. If G is the single contract

premium and T is the time of death, the present value

of benefits on a continuous basis is

Z =





āT | + (G− T )vT , T ≤ G

āT |, T > G

.

• 
Guaranteed Minimum Annuity:

§4.13 

Chapter Thirteen: Introduction on

Pricing

This chapter contains reading materials, and most of

technique terms can be found in previous context.

§4.14 

Chapter Fourteen: Calculation on As-

sets Share

• 
Risk Adjusted Discount Rate: Opposite to the

risk free rate, risk adjusted discount rate is used to

discount the risky cash flow which has possibilities to

occur default.

• 
Emerging Surplus

• 
Profit Margin: In life insurance, the profit margin is

the net present value expressed as a proportion of the

expected present value of the premiums, evaluated at

the risk discount rate.

• 
Internal Rate of Return: The internal rate of re-

turn (IRR) is the interest rate such that the present

value of the expected cash flows in zero.

• 
Payback Period: Payback period in capital budget-

ing refers to the period of time required for the return

on an investment to ”repay” the sum of the original

investment.

• 
Assets Share: In practice, the invested premium-

s may have earned a greater or smaller rate of return

than that used in the premium basis, the expenses and

mortality experience will differ from the premium ba-

sis. Each policy contributes to the total assets of the

insurer through the actual investment, expense and

mortality experience. It is of practical importance to

calculate the share of the insurer’s assets attributable

to each policy in force at any given time. This amount

is known as the asset share of the policy at that time

and it is calculated by assuming the policy being con-

sidered is one of a large group of identical policies

issued simultaneously.

§4.15 

Chapter Fifteen: Further Applications

of Asset Share

• 
Inflation: In economics, inflation is a rise in the gen-

eral level of prices of goods and services in an economy

over a period of time.

• 
Withdraw

§4.16 

Chapter Sixteen: Cash Values and

Withdraws

• 
Cash Value: A policy which is canceled at the the

request of the policyholder before the end of its origi-

nally agreed term, is said to lapse or to be surrendered,

and any lump sum payable by the insurance company

for such a policy is called a surrender value or a cash

value.

• 
Extended Insurance
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§4.17 I

Chapter Seventeen: Valuation on Re-

serves I

• 
Sensitivity Test: Sensitivity test is the study of how

the variation in the output of a mathematical model

can be apportioned, qualitatively or qualitatively, to

different sources of variation in the input of the model.

§4.18 :II

Chapter Eighteen: Valuation on Re-

serves II

• 
Solvency: The solvency of a company indicates it-

s ability to meet its long-term fixed expenses and to

accomplish long-term expansion and growth.

§4.19 

Chapter Nineteen: Introduction on Su-

pervisory System of Insurance Solvency

This chapter contains reading materials, and most of

technique terms can be found in previous context.
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