CAA Dictionary

For Manual A1, A3, and A5

First Edition

目 录

1 Table of Indices 5
2 A1 Manual 26
2.1 第一章：随机事件与概率
Chapter One：Random Events and Probabilities 26
2.2 第二章：随机变量与分布函数
Chapter Two：Random Variables and Distribution Functions 27
2.3 第三章：随机变量的数字特征
Chapter Three：Numerical Characteristics of Random Variables 29
2.4 第四章：大数定律与中心极限定理
Chapter Four：Law of Large Numbers and Central Limit Theorem 31
2.5 第五章：统计量及其分布
Chapter Five：Statistical Quantities and Corresponding Distributions 31
2.6 第六章：参数估计
Chapter Six：Parameter Estimation 33
2.7 第七章：假设检验
Chapter Seven：Hypothesis Testing 33
2.8 第八章：常用统计方法
Chapter Eight：Common Statistical Analysis Method 34
2.9 第九章：时间序列分析
Chapter Nine：Time Series Analysis 35
2.10 第十章：随机过程的基本概念和基本类型
Chapter Ten：Fundamental Concepts and Classification of Stochastic Processes 37
2.11 第十一章：几种常用的随机过程
Chapter Eleven：Several Widely－used Stochastic Process 38
2.12 第十二章：随机微积分
Chapter Twelve：Stochastic Calculus 39
3 A3 Manual 41
3.1 第一章：绪论
Chapter One：Introduction 41
3.2 第二章：生存分析的基本函数及生存模型
Chapter Two：Basic Functions of Survival Analysis and Survival Models 41
3.3 第三章：生命表
Chapter Three：Life Tables 42
3.4 第四章：理赔额和理赔次数的分布
Chapter Four：Distributions of Claim Amounts and Frequencies 42
3.5 第五章：短期个体风险模型
Chapter Five：Short－term Individual Risk Model 44
3.6 第六章：短期聚合风险模型
Chapter Six：Short－term Aggregate Risk Model 44
3.7 第七章：破产模型
Chapter Seven：Ruin Model 45
3.8 第八章：经验模型
Chapter Eight：Empirical Models 46
3.9 第九章：参数模型的估计
Chapter Nine：Parametric Model Estimation 49
3.10 第十章：参数模型的检验和选择
Chapter Ten：Parametric Model Selection 50
3.11 第十一章：修匀理论
Chapter Eleven：Theory of Smoothing 51
3.12 第十二章：信度理论
Chapter Twelve：Credibility Theory 51
3.13 第十三章：随机模拟
Chapter Thirteen：Random Simulation 52
3.14 第十四章：案例分析
Chapter Fourteen：Case Study 53
4 A5 Manual 55
4.1 第一章：生存分布与生命表
Chapter One：Survival Distributions and Life Tables 55
4.2 第二章：人寿保险的精算现值
Chapter Two：Actuarial Present Values of Life Insurance 56
4.3 第三章：生命年金的精算现值
Chapter Three：Actuarial Present Values of Life Annuity 57
4.4 第四章：均衡净保费
Chapter Four：Equivalent Net Premiums 58
4.5 第五章：责任准备金
Chapter Five：Benefit Reserves 59
4.6 第六章：毛保费与修正准备金
Chapter Six：Gross Premiums and Modified Reserves 59
4.7 第七章：多元生命函数
Chapter Seven：Multiple Life Functions 60
4.8 第八章：多元风险模型
Chapter Eight：Multiple Decrement Models 60
4.9 第九章：养老金计划的精算方法
Chapter Nine：The Actuarial Calculation for Pension Plans 61
4.10 第十章：多种状态转换模型
Chapter Ten：Multiple States Transition Models 61
4.11 第十一章：人寿保险的主要类型
Chapter Eleven：Main Types of Life Insurance 62
4.12 第十二章：特殊年金与保险
Chapter Twelve：Special Life Annuities and Insurance 62
4.13 第十三章：寿险定价概述
Chapter Thirteen：Introduction on Pricing 63
4.14 第十四章：资产份额定价法
Chapter Fourteen：Calculation on Assets Share 63
4.15 第十五章：资产份额法的进一步应用
Chapter Fifteen：Further Applications of Asset Share 63
4.16 第十六章：保单现金价值及退保选择权
Chapter Sixteen：Cash Values and Withdraws 63
4.17 第十七章：准备金评估I
Chapter Seventeen：Valuation on Reserves I 64
4.18 第十八章：准备金评估II
Chapter Eighteen：Valuation on Reserves II 64
4.19 第十九章：偿付能力监管制度介绍
Chapter Nineteen：Introduction on Supervisory System of Insurance Solvency 64

Table of Indices

§1 Table of Indices

0－9

$0-1$ 分布
0－1 Distribution
A1 Ch5

A

（a，b，0）类分布
（ $a, b, 1$ ）类分布
（a．b．k）分布
AIC 准则
Anderson－Darling检验
Arrow－Debreu 证券

$(\mathrm{a}, \mathrm{b}, 0)$ Class of Distribution	A3	Ch4
$(\mathrm{a}, \mathrm{b}, 1)$ Class of Distribution	A3	Ch4
$(\mathrm{a}, \mathrm{b}, \mathrm{k})$ Class of Distribution	A3	Ch4
AIC Criterion	A1	Ch9
Anderson－Darling Test	A3	Ch10
Arrow－Debreu Securities（state－price security）	A2	Ch9

B

白噪音	White Noise	A1	Ch9
Balducci假设	Balducci＇s Assumption	A3	Ch3
半参数估计	Semi－parametric Estimation	A3	Ch12
伴随变量	Adjoint Random Variable	A3	Ch2
伴随单风险模型	Associated Single Decrement Model	A5	Ch8
保单费	Policy Fee	A5	Ch6
保单红利	Reversionary Bonuses	A5	Ch11
保单维护费用	Renewal Expense	A5	Ch6
保单限额	Policy Limit	A3	Ch4
保额	Sum of Insured	A5	Ch4
保费差公式	Premium－difference Formula	A5	Ch5
百分位保费原则	The Portfolio Percentile Premium Principle	A5	Ch4
保险利益	Insurance Benefit	A5	Ch2
保险费	Premium	A5	Ch2
保额函数	Function of Sum of Insured	A5	Ch2
保险金	Sum of Insured	A5	Ch2
保证金账户	Margin Account	A2	Ch8
Baysian修匀	Baysian Graduation Method	A3	Ch11
贝努里分布	Bernoulli Distribution	A3	Ch5
备样假设	Alternative Hypothesis	A1	Ch7
贝叶斯公式	Bayes＇Law	A1	Ch1
贝叶斯信度估计值	Baysian Credibility Estimation	A3	Ch12
本币	Domestic Currency	A2	Ch8
本金	Principal	A2	Ch1
本金调整	Principal Repaid	A2	Ch5
变额保险	Varying Benefit Insurance	A5	Ch2
边界条件	Boundary Condition	A2	Ch7
边际分布函数	Marginal Distribution Function	A5	Ch7
变利率年金	Annuities with Differing Interest	A2	Ch2
变异系数	Coefficient of Variation	A1	Ch3
边缘分布	Marginal Distribution	A1	Ch2
贬值／贴水	Depreciation	A2	Ch8
标准布朗运动	Standard Brownian Motion	A2	Ch7

Chinese Term	English Translation	Exam	Chapter
标准差	Standard Deviation	A1	Ch3
标准普尔500	Standard Poor＇s 500（S\＆P 500）	A2	Ch8
必然事件	Certain Event	A1	Ch1
比例再保险	Proportional Reinsurance	A3	Ch6
比例风险假定	Porportional Hazards Assumption	A3	Ch9
比列赔付	Coinsurance	A3	Ch4
并购	Merge	A2	Ch5
Black－Scholes 模型	Black－Scholes Model	A2	Ch9
波动率	Volatility	A2	Ch6
波动项	Volatility	A2	Ch7
伯努利大数定理	Bernoulli＇s Law of Large Numbers	A1	Ch4
伯努里试验	Bernoulli Trial	A1	Ch1
Bootstrap模拟	Bootstrap Simulation	A3	Ch13
泊松定理	Poisson Theorem	A1	Ch2
泊松过程	Poisson Process	A1	Ch11
柏松一逆高斯分布	Poisson－Inverse Gaussian Distribution	A3	Ch4
柏松盈余过程	Poisson Surplus Process	A3	Ch7
box－muller方法	Box－Muller Method	A3	Ch13
部分信度	Partial Credibility	A3	Ch12
buhlmann信度	Buhlmann Credibility	A3	Ch12
buhlmman信度因子	Buhlmann Credibility Factor	A3	Ch12
buhlmman模型	Buhlmann Model	A3	Ch12
buhlmman－straub模型	Buhlmann－Straub Model	A3	Ch12
buhlmann线性估计	The Credibility Premium	A3	Ch12
不可能事件	Impossible Event	A1	Ch1
不可约的	irreducible	A5	Ch10
布朗桥	Brownian Bridge	A1	Ch11
布朗运动	Brownian Motion	A1	Ch10
Bull分布	Bull Distribution	A3	Ch10

财富	Wealth	A2	Ch10
财富效用函数	Utility Function	A5	Ch4
残差平方和	Sum Squares of Residual Errors	A1	Ch9
残差项	Residual Errors	A1	Ch9
参数	Parameter	A1	Ch2
参数估计	Parameter Estimation	A1	Ch6
常返态	Recurrent State	A1	Ch11
常返状态	Recurrent State	A5	Ch10
偿付能力	Solvency	A5	Ch18
常规单利法	Ordinary Simple Interest	A2	Ch1
尝还款	Loan Payments	A2	Ch4
偿还频率	Frequency of Repayment	A2	Ch4
偿还期	Repayment Period	A2	Ch4
场内交易	Over－the－counter（OTC）	A2	Ch8
常数	Constant	A1	Ch3
偿债基金	Sinking Fund Method of Loan Repayment	A2	Ch4
Chapman－Kolmogorov 方程	Chapman－Kolmogorov Equation	A1	Ch11
乘同余法	Congruential Method	A3	Ch13
χ^{2} 拟合优度检验	Chi－square Goodness of Fit Test	A3	Ch10

Chinese Term	English Translation	Exam	Chapter
冲销（平仓）	Close Out the Position	A 2	Ch 8
抽样分布	Sampling Distribution	A 1	Ch 5
触发条件	Trigger	A 2	Ch 5
纯保费	Manual Premium	A 3	Ch 12
初始保证金	Initial Margin	A 2	Ch 8
初始事件	Initial Event	A 3	Ch 2
初始盈余	Initial Surplus	A 3	Ch 7
初始值	Initial Value	A 2	Ch 2
CIR 模型	CIR Model	A 2	Ch 7
次序统计量	Order Statistic	A 1	Ch 5
Commo Shock模型	Common Shock Model	A 5	Ch 7
Cox比例风险模型	Cox Proportional Hazards Model	A 3	Ch 9
CRR 模型	CRR Model	A 2	Ch 9

D

带宽	Bandwidth	A3	Ch8
贷款额	Loan Amount	A2	Ch4
贷款期	Term of a Loan	A2	Ch4
贷款余额	Outstanding Loan Balance	A2	Ch4
贷款者	Loan Lender	A2	Ch4
带漂移的布朗运动	Brownian Motion with Drift	A3	Ch7
担保抵押债券	Collateralized Mortgage Obligations（CMO）	A2	Ch5
单边检验	One－sided Test	A1	Ch7
当量	Certainty Equivalent	A2	Ch10
单利	Simple Interest	A2	Ch1
单期市场模型	One－Period Market Model	A2	Ch9
单贴现	Simple Discount Rate	A2	Ch1
单增函数	Increasing function	A2	Ch1
到期净收益率	Net Yield－To－Maturity	A2	Ch5
到期日	Maturity Date	A2	Ch5
到期收益率	Yield－To－Maturity	A2	Ch5
（ n 阶）导数	（n－th）Derivative	A2	Ch6
大数定理	Law of Large Numbers	A1	Ch4
Decartes 符号定理	Descartes Rule of Signs	A2	Ch3
Delta方法	Delta Method	A3	Ch9
德莫弗－拉普拉斯中心极限定理	De Moivre－Laplace＇s Central Limit Theorem	A1	Ch4
De Moivre 律	De Moivre＇s Law	A5	Ch1
等比数列	Geometric Series	A2	Ch2
等差数列	Arithmetic Series	A2	Ch2
等待时间变量	Waiting－time Random Variable	A3	Ch7
等额保险	Level Benefit Insurance	A5	Ch2
等价的续年度均衡保额	Equivalent Level Renewal Amount	A5	Ch6
等价原则	The Equivalence Premium Principle	A5	Ch4
等时间法	Equated Time	A2	Ch1
点估计	Point Estimation	A1	Ch6
点过程	Counting Process	A1	Ch10
迭代法	Iteration	A2	Ch1
定期生命年金	Term Life Annuity	A5	Ch3
定期死亡保险	Term Insurance	A5	Ch2
Dirichlet修匀	Dirichlet Smoothing	A3	Ch11
抵押贷款	Mortgage Loans 7	A2	Ch4

Chinese Term	English Translation	Exam	Chapter
抵押支持债券	Mortgage－backed Securities（MBS）	A2	Ch5
抵押转手债券	Mortgage Passthrough Securities（MPS）	A2	Ch5
抵押资产	Mortgage Assets	A2	Ch5
动态	Dynamic	A2	Ch7
短期利率	Short－Term Interest Rate	A2	Ch6
对称阵	Symmetric Matrix	A2	Ch11
对角阵	Diagonal Matrix	A2	Ch11
对立事件（逆事件）	Complement Event	A1	Ch1
对数	Logarithm	A2	Ch1
对数似然函数	Loglikelihood Function	A3	Ch9
对数正态分布	Log－normal Distribution	A3	Ch4
对数转化的置信区间	Log－transformed Confidence Interval	A3	Ch8
独立同分布下的中心极限定理	Central Limit Theorem for i．i．d Random Variables	A1	Ch4
独立同分布	Independent Identical Distributed	A1	Ch4
独立性	Independence	A1	Ch1
独立增量过程	Independent Increment Process	A1	Ch10
独立终止率	Independent Rate of Decrement	A3	Ch2
研缴保费	Single Premium	A5	Ch4
䂞缴净保费	Single Net Premium	A5	Ch2
多期二叉树模型	Multi－Period Binomial Tree	A2	Ch9
多头	Long	A2	Ch8
多项分布	Multinomial Distribution	A3	Ch4
（ n 阶）多项式	（n－th）Degree Polynomial	A2	Ch6
多元风险表	Multiple Decrement Table	A5	Ch8
多元风险理论	Multiple Decrement Theory	A5	Ch8
多元风险模型	Multiple Decrement Model	A5	Ch8
多元生命函数	Multiple Life Functions	A5	Ch7
多元终止概率	Multiple Decrement Probability	A3	Ch8
独立试验序列模型	Bernoulli Probability	A1	Ch1

E

二叉树模型
二次变差
二分法
二维均匀分布
二维正态分布
二项分布
Everett公式

Binomial Tree	A2	Ch7
Quadratic Variation	A1	Ch12
Bisection Method	A2	Ch2
Bivariate Uniform Distribution	A1	Ch2
Bivariate Normal Distribution	A1	Ch2
Binomial Distribution	A1	Ch2
Everett＇s Formula	A3	Ch11

F

方差	Variance	A1	Ch 3
方差缩减技术	Variance Deduction Method	A 3	Ch 13
反函数	Inverse Function	A 1	Ch 2
反函数法	Inversion Method	A 3	Ch 13
反向插值法	Inverse Interpolation	A 2	Ch 2
发散	Divergence	A 2	Ch 2
非常返状态	Transient State	A 5	Ch 10
非齐次泊松过程	Non－homogeneous Poisson Process	A 1	Ch 11
非系统性风险	Unsystematic Risk	A 2	Ch 10

Chinese Term	English Translation	Exam	Chapter
非中心参数	Noncentrality Parameter	A2	Ch7
分段函数修匀（样条修匀）	Spline Smoothing	A3	Ch11
分期偿还	Amortization	A2	Ch2
峰态	Kurtosis	A1	Ch5
风险报酬率	Sharpe Ratio	A2	Ch10
风险补偿	Risk Premium	A2	Ch6
风险对冲	Risk Hedging	A2	Ch8
风险管理	Risk Management	A2	Ch6
风险集	Risk Set	A3	Ch8
风险控制	Risk Control	A2	Ch11
风险偏好	Risk－loving	A2	Ch10
风险市场价格	Market Price of Risk	A2	Ch11
风险贴现利率	Risk Adjusted Discount Rate	A5	Ch14
风险厌恶	Risk Averse	A2	Ch10
风险溢价	Risk Premium	A2	Ch10
风险源	Risk Source	A2	Ch9
风险中性	Risk Neutral	A2	Ch6
风险中性概率测度	Risk－neutral Probability Measurement	A2	Ch7
风险资产	Risky Asset	A2	Ch10
分红保险	Participating Insurance	A5	Ch11
分离抵押担保证券	Stripped Mortgage－backed Securities	A2	Ch5
分期偿还	Amortization of Loan Repayment	A2	Ch4
分期退还年金	Installment Refund Annuity	A5	Ch12
分数年龄假设	Fractional Age Assumption	A5	Ch1
分位数	Quartile	A1	Ch3
分位数估计	Percentile Matching Estimation	A3	Ch9
风险净额	Net Amount at Risk	A5	Ch5
分组数据	Grouped Data	A3	Ch8
Fisher信息量	Fisher＇s Information	A3	Ch9
Frank耦合分布	Frank Copula	A3	Ch9
Frank Copula模型	Frank Copula Model	A5	Ch7
Fubini定理	Fubini＇s Theorem	A1	Ch12
浮动利率	Floating Interest Rate	A2	Ch6
负二项分布	Negative Binomial	A3	Ch4
复根	Complex Roots	A1	Ch9
复合泊松过程	Compound Poisson Process	A1	Ch11
复合柏松过程	Compound Poisson Process	A3	Ch7
复合柏松模型	Compound Poisson Model	A3	Ch6
复合负二项分布	Compound Negative Binomial Distribution	A3	Ch6
复合随机变量	Compounded Random Variable	A3	Ch4
附加保费	Expense－loaded Premium	A5	Ch4
付款频率	Frequency of Payment	A2	Ch2
复利	Compound Interest	A2	Ch1
复贴现	Compounded Discount Rate	A2	Ch1
服务费	Loan Interest Paid to Lender Every Period	A2	Ch4
负债	Liability	A2	Ch6
负债证券化	Liability Securitization	A2	Ch5
复制策略	Replication Strategy	A2	Ch9

Chinese Term	English Translation	Exam	Chapter
概率分布列（分布列）	Probability Mass Function（pmf）	A1	Ch2
概率论	Probability Theory	A1	Ch1
概率密度函数（ 密度函数，密度）	Probability Density Function（pdf）	A1	Ch2
概率母函数	Probability Generating Function	A3	Ch4
杜杆	Leverage	A2	Ch8
杜杆组合	Leverage Portfolio	A2	Ch10
高斯分布	Gaussian Distribution	A1	Ch2
高斯过程	Gaussian Process	A1	Ch11
更新方程	Renewal Equation	A1	Ch11
更新过程	Renewal Process	A1	Ch10
更新回报过程	Renewal－reward Process	A1	Ch11
个人年金	Individual Life Annuity	A3	Ch9
个体	Unit	A1	Ch5
个体风险模型	Individual Risk Model	A3	Ch5
Gompertz分布	Gompertz Distribution	A3	Ch2
Gompertz律	Gompertz＇s Law	A5	Ch1
Gondon 公式	Gondon Growth Model	A2	Ch3
供求	Demand－Supply	A2	Ch6
工业产值指数	Industrial Production Index	A2	Ch11
Greenwood近似公式	Greenwood Approximation	A3	Ch8
广义线性回归模型	Generalized Linear Model	A3	Ch9
古典模型	Classic Probability	A1	Ch1
古典信度模型	Classic Credibility Model	A3	Ch12
古典线性回归模型	Ordinary Linear Regression Model	A3	Ch9
固定收益类证券	Fixed Income Securities	A2	Ch5
回归分析	Regression Analysis	A1	Ch8
国库券	Treasury Bills	A2	Ch6
过去法	Retrospective Form	A2	Ch4
过去法	Retrospective Method	A5	Ch6
国债期货	Treasury Bond Futures	A2	Ch8
股票	Stock	A2	Ch5
股票价格指数	Stock Index	A2	Ch8
股息	Dividend	A2	Ch3
股指期货	Stock Index Futures	A2	Ch8

H

函数	Function	A1	Ch 2
核密度估计方法	Kernal Density Estimation	A 3	Ch 8
Ho－Lee 模型	Ho－Lee Model	A 2	Ch 7
红利	Dividend	A 2	Ch 2
互换	Swap	A 2	Ch 8
回报	Return	A 2	Ch 10
回归模型	Regression Model	A 1	Ch 8
回归平方和	Sum Square of Regression（SSR）	A 1	Ch 8
回归预测	Regression Forecasting	A 1	Ch 8
汇率	Exchange Rate	A 2	Ch 8
回溯公式	Retrospective Formula	A 5	Ch 5
混合柏松分布	Mixed Poisson Distribution	A 3	Ch 4
货币互换	Currency Swap	A 2	Ch 8
货币时间价值	Time Value of Money	A 2	Ch 1

IO 债券	Interest－only Strips	A 2	Ch 5
Ito 引理	Ito＇s Lemma	A 2	Ch 7

J

Jensen 不等式
Jensen 指数
基
价格接收者
伽马分布
伽玛函数
伽玛核函数
简单随机抽样
尖点
价内期权
监管机构
渐进分布
简略末来生命时间长度随机变量
检验统计量
交叉套期保值
交割
缴清保险公式
交易成本
加权平均
加权平均值
假设
假设检验
假设投资收益率
家庭收入保险
价外期权
价值等式
基本矩阵
基本事件
吉布斯抽样
基础资产
极大似然估计
基点
基点价值
截断数据
集合（集）
借款者
接受域
阶梯函数
截尾分布
解约
几何布朗运动
（集合的）分配律

Jensen Inequality	A2	Ch10
Jensen＇s Alpha（or Jensen＇s Performance Index）	A2	Ch11
Basis	A2	Ch9
Price Taker	A2	Ch11
Gamma Distribution	A1	Ch2
Gamma Function	A3	Ch2
Gamma Kernal Function	A3	Ch8
Simple Random Sampling	A1	Ch5
Cusp（Singularity）	A2	Ch6
In－the－Money Option	A2	Ch8
Regulatory Authority	A2	Ch5
Asymptotic Distribution	A1	Ch5
Curtate Future Lifetime Random Variable	A5	Ch1
Test Statistic	A1	Ch7
Cross Hedging	A2	Ch8
Delivery	A2	Ch8
Paid－up Insurance Formula	A5	Ch5
Transaction Cost	A2	Ch6
Weighted Average	A1	Ch3
Weighted Average	A2	Ch1
Hypothesis	A1	Ch7
Hypothesis Testing	A1	Ch7
Assumed Investment Return	A5	Ch12
Family Income Insurance	A5	Ch12
Out－of－the－Money Option	A2	Ch8
Value equality	A2	Ch1
Fundamental Matrix	A5	Ch10
Elementary Event	A1	Ch1
Gibbs Sampling	A3	Ch13
Underlying Asset	A2	Ch8
Maximum Likelihood Estimation	A1	Ch6
Basis Point	A2	Ch6
Basis Point Value	A2	Ch8
Truncated Data	A3	Ch8
Set	A1	Ch1
Loan Borrower	A2	Ch4
Non－critical Region	A1	Ch7
Step Function	A1	Ch5
Mean Excess Loss Distribution	A3	Ch2
Withdraw	A5	Ch9
Geometric Brownian Motion	A2	Ch9
Distributivity	A1	Ch1

Chinese Term	English Translation	Exam	Chapter
（集合的）交换律	Commutavity	A1	Ch1
（集合的）结合律	Associativity	A1	Ch1
几何分布	Geometric Distribution	A1	Ch2
（集合的）对偶律	De Morgan＇s Law	A1	Ch1
几何模型	Geometric Probability	A1	Ch1
几何平均	Geometric Average	A2	Ch6
基金	Fund	A2	Ch1
积累成本	Accumulated Cost of Insurance	A5	Ch5
积累概率分布函数（分布函数）	Cumulative Distribution Function（cdf）	A1	Ch2
积累函数	Accumulation function（for unit principal）	A2	Ch1
积累盈余	Emerging Surplus	A5	Ch14
积累因子	Accumulation factors	A2	Ch1
积累值	Accumulated Value	A2	Ch1
净保费	Net Premium	A5	Ch4
净贷款余额	Net Outstanding Loan Balance	A2	Ch4
精确信度	Exact Credibility	A3	Ch12
净收益	Net Income	A2	Ch5
精算等价原理	Actuarial Equivalence Principal	A2	Ch5
精算累计值	Actuarial Accumulated Value	A5	Ch3
精算贴现因子	Acturial Discount Factor	A5	Ch2
精算现值	Actuarial Present Value	A5	Ch2
净现金流额	Net Cash Flow	A2	Ch3
净现值	Net Present Value（NPV）	A2	Ch3
净现值法	NPV Method	A2	Ch3
经验贝叶斯估计	Empirical Baysian Estimation	A3	Ch12
经验分布	Empirical Distribution	A3	Ch8
经验分布概率函数	Empirical Distribution Probability Function	A3	Ch8
经验分布光滑曲线（卵形线）	Ogive	A3	Ch8
经验分布函数	Empirical Distribution Function	A1	Ch5
经验生存函数	Empirical Survival Function	A3	Ch8
金融衍生工具	Financial Derivatives	A2	Ch8
即期利率	Spot Interest Rate	A2	Ch6
计数随机过程	Counting Process	A3	Ch7
级数展开	Exponent expansion	A2	Ch1
极限	Limits	A1	Ch4
极限概率	Limiting Probability	A5	Ch10
计息频率	Interest Compounding Frequency	A2	Ch2
计息期	Interest Compounding Period	A2	Ch2
卷积	Convolution	A1	Ch2
捐纳金	Contribution	A5	Ch9
绝对风险厌恶系数	Coefficient of Absolute Risk－Aversion	A2	Ch10
均方误差	Mean Square Error	A1	Ch6
均衡分期偿还	Level Payment Loan Amortization	A2	Ch4
均衡模型	Equilibrium Model	A2	Ch7
均衡状态	Equilibrium	A2	Ch11
均匀分布	Uniform Distribution	A1	Ch2
均匀分布假设（均予分布）	Uniform Distribution of Deaths Assumption	A5	Ch1
均匀核函数	Uniform Kernal Function	A3	Ch8
均值函数	Mean Function	A3	Ch9
均值回复	Mean Reversion	A2	Ch7
巨灾风险	Catastrophe Risk	A2	Ch5

Chinese Term	English Translation	Exam	Chapter
巨灾风险证券化	Catastrophe Insurance Risk Securitization	A 2	Ch 5
巨灾债	Catastrophe Bonds	A 2	Ch 5
矩阵	Matrix	A 2	Ch 6
矩	Moment	A 1	Ch 3
矩估计	Moment Estimation	A 1	Ch 6
矩估计	Methods of Moments	A 3	Ch 9
聚合理赔量	Aggregate Claim Amount	A 3	Ch 6
巨绝域	Critical Region	A 1	Ch 7
矩母函数	Moment Generating Function	A 3	Ch 4

K

看跌看涨期权平价公式	Put－Call Parity	A2	Ch8
看跌期权	Put Option	A2	Ch8
看涨期权	Call Option	A2	Ch8
Kaplan－Meier乘积极限估计	Kaplan－Meier Product－limit Estimator	A3	Ch8
可分配保费	Apportionable Premium	A5	Ch4
可分配期初年金	Apportionable Annuity－Due	A5	Ch3
客观概率测度	Objective Probability Measure	A2	Ch9
可料过程	Predictable Process	A2	Ch9
可逆	Invertible	A2	Ch6
可赎回债券	Callable Bond	A2	Ch5
可行集	Feasible Set	A2	Ch10
柯西－施瓦茨不等式	Cauchy－Schwarz Inequality	A1	Ch3
可转换债券	Convertible Bond	A2	Ch5
Kimeldorf－Jones方法	Kimeldorf－Jones Graduation Method	A3	Ch11
空头	Short	A2	Ch8
K－S检验	K－S test	A3	Ch10
宽平稳过程	Weak Stationary Process	A1	Ch10

L

LB检验统计量

累计危险率函数
两两独立
两全保险
联合单减因模型
联合分布函数
联合生存年金
联合生存状态
联结函数
连续偿还
连续复利收益率
连续计息
（ n 阶）连续可导
连续年金

Ljung－Box Test Statistic	A1	Ch9
Cumulative Hazard Rate Function	A3	Ch8
Pair Wise Independency	A1	Ch1
Endowment Insurance	A5	Ch2
Associated Single Decrement Model	A3	Ch2
Joint Cumulative Distribution	A1	Ch2
Joint Life Annuity	A3	Ch9
Joint Life Status	A5	Ch7
Link Function	A3	Ch9
Repayment under Continuous Compounding	A2	Ch4
Continuously Compounded Interest Rate	A2	Ch7
Continuously Compounding	A2	Ch2
（n－times）Differentiable	A2	Ch6
Continuous Annuity	A2	Ch2
Continuous Random Variable	A1	Ch2
（n－dimension）Column Vector	A2	Ch6
Theoretical Price	A2	Ch3
Term Structure of Interest Rate	A2	Ch6
Interest Rate Risk	A2	Ch6

Chinese Term	English Translation	Exam	Chapter
利率互换	Interest Rate Swap	A2	Ch8
利率平价公式	Interest Rate Parity	A2	Ch8
利率期货	Interest Rate Futures	A2	Ch8
利率衍生品	Interest Rate Derivatives	A2	Ch7
林德贝格条件	Lindeberg＇s Condition	A3	Ch5
林德泊格－列维中心极限定理	Lindeberg－Levy＇s Central Limit Theorem	A1	Ch4
零点截断分布	Zero－truncated Distribution	A3	Ch4
零点修正分布	Zero－modified Distribution	A3	Ch4
零票息债券	Zero－Coupon Bond	A2	Ch5
临界值	Critical Value	A1	Ch7
理赔次数变量	Claim Frequency Random Variable	A3	Ch6
理赔次数过程	Claim Number Process	A3	Ch7
理赔额	Claim Amount	A3	Ch4
理赔额变量	Claim Amount Random Variable	A3	Ch6
理赔费用	Termination Expense	A5	Ch6
利润边际	Profit Margin	A5	Ch6
利润率	Profit Margin	A2	Ch3
离散概率空间	Discrete Probability Space	A1	Ch1
离散时间马尔可夫链	Discrete－time Markov Chain	A5	Ch10
离散型随机变量	Discrete Random Variable	A1	Ch2
历史波动率	Historical Volatility	A2	Ch9
流动性	Liquidity	A2	Ch6
流动性补贴	Liquidity Premium	A2	Ch6
利息	Interest	A2	Ch1
利息力／贴现力	Force of Interest	A2	Ch1
利息收益	Interest Income	A2	Ch5
Logistic模型	Logistic Model	A3	Ch9
Lundberg系数（调节系数）	Lundberg Coefficient（Adjust Coefficient）	A3	Ch7
伦敦国际金融期货交易所	London International Financial Futures and Options Ex－ change	A2	Ch8
伦敦银行同业拆借利率	London Interbank Offered Rate（LIBOR）	A2	Ch8

M

Macaulay久期	Macaulay Duration	A2	Ch6
Macaulay凸度	Macaulay Convexity	A2	Ch6
马尔可夫过程	Markov Process	A1	Ch10
马尔可夫链	Markov Chain	A1	Ch11
Makeham分布	Makeham Distribution	A3	Ch2
Makeham律	Makeham＇s Law	A5	Ch1
满期偿还	Lump Sum Method of Loan Repayment	A2	Ch4
毛保费	Gross Premium	A5	Ch6
Markowitz 边界	Efficient Frontier	A2	Ch10
MCMC方法	Markov Chain Monte Carlo Method（MCMC Method）	A3	Ch13
美式期权	American option	A2	Ch8
蒙特卡洛方法	Monte Carlo Methods	A1	Ch4
蒙特卡洛模拟法	Monte－Carlo Simulation	A2	Ch7
Metropolis－Hasting抽样	Metropolis－Hasting Algoritm	A3	Ch13
免赔额	Deductible	A3	Ch4
敏感性测试	Sensitivity Test	A5	Ch17

Chinese Term	English Translation	Exam	Chapter
敏感性系数	Sensitivity Coefficient	A 2	Ch 11
名义本金	Notional Principal	A 2	Ch 8
名义利率	Nominal Interest Rate	A 2	Ch 1
名义贴现率	Nominal Discount Rate	A 2	Ch 1
名义债券	Nominal Bonds	A 2	Ch 8
摩擦	Friction	A 2	Ch 11
模拟	Simulation	A 2	Ch 6
模型拟合值	Fitted Value	A 1	Ch 8

\mathbf{N}

内部收益率	Internal Rate of Return（IRR）	A2	Ch3
内在价值	Intrinsic Value	A2	Ch8
Nelson－Aalen估计	Nelson－Aalen Estimator	A3	Ch8
Newton－Raphson 法	Newton－Raphson Iteration	A2	Ch2
年度递减定期生命年金	Annually decreasing Whole Life Annuity	A5	Ch3
年度递减终身寿险	Annually Decreasing Whole Life Insurance	A5	Ch2
年度递增终身寿险	Annually Increasing Whole Life Insurance	A5	Ch2
年度递增终身生命年金	Annually Increasing Whole Life Annuity	A5	Ch3
年红利率	Annual Dividend Rate	A2	Ch8
边际分布函数	Marginal Distribution Function	A5	Ch7
年金	Annuity	A5	Ch3
年金积累值	Accumulated value of an annuity	A2	Ch2
年金现值	Present value of an annuity	A2	Ch2
拟合模型	Fitted Model	A1	Ch9
拟合优度检验	Chi－square Goodness of Fit Test	A1	Ch7
牛市价差组合	Bull Spreads	A2	Ch8

O

耦合分布	Copula Distribution	A3	Ch9
欧式期权	European Option	A2	Ch8
欧洲美元期货	Eurodollar Futures	A2	Ch8

P

帕累托分布	Pareto Distribution	A3	Ch4
帕斯卡分布	Negative Binomial Distribution	A1	Ch2
偏差	Residual	A1	Ch8
偏差平方	Square of Bias	A1	Ch6
偏导数	Partial Differential Equation	A2	Ch9
偏导数	Partial Derivative	A3	Ch9
偏态	Skewness	A1	Ch5
偏微分方程	Partial Differential Equation	A2	Ch7
偏自相关系数	Partial Correlation Coefficient	A1	Ch9
票息（额）	Coupon	A2	Ch5
票息率	Coupon Rate	A2	Ch5
票息支付日	Coupon Date	A2	Ch5
票息支付周期	Coupon Period	A2	Ch5
漂移项	Drift	A2	Ch7
评价	Price－plus－accrued，or Purchase Price	A2	Ch5

Chinese Term	English Translation	Exam	Chapter
平价发行	Issue at Par	A 2	Ch 8
平价期权	At－the－Money Option	A 2	Ch 8
平均余寿	Expected Future Lifetime	A 5	Ch 1
平稳时间序列	Stationary Time Series	A 1	Ch 9
平移伽玛分布	Horizontal－Shifted Gamma Distribution	A 3	Ch 6
频率	Relative Frequency	A 1	Ch 5
频数	Frequency	A 1	Ch 5
破产时刻	Ruin Time	A 3	Ch 7
PO 债券	Principal－only Strips	A 2	Ch 5
p－p图	pp－Plot	A 3	Ch 10
普通股	Common Stock	A 2	Ch 3
普通股股东	Common Shareholder	A 2	Ch 5

Q

期	Term	A2	Ch1
强度函数	Intensity Function	A3	Ch7
嵌入式期权	Embedded Option	A2	Ch8
前瞻损失	Prospective Loss	A5	Ch5
敲定价格	Strike Price	A2	Ch8
期初付年金	Annuity－due	A2	Ch2
期初付生命年金	Life Annuity Due	A5	Ch3
期初责任准备金	Initial Reserve	A5	Ch5
切比雪夫不等式	Chebyshev Inequality	A1	Ch3
期货	Futures	A2	Ch8
期末付年金	Annuity－immediate	A2	Ch2
期末付生命年金	Life Annuity Immediate	A5	Ch3
期末责任准备金	Terminal Reserve	A5	Ch5
清算所	Clearinghouse	A2	Ch8
期权	Options	A2	Ch8
时齐马尔可夫链	Homogeneous Markov Chain	A1	Ch11
求和自回归移动模型（ARIMA）	Autoregressive Integrated Moving Average Model	A1	Ch9
期望收益－贝塔关系	Expected Return－Beta Relationship	A2	Ch11
期望向量	Expectation Vector	A1	Ch3
期限偏好	Term Preference	A2	Ch6
期限溢价理论	Liquidity Preference Theory	A2	Ch6
企业债券	Corporate Bond	A2	Ch5
q－q图	qq－Plot	A3	Ch10
全概率公式	Partition Rule	A1	Ch1
全价	Dirty Price	A2	Ch5
全期望公式	Double Expectation Formula	A1	Ch3
完整数据	Complete Data	A3	Ch8
确定存续群体	Deterministic Survivorship Group	A5	Ch8
确定给付计划	Defined Benefit Plan	A5	Ch9
确定缴费计划	Defined Contribution Plan	A5	Ch9
确定期生命年金	Guaranteed Life Annuity	A5	Ch3
区间估计	Interval Estimation	A1	Ch6
曲率	Curvature	A2	Ch6

R

扰动项	Disturbance Term	A2	Ch6
人口极限年龄	Limiting Age	A5	Ch1
人寿保险	Life Insurance	A5	Ch2
日历年	Calendar Year	A2	Ch3
融资	Financing	A2	Ch 8

S

三角核函数	Triangular Kernal Function	A3	Ch8
SBC准则	SBC Criterion	A1	Ch9
删失数据	Censored Data	A3	Ch8
Sharpe 指数	Sharpe Ratio	A2	Ch11
生存保险	Pure Endowment	A5	Ch2
生存函数	Survival Function	A5	Ch1
生存模型	Survival Model	A3	Ch2
生存曲线	Survival Curve	A3	Ch2
生命表	Life Table	A5	Ch1
生命年金	Life Annuity	A5	Ch3
升贴水率	Premium／Discount Rate	A2	Ch8
生存分布	Survival Distribution	A5	Ch1
生存分析	Survival Analysis	A3	Ch2
生存时间随机变量	Survival Time Random Variable	A3	Ch2
市场分割理论	Market Segment Theory	A2	Ch6
市场基准利率	Benchmark Interest Risk	A2	Ch6
市场组合	Market Portfolio	A2	Ch10
实根	Real Roots	A1	Ch9
市价	Market Price	A2	Ch5
时间加权收益率	Time－weighted Rate of Return	A2	Ch3
时间价值	Time Value	A2	Ch8
时间齐性	Time Homogeneous	A2	Ch7
时间序列	Time Series	A1	Ch9
实际利率	Effective Interest Rate	A2	Ch1
实际贴现率	Effective discount rate	A2	Ch1
示性变量	Indicator Random Variable	A5	Ch10
示性函数	Indicator Function	A2	Ch9
使用费	Loan Interest Paid to Lender Every Period	A2	Ch4
收敛	Convergence	A2	Ch2
收敛速度	Rate of Convergence	A2	Ch2
寿命随机变量	Age Random Variable	A5	Ch1
寿险精算	Actuarial Mathematics for Life Contingent Risks	A5	Ch1
收益	Payoff	A2	Ch8
收益率曲线	Yield Curve	A2	Ch6
收益率	Rate of Return	A2	Ch3
收益率法	IRR Method	A2	Ch3
双边检验	Two－sided Test	A1	Ch7
双曲假设（balducci假设）	Balducci assumption	A5	Ch1
赎回	Redemption	A2	Ch2

Chinese Term	English Translation	Exam	Chapter
赎回日	Redemption Dates	A2	Ch5
数据依赖型分布	Data Dependent Distribution	A3	Ch8
瞬时变化率	Instantaneous Rate of Change	A2	Ch4
瞬时利率	Short Rate	A2	Ch7
瞬态	Transient State	A1	Ch11
数学期望（均值）	Expectation（Mean）	A1	Ch3
似然比检验	Likelihood Ratio Test	A3	Ch10
似然函数	Likelihood Function	A1	Ch6
死亡解析律	Mortality Law	A5	Ch1
死亡力	Force of Mortality	A5	Ch1
死亡力恒定假设	Constant Force of Mortality Assumption	A3	Ch3
死亡时间均匀分布假设	Uniform Distribution at Deaths Assumption	A3	Ch3
算术平均数	Arithmetic Average	A1	Ch4
随机变量	Random Variable	A1	Ch2
随机存续群体	Random Surviorship Group	A5	Ch8
随机过程	Random Process	A1	Ch10
随机利率模型	Stochastic Interest Rate Model	A2	Ch7
随机事件（事件）	Random Event（Event）	A1	Ch1
随机试验	Random Trial（Random Experiment）	A1	Ch1
随机微分方程	Stochastic Differential Equation	A2	Ch7
随机微积分	Stochastic Calculus	A1	Ch12
随机游动	Random Walks	A1	Ch10
随机游走	Random Walks	A1	Ch9
随机折现因子	Stochastic Discount Factor	A2	Ch7
损失额	Loss Amount	A3	Ch4
损失函数	Loss Function	A5	Ch4
损失随机变量	Loss Random Variable	A5	Ch4
所得税率	Income Tax Rate	A2	Ch5

T

泰勒展开	Taylor＇s Expansion	A 2	Ch 2
套利	Arbitrage	A 2	Ch 3
套利定价模型	Arbitrage Pricing Theory（APT）	A 2	Ch 11
套利机会	Arbitrage Opportunity	A 2	Ch 9
套期保值策略	Hedging Strategy	A 2	Ch 6
套期保值率	Hedge Ratio	A 2	Ch 8
塔性质	Tower Property	A 2	Ch 9
特殊目的再保险机构	Special Purpose Reinsurance Vehicle	A 2	Ch 5
特有风险	Idiosyncratic Random Shock	A 2	Ch 11
条件泊松过程	Condtional Poisson Process	A 1	Ch 11
条件方差	Conditional Variance	A 1	Ch 3
条件方差公式	Conditional Variance Formula	A 1	Ch 3
条件分布	Conditional Distribution	A 1	Ch 2
条件概率	Conditional Probability	A 1	Ch 1
条件期望	Conditional Expectation	A 1	Ch 3
贴现函数	Discount Function	A 5	Ch 2
提前支付	Prepayment	A 2	Ch 5
提前支付风险	Prepayment Risk	A 2	Ch 5
通货膨胀	Inflation	A 5	Ch 15

Chinese Term	English Translation	Exam	Chapter
通货膨胀率	Inflation Rate	A 2	Ch 2
统计量	Statistic	A 1	Ch 5
投保人	Policyholder	A 5	Ch 2
头寸	Position	A 2	Ch 8
投机级债券	Speculative Bond	A 2	Ch 11
投资额加权收益率	Dollar－weighted Rate of Return	A 2	Ch 3
投资风险	Investment Risk	A 2	Ch 3
投资回报率	Internal Rate of Return	A 5	Ch 14
投资连结保险	Equity－linked Insurance	A 5	Ch 11
投资年法	The Investment Year Method	A 2	Ch 3
投资组合法	The Portfolio Method	A 2	Ch 3
Treynor 指数	Treynor Ratio	A 2	Ch 11
退保	Withdraw	A 5	Ch 15
退休收入保险	Retirement Income Insurance	A 5	Ch 12

Vasicek 模型
Vasicek Model
A2
Ch7

W

外币	Foreign Currency	A2	Ch8
外汇市场	Foreign Exchange Market	A2	Ch8
Wald等式	Wald＇s Equation	A1	Ch11
万能保险	Universal Life Insurance	A5	Ch11
完全分散化组合	Completely Diversified Portfolio	A2	Ch11
完全竞争	Perfect Competition	A2	Ch11
完全期末年金	Complete Annuity－Immediate	A5	Ch3
完全信度	Full Credibility	A3	Ch12
完全正／负相关	Perfect Positive／Negative Correlation	A2	Ch10
完整个体数据	Complete Individual Data	A3	Ch8
韦伯分布	Weibull Distribution	A3	Ch2
Weibull律	Weibull＇s Law	A5	Ch1
维持保证金	Maintenance Margin	A2	Ch8
末定权益	Contingent Claim	A2	Ch9
微分方程	Differential Equation	A2	Ch7
未来法	Prospective Form	A2	Ch4
末来法	Prospective Method	A5	Ch6
末来累计生存人年数	Year Lived in This and All Subsequent Age Intervals	A5	Ch1
末来生命随机变量	Future Lifetime Random Variable	A3	Ch2
末来生命时间长度随机变量	Future Lifetime Random Variable	A5	Ch1
伪随机数	Pseudorandom Number	A3	Ch13
委托佣金	Commission	A2	Ch8
危险率函数	Hazard Rate Function	A3	Ch2
违约风险	Default Risk	A2	Ch6
Whittaker修匀	Whittaker Graduation	A3	Ch11
误差平方和	Sum Square of Error（SSE）	A1	Ch8
无差异曲线	Indifference Curve	A2	Ch10
无风险利率	Risk－free Interest Rate	A2	Ch8
无风险资产	Risk－free Asset	A2	Ch10

Chinese Term	English Translation	Exam	Chapter
无量纲	Zero Dimension	A1	Ch3
无偏估计	Unbiased Estimation	A1	Ch6
无套利模型	Abitrage－Free Model	A 2	Ch 7
无限可分	Infinitely Divisible	A 2	Ch 11
无限时间破产概率	Infinite Time Ruin Probability	A 3	Ch 7
无形资产	Intangible Asset	A 2	Ch 11

X

限额损失再保险	Stop－loss Reinsurance	A3	Ch6
相对风险厌恶系数	Coefficient of Relative Risk－Aversion	A2	Ch10
相关系数	Correlation Coefficient	A1	Ch3
相关系数	Correlation Coefficient	A2	Ch10
相通的状态	Communicating State	A5	Ch10
现货价格	Spot Price	A2	Ch8
现金价值	Cash Value	A5	Ch16
现金流	Cash－flow Stream	A2	Ch3
现金流出	Cash Outflow	A2	Ch3
现金流入	Cash Inflow	A2	Ch3
现金流折现分析	Analysis of Discounted Cash Flow	A2	Ch3
现金退还年金	Partial Cash Refund Annuity	A5	Ch12
线性插值	Linear Interpolation	A3	Ch8
线性插值法	Linear Interpolation	A2	Ch1
线性函数	Linear function	A2	Ch1
线形回归	Linear Regression	A1	Ch8
线性假设	Linear Interpolation Assumption	A5	Ch1
先验分布（结构分布）	Prior Distribution	A3	Ch12
先验权重	Predetermined Weights	A3	Ch9
现值／折现值	Discounted value	A2	Ch1
显著性水平	Significance Level	A1	Ch7
效用	Utility	A2	Ch10
协方差	Covariance	A1	Ch3
协方差矩阵	Covariance Matrix	A1	Ch3
斜率	Slope	A2	Ch6
希腊字母	Greeks	A2	Ch9
系列债券	Serial Bond	A2	Ch5
信度估计	Credibility Estimation	A3	Ch12
信度理论	Credibility Theory	A3	Ch12
信度因子	Credibility Factor	A3	Ch12
悉尼期货交易所	Sydney Futures Exchange	A2	Ch8
辛钦大数定理	Khinchine＇s Law of Large Numbers	A1	Ch4
信托机构	Trust	A2	Ch5
信息集	Information Set	A2	Ch7
信用风险	Credit Risk	A2	Ch5
信用风险溢价	Credit Risk Premium	A2	Ch6
信用评级	Credit Rating	A2	Ch6
信用评级机构	Credit Rating Agency	A2	Ch5
吸收状态	Absorbing State	A5	Ch10
系统性风险	Systematic Risk	A2	Ch10
修匀过程（修匀算子）	Smoothing Process	A3	Ch11

Chinese Term	English Translation	Exam	Chapter
修匀误差	Smoothing Error	A 3	Ch 11
修正久期	Modified Duration	A 2	Ch 6
修正票息率	Modified Coupon Rate	A 2	Ch 5
修正凸度	Modified Convexity	A 2	Ch 6
修正准备金	Modified Reserve	A 5	Ch 6
选择期	Select Period	A 3	Ch 3
选择生命表	Select Life Table	A 3	Ch 3
选择一终极生命表	Selected－Ultimate Life Table	A 3	Ch 3
续存函数	Remaining Function	A 3	Ch 2

Y

鞅	Martingale	A1	Ch10
样本	Sample	A1	Ch5
样本点	Sample Point	A1	Ch1
样本方差和标准差	Sample Variance and Standard Deviation	A1	Ch5
样本极差	Sample Range	A1	Ch5
样本均值	Sample Mean	A1	Ch5
样本空间	Sample Space	A1	Ch1
样本容量	Sample Size	A1	Ch5
样本四分位差	Sample Interquartile Range	A1	Ch5
样本众数	Sample Mode	A1	Ch5
样本中位数	Sampel Median	A1	Ch5
严格单调函数	Strictly Monotonic Function	A1	Ch2
严格单利法	Exact Simple Interest	A2	Ch1
养老金筹资理论	Theory of Pension Funding	A5	Ch9
养老金计划	Pension Plan	A5	Ch9
严减函数	Strictly Decreasing Function	A1	Ch2
严平稳过程	Strong Stationary Process	A1	Ch10
延期保险	Defered Insurance	A5	Ch2
延期年金	Deferred annuity	A2	Ch2
延期生命年金	Defered Life Annuity	A5	Ch3
衍生资产	Derivative Asset	A2	Ch8
严增函数	Strictly Increasing Function	A1	Ch2
业绩评估	Performance Evaluation	A2	Ch11
业务获得费用	Acquisition Expense	A5	Ch6
移动加权平均修匀（m－w－a）	Moving－Weighted－Average Smoothing	A3	Ch11
移动平均模型（MA）	Moving Average Model	A1	Ch9
溢价（发行）	（Issued at）Premium	A2	Ch5
溢价摊销	Amortization of Premium	A2	Ch5
因变量	Response Variable	A1	Ch8
银行家规则	Banker＇s Rule	A2	Ch1
应计票息	Accrued Coupons	A2	Ch5
盈亏	Profit	A2	Ch8
盈余	Surplus	A3	Ch7
盈余平衡年	Payback Period	A5	Ch14
隐含波动率	Implied Volatility	A2	Ch9
一年定期全缴费期修正法 （FPF法）	Full Preliminary Term Method	A5	Ch6

Chinese Term	English Translation	Exam	Chapter
伊藤公式	Ito＇s Lemma	A 1	Ch 12
伊藤积分	Ito＇s Calculus	A 1	Ch 12
一元回归	Simple Regression	A 1	Ch 8
一致性预期假定	Homogeneous Expectation Assumption	A 2	Ch 10
永续年金	Perpetuity	A 2	Ch 2
石截断	Right Truncation	A 3	Ch 4
右截断数据	Right－Truncated Data	A 3	Ch 8
右删失数据	Right－Censored Data	A 3	Ch 8
石删失	Right Censoring	A 3	Ch 4
有限波动信度	Limiting Fluctuation Credibility	A 3	Ch 12
有限差分法	Finite Difference Method	A 2	Ch 7
优先股	Preferred Stock	A 2	Ch 2
有限期望函数	Limited Expected Function	A 3	Ch 4
有限时间破产概率	Finite Time Ruin Probability	A 3	Ch 7
有效久期	Effective Duration	A 2	Ch 6
有效凸度	Effective Convexity	A 2	Ch 6
有效资产组合	Efficient Portfolio	A 2	Ch 10
原假设	Null Hypothesis	A 1	Ch 7
远期单利	Simple Forward Rate	A 2	Ch 7
远期复利	Compounded Forward Rate	A 2	Ch 7
远期合约	Forward Contract	A 2	Ch 8
远期价格	Forward Price	A 2	Ch 8
远期利率	Forward Interest Rate	A 2	Ch 6
远期利率协议	A2	Ch 8	
纯粹 预期理论	Forward Rate Agreement（FRA）	A 2	Ch 6
预期值	Pure Expectation Theory	A 2	Ch 7
余弦	Expected Value	Ch 9	

Z

再投资收益率	Reinvestment Rate of Return	A 2	Ch 3
责任准备金（准备金）	Reserve	A 5	Ch 5
债券	Bond	A 2	Ch 5
债券持有人	Bond Holder	A 2	Ch 5
债券发行人	Bond Issuer	A 2	Ch 5
债券价格	Purchase Price of a Bond	A 2	Ch 5
债券面值	Face Value of a Bond	A 2	Ch 5
债权人	Bondholder	A 2	Ch 5
债券赎回值	Redemption Value of a Bond	A 2	Ch 5
债务偿还	Loan Repayment	A 2	Ch 4
账面值	Book Value	A 2	Ch 5
展期保险	Extended Insurance	A 5	Ch 16
占优策略	Dominant Strategy	A 2	Ch 9
折价（发行）	（Issued at）Discount	A 2	Ch 5
折价积累	Accumulation of Discount	A 2	Ch 5
正交矩阵	Orthogonal Matrix	A 1	Ch 5
证券化	Securitization	A 2	Ch 5
证券市场线	Security Market Line（SML）	A 2	Ch 11
正态分布	Normal Distribution	A 1	Ch 2
正弦	Sine	A 1	Ch 9
整值平均余寿	Expected Curtate Future Lifetime	A 5	Ch 1

Chinese Term	English Translation	Exam	Chapter
折现因子	Discount factor	A2	Ch1
秩	Rank	A2	Ch9
直方图	Histogram	A3	Ch8
支付	Payoff	A2	Ch9
芝加哥商品交易所	Chicago Mercantile Exchange	A2	Ch8
指数	Exponential	A2	Ch1
指数保费	Exponential Premium	A5	Ch4
指数保费原则	Exponential Premium principle	A5	Ch4
指数分布	Exponential Distribution	A1	Ch2
（指数分布的）无记忆性	Memoryless Property（of Exponential Distribution）	A3	Ch2
指数分布族	Exponential Distribution Family	A3	Ch9
指数假设（常力假设）	Constant Force of Mortality Assumption	A5	Ch1
指数平滑	Exponential Smoothing	A1	Ch9
指数准备金	Exponential Reserve	A5	Ch5
执行	Exercise	A2	Ch8
执行价格	Exercise Price	A2	Ch8
置信区间	Confidence Interval	A1	Ch6
置信上限	Upper Bound of Confidence Interval	A1	Ch6
置信水平	Confidence Level	A1	Ch6
置信下限	Lower Bound of Confidence Interval	A1	Ch6
终极破产概率	Ruin Probability	A3	Ch7
终极生存概率	Survival Probability	A3	Ch7
终极生命表	Ultimate Life Table	A3	Ch3
终身生命年金	Whole Life Annuity	A5	Ch3
终生寿险	Whole Life Insurance	A5	Ch2
众数	Mode	A1	Ch3
中位数	Median	A1	Ch3
中心极限定理	Central Limit Theorem	A1	Ch4
中心死亡率	Central Death Rate	A3	Ch2
中心终止率	Central Death Rate	A5	Ch8
终值	Accumulated Value	A2	Ch1
终止力	Force of Decrement	A5	Ch8
种子	Seed	A3	Ch13
状态变量	Status Variables	A2	Ch7
状态价格向量	State－Price Vector	A2	Ch9
转换比率	Conversion Ratio	A2	Ch5
转换因子	Conversion Factor	A2	Ch8
转移概率	Transition Probability	A1	Ch11
转移概率矩阵	Transition Probability Matrix	A5	Ch10
逐日盯市	Marking to Market	A2	Ch8
主要变量	Primary Random Variable	A3	Ch2
资本市场线	Capital Market Line（CML）	A2	Ch10
资本收益	Capital Income	A2	Ch5
资本预算	Capital Budgeting	A2	Ch3
资本增益税	Capital Gains Tax	A2	Ch5
资本资产定价模型	Capital Asset Pricing Model	A2	Ch11
自变量	Explanatory Variable	A1	Ch8
资产	Asset	A3	Ch7
资产池	Asset Pool	A2	Ch5
资产份额	Assets Share	A5	Ch14

Chinese Term	English Translation	Exam	Chapter
资产负债管理	Asset Liability Management	A2	Ch6
资产负债匹配	Asset Liability Matching	A2	Ch6
资产管理	Asset Management	A2	Ch6
资产估值	Asset Valuation	A2	Ch11
资产配置	Asset Allocation	A2	Ch11
资产配置线	Capital Allocation Line（CAL）	A2	Ch10
资产证券化	Asset Securitization	A2	Ch5
资产组合	Portfolio	A2	Ch10
自回归模型（AR）	Autoregressive Model	A1	Ch9
自回归移动平均模型（ARMA）	Auto Regressive Moving Average Model（ARMA）	A1	Ch9
自融资	Self－Financing	A2	Ch9
自相关系数	Autocorrelation Coefficient	A1	Ch9
自协方差函数	Autocovariance Function	A1	Ch9
自由度	Degree of Freedom	A1	Ch7
总量函数	Accumulation function	A2	Ch1
总理赔过程	Aggregate Claim Process	A3	Ch7
总平方和	Sum Square of Total（SST）	A1	Ch8
总体	Population	A1	Ch5
最大精算信度模型	Greatest Accuracy Credibility Model	A3	Ch12
最大损失随机变量	Maximal Aggregate Loss Random Variable	A3	Ch7
最低保证年金	Guaranteed Minimum Annuity	A5	Ch12
最后生存状态	Last Survivor Status	A5	Ch7
最廉价交割债券	Cheapest to Deliver	A2	Ch8
最小二乘估计	Least Squares Estimation	A1	Ch8
最优化问题	Optimization	A2	Ch6
最优资产组合	Optimal Portfolio	A2	Ch10
左截断	Left Truncation	A3	Ch4
左截断数据	Left－Truncated Data	A3	Ch8
左删失	Left Censoring	A3	Ch4
左删失数据	Left－Censored Data	A3	Ch8

A1 Manual

§2 A1 Manual

§2．1 第一章：随机事件与概率

Chapter One：Random Events and Prob－ abilities

－贝叶斯公式

Bayes＇Law：Given Event A and Event B ，Bayes＇ Law provides a formula to calculate conditional prob－ abilities：

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

－必然事件
Certain Event：A certain event is the event occurs with probability equal to 1 ．

－伯努里试验

Bernoulli Trial：A Bernoulli Trial is an experiment whose outcome is random and can be either of two possible outcomes，＂success＂and＂failure＂．
－不可能事件
Impossible Event：An impossible event is the event with no possibility to occur．
－对立事件（逆事件）
Complementary Event：A complementary event of any event A is the event that A does not occur．Note $P(A)+P(\operatorname{not} A)=1$ ．
－（集合的）对偶律
De Morgan＇s laws：De Morgan＇s laws are rules re－ lating to logical operators＂and＂and＂or＂in terms of each other via negation．In set theory，it is often stat－ ed as＂Union and intersubsection interchange under implementation＂，namely：

$$
\begin{aligned}
& \overline{A \cap B}=\bar{A} \cup \bar{B}, \\
& \overline{A \cup B}=\bar{A} \cap \bar{B} .
\end{aligned}
$$

－独立试验序列概型

Bernoulli Probability：Bernoulli probability de－ scribes probabilities associating with an event in Bernoulli trial．
－独立性
Independence：In probability theory，if two random events are independent，the occurrence of one event does not influent the probability of the occurrence of the other event．Mathematically，

$$
P(A \mid B)=P(A), P(B \mid A)=P(B)
$$

－（集合的）分配律

Distributivity：In the context of set theory，distribu－ tivity refers to following properties for some arbitrary
sets：

$$
\begin{aligned}
A \cup(B \cap C) & =(A \cup B) \cap(A \cup C) \\
A \cap(B \cup C) & =(A \cap B) \cup(A \cap C) .
\end{aligned}
$$

－概率
Probability：The probability of an event A is a mea－ sure of how likely the event will happen，mathemati－ cally，denote as：$P(A)$ ．

－概率论

Probability Theory：Probability theory is a branch of mathematics concerned with analysis of random phenomena．The central objects of probability theory are random variables，stochastic processes and events．

－古典概型

Classic Probability：The classic probability de－ scribes an experiment with a sample space having equally occurring sample points．In other words， Events in such an experiment have same probabilities．

－（集合的）交换律

Commutavity：In the context of set theory，the com－ mutavity names following relationship between sets：

$$
A \cup B=B \cup A, A \cap B=B \cap A
$$

－基本事件

Elementary Event：If the outcome set of an Even－ t only contains one single element，such an event is called the elementary event．

－（集合的）结合律

Associativity：In the context of set theory，associa－ tivity relates to following properties of some arbitrary sets：

$$
\begin{aligned}
& A \cap(B \cap C)=(A \cap B) \cap C \\
& A \cup(B \cup C)=(A \cup B) \cup C .
\end{aligned}
$$

－集合（集）

Set：A set is a collection of distinct objects，consid－ ered as an object in its own right．

－几何概型

Geometric Probability：Geometric probability is a general topic studying probability associated with probability problems in geometric sense．In late 20th century，the topic has split to subtopics with different emphases．Integral geometry sprang from the princi－ ple that the mathematically natural probability mod－ els are those that are invariant under certain transfor－ mation groups．Stochastic geometry emphasizes the random geometrical objects themselves．
－两两独立
Pair Wise Independency：Let A，B，C be three random events，then if A and B, B and C, A and C are all independent，these three events are pair wise independent．

－离散概率空间

Discrete Probability Space：A probability space with elements that are countable in discrete sense is called discrete probability space．

－全概率公式

Partition Rule：Let A，B，C be three subsets of a sample space，then

$$
P(A)=P(A \mid B) P(B)+P(A \mid C) P(C)
$$

is called the partition rule．

－随机事件（事件）

Random Event（Event）：In probability theory，an event is a set of outcomes（a subset of the sample s－ pace）to which a probability is assigned．

－随机试验

Random Trial（Random Experiment）：A ran－ dom experiment of an event assigns random probabil－ ities to outcomes．

－条件概率

Conditional Probability：The probability asso－ ciates to an event A given another event B happens is named the conditional probability of A given B ． Mathematically，denote as $P(A \mid B)$ ．
－样本点
Sample Point：The outcomes that make up the sam－ ple space are called sample points．
－样本空间
Sample Space：A sample space is a set of distinct outcomes for an experiment or process，with the prop－ erty that in a single trial，one and only one of these outcomes occurs．

§2．2 第二章：随机变量与分布函数

Chapter Two：Random Variables and Dis－ tribution Functions

－边缘分布

Marginal Distribution：For the discrete case，the marginal distribution of bivariate random variables (X, Y) with the joint distribution $p_{i j}=P\{X=$ $\left.x_{i}, Y=y_{j}\right\}$ is defined as：

$$
P\left\{X=x_{i}\right\}=\sum_{j} p_{i j}, P\left\{Y=y_{j}\right\}=\sum_{i} p_{i j} .
$$

For the continuous case，the corresponding marginal distribution of (X, Y) with bivariate density $f(x, y)$ ，
then

$$
f_{X}(x)=\int f(x, y) d y, f_{Y}(y)=\int f(x, y) d y
$$

are called marginal distributions of variables X and Y ．

－泊松定理

Poisson Theorem：Let $\lambda>0$ and $n \in \mathbb{Z}_{+}$，then if $n p_{n}=\lambda$ ，we have

$$
\lim _{n \rightarrow \infty} C_{n}^{k} p_{n}^{k}\left(1-p_{n}\right)^{n-k}=\frac{\lambda^{k} e^{-\lambda}}{k!}
$$

for some $k \in \mathbb{N}$ ．This theorem is usually applied to approximate the probability of binomial random vari－ able X with large n and small p ．
－参数
Parameter：In mathematics，statistics，and the mathematical sciences，a parameter is a quantity that serves to relate functions and variables using a com－ mon variable when such a relationship would be dif－ ficult to explicate with an equation．For example，a binomial random variable，$X \sim \operatorname{Bin}(n, p)$ ，then n and p are parameters．

－二维均匀分布

Bivariate Uniform Distribution：Let D be a bounded field with area equal to A ，then a pair of random variables，(X, Y) ，are uniformly distributed in D if

$$
f(x, y)=\left\{\begin{array}{l}
\frac{1}{A},(x, y) \in D \\
0, \text { otherwise }
\end{array}\right.
$$

－二维正态分布
Bivariate Normal Distribution：If bivariate ran－ dom variables，(X, Y) ，have joint probability density function with the form of

$$
\begin{aligned}
f(x, y) & =\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\right. \\
& *\left[\frac{\left(x-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}-2 \rho \frac{\left(x-m u_{1}\right)\left(y-m u_{2}\right)}{\sigma_{1} \sigma_{2}}\right. \\
& \left.\left.+\frac{\left(y-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}\right]\right\},
\end{aligned}
$$

where $\sigma_{1}>0, \sigma_{2}>0,|\rho|<1$ ，then (X, Y) is follow－ ing bivariate normal distribution，denote as $(X, Y) \sim$ $N\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right)$ ．
－二项分布
Binomial Distribution：The discrete random vari－ able Y has a binomial distribution if its probability mass function is of the form

$$
f_{Y}(y)=\binom{n}{y} p^{y}(1-p)^{n-y},
$$

where $y=0,1, \ldots, n$ ，and p is another parameter with $0<p<1$ ．This model arises in connection with repeated independent trials，where each trial result－ s in either an outcome＂ S ＂（with probability p ）or
＂ F ＂（with probability $1-p$ ）．If Y equals the num－ ber of S outcomes in a sequence of n trials，it has the probability mass function given above．We write $Y \sim \operatorname{Bin}(n, p)$ ．
－反函数
Inverse Function：In mathematics，if？is a function from a set A to a set B，then an inverse function for f is a function from B to A ，with the property that a round trip（a composition）from A to B to A （or from B to A to B）returns each element of the initial set to itself．A function f that has an inverse is called invert－ ible；the inverse function is then uniquely determined by f and is denoted by f^{-1} ．
－概率分布列（分布列）
Probability Mass Function（pmf）：For a discrete random variable the probability mass function $f_{Y}(y)$ is defined as

$$
f_{Y}(y)=\operatorname{Pr}(Y=y), y \in \mathbb{R},
$$

where $\mathbb{R}=\left\{r_{1}, r_{2}, \ldots\right\}$ is the range of Y ．
－概率密度函数（密度函数，密度）
Probability Density Function（pdf）：For a contin－ uous random variable the probability density function is such that for any interval (a, b) contained in \mathbb{R} ，

$$
\operatorname{Pr}(a \leq Y \leq b)=\int_{a}^{b} f_{Y}(y) d y
$$

－高斯分布

Gaussian Distribution：The continuous random variable Y has a Gaussian distribution if its proba－ bility density function is of the form

$$
f(y)=\frac{1}{\sqrt{2 \pi \sigma}} \exp \left\{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}\right\}
$$

where $-\infty<y<\infty,-\infty<\mu<\infty$ and $\sigma>0$ ．We write $Y \sim G(\mu, \sigma)$ ．
－函数
Function：The mathematical concept of a function expresses the intuitive idea that one quantity（the ar－ gument of the function，also known as the input）com－ pletely determines another quantity（the value，or the output）．
－伽马分布
Gamma Distribution：The continuous random variable Y has a gamma distribution if its probability density function is of the form

$$
f(y)=y^{\alpha-1} \frac{e^{-x / \theta}}{\theta^{\alpha} \Gamma(\alpha)},
$$

where $\alpha, \beta>0$ ，and we write $Y \sim \operatorname{Gamma}(\alpha, \beta)$ ．

－几何分布

Geometric Distribution：For a discrete random variable Y ，it follows a geometric distribution if its density function takes the form of

$$
\operatorname{Pr}(Y=k)=(1-p)^{k-1} p,
$$

where $k \in \mathbb{N}$ ．

－积累概率分布函数（分布函数）

Cumulative Distribution Function（cdf）：The cu－ mulative distribution function is defined for a random variable Y as

$$
F_{Y}(y)=\operatorname{Pr}(Y \leq y) .
$$

If Y is discrete then $F_{Y}(y)=\sum_{x \leq y} f_{Y}(x)$ ；if Y is continuous then $F_{Y}(y)=\int_{x \leq y} f_{Y}(x) d x$ ．

－卷积

Convolution：In mathematics and，in particular， functional analysis，convolution is a mathematical op－ eration on two functions f and g ，producing a third function that is typically viewed as a modified version of one of the original functions．
－均匀分布
Uniform Distribution：For a continuous random variable Y has a uniform distribution on (a, b) if its probability density function is of form

$$
f(y)=\left\{\begin{array}{l}
\frac{1}{b-a}, x \in(a, b) \\
0, \text { otherwise }
\end{array} .\right.
$$

We write $X \sim U(a, b)$ ．

－联合分布函数

Joint Cumulative Distribution：Joint cumulative distribution is the cumulative density function in mul－ tivariate cases．

－连续型随机变量

Continuous Random Variable：The random vari－ able of a continuous distribution is called continuous random variable．

－离散型随机变量

Discrete Random Variable：The random variable of a discrete distribution is called discrete random variable

－帕斯卡分布

Negative Binomial Distribution：For a discrete random variable Y has a negative binomial distribu－ tion if its probability mass function takes the form of

$$
\operatorname{Pr}(Y=y)=\binom{r-1}{k-1} p^{r}(1-p)^{k-r}, r \in \mathbb{Z}_{+}
$$

where $k=r, r+1, \ldots$ and $0<p<1$ ．We write $Y \sim N B(p, k, r)$ ．When $r=1, \mathrm{Y}$ is following geo－ metric distribution．
－随机变量
Random Variable：A random variable is a function from the sample space of a random experiment to the real numbers．We use the notation that Y refers to the random variable，while y a particular realization， i．e．the result of a particular experiment．If have multiple independent experiments use y_{1}, \ldots, y_{n} as the realisations．Random variables are usually discrete or continuous．A discrete random variable Y is one for which the range R（set of possible values）of Y is countable．A continuous random variable is one whole range R consists of one or more continuous intervals of real numbers．
－条件分布
Conditional Distribution：For the discrete case，the conditional probability of event A given event B is de－ fined to be

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}
$$

In the continuous case the conditional density is given by

$$
f(x \mid Y=y)=\frac{f(x, y)}{f(y)}
$$

－严格单调函数
Strictly monotonic function：In mathematics，a monotonic function（or monotone function）is a func－ tion which preserves the given order．Moreover，given a pair of arbitrary numbers in the range $R, f(x) \neq$ $f(y)$ if $x \neq y$ ．
－严减函数
Strictly Decreasing Function：A function f de－ fined on a subset of the real numbers with real values is called strictly decreasing，if for all x and y such that $x<y$ one has $f(x)<f(y)$ ．

－严增函数

Strictly Increasing Function：A function f defined on a subset of the real numbers with real values is called strictly increasing，if for all x and y such that $x>y$ one has $f(x)>f(y)$ ．

－正态分布

Normal Distribution：The continuous random vari－ able Y has a Gaussian distribution if its probability density function is of the form

$$
f(y)=\frac{1}{\sqrt{2 \pi \sigma}} \exp \left\{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}\right\}
$$

where $-\infty<y<\infty,-\infty<\mu<\infty$ and $\sigma>0$ ．We write $Y \sim N\left(\mu, \sigma^{2}\right)$ ．
－指数分布
Exponential Distribution：The continuous random
variable Y has an exponential distribution if its prob－ ability density function is of the form

$$
f(y)=\frac{1}{\theta} e^{-y / \theta}
$$

where $\theta>0$ and $y>0$ ，and we write $Y \sim \operatorname{Exp}(\theta)$ ．

$\S 2.3$ 第三章：随机变量的数字特征

Chapter Three：Numerical Characteris－ tics of Random Variables

－变异系数

Coefficient of Variation：Coefficient of Variation of a random variable Y is defined as

$$
C V(Y)=\frac{\sqrt{\operatorname{Var}(Y)}}{E(Y)}, E(Y) \neq 0
$$

where $\operatorname{VAR}(Y)$ is the variance of Y and $E(Y)$ is the expectation of Y ．

－标准差

Standard Deviation：The standard deviation of a random variable Y is defined as

$$
S D(Y)=\sqrt{E\left([Y-E(Y)]^{2}\right)}
$$

Also，it is denoted as σ_{Y} or $\sigma(Y)$ ．
－常数
Constant：
－方差
Variance：The variance of a random variable Y is defined as

$$
\operatorname{Var}(Y)=E\left([X-E(X)]^{2}\right)
$$

－分位数
Quartile：Let $F(y)$ be the cumulative distribution function of a random variable Y ，we say x_{α} is $\alpha(0<$ $\alpha<1$ ）－th quartile of X if

$$
F\left(x_{\alpha}\right)=\alpha
$$

－加权平均
Weighted Average：An average in which each quan－ tity to be averaged is assigned a weight．These weight－ ings determine the relative importance of each quan－ tity on the average．Weightings are the equivalent of having that many like items with the same value in－ volved in the average．
－矩
Moments：Let $k \in \mathbb{Z}$ ，we say $E\left(Y^{k}\right)$ is the k－th mo－ ment of a random variable Y ．
－柯西－施瓦茨不等式
Cauchy－Schwarz Inequality：Assume the first and the second moments of random variables X, Y exist， then

$$
[E(X Y)]^{2} \leq E\left(X^{2}\right) E\left(Y^{2}\right)
$$

holds if and only if there is a real number C that $P(Y=C X)=1$ ．
－切比雪夫不等式
Chebyshev Inequality：For any random variable Y with $\operatorname{Var}(Y)<\infty$ ，we have

$$
P\{|Y-E(Y)| \geq \epsilon\} \leq \frac{\operatorname{Var}(Y)}{\epsilon^{2}}
$$

where ϵ is a positive number．

－期望向量

Expectation Vector：In bivariate case，we say $\binom{E(X)}{E(Y)}$ is the expectation vector for a random vector (X, Y) ．
－全期望公式
Double Expectation Formula：For all random variables X and Y ，we have

$$
E(X)=E(E(X \mid Y))
$$

If Y is discrete，the above formula can be expanded to

$$
E(X)=\sum_{y} E(X \mid Y=y) P(Y=y)
$$

If Y is continuous with density $f_{Y}(y)$ ，then

$$
E(X)=\int_{-\infty}^{\infty} E(X \mid Y=y) f_{Y}(y) d y
$$

－数学期望（均值）

Expectation（Mean）：The expectation for a random variable Y is defined as

$$
E(Y)=\left\{\begin{array}{l}
\sum_{y} y \operatorname{Pr}(Y=y), \text { for discrete case } \\
\int y f_{Y}(y) d y \text { for continuous case }
\end{array}\right.
$$

Moreover，the expectation of a function of Y is defined in a similar way．

－条件方差

Conditional Variance：Given $Y=y$ ，the condition－ al variance of a random variable X is defined as

$$
\operatorname{Var}(X \mid Y=y)=E\left[(X-E(X \mid Y=y))^{2} \mid Y=y\right]
$$

Also the condition variance can be calculated in an－ other way，that is

$$
\operatorname{Var}(X \mid Y=y)=E\left(X^{2} \mid Y=y\right)-(E(X \mid Y=y))^{2}
$$

－条件方差公式

Conditional Variance Formula：For all random variables X and Y ，we have the following relation

$$
\operatorname{Var}(X)=E[\operatorname{Var}(X \mid Y)]+\operatorname{Var}[E(X \mid Y)]
$$

－条件期望

Conditional Expectation：For discrete random variables X, Y ，given $Y=y$ the conditional expec－ tation of X is defined as

$$
E(X \mid Y=y)=\sum_{x} x P[X=x \mid Y=y]
$$

If X, Y both are continuous random variables，then the conditional expectation given $Y=y$ is defined as

$$
E(X \mid Y=y)=\int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) d y
$$

－无量纲

zero dimension：A quantity is non－dimension or di－ mensionless if it has no units．For example，the corre－ lation coefficient is dimensionless．

－相关系数

Correlation Coefficient：For random variable X, Y with $\operatorname{Var}(X)>0 \operatorname{and} \operatorname{Var}(Y)>0$ ，then

$$
\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

is the correlation coefficient of X and Y ，denoted as ρ or $\rho_{x y}$ ．
－协方差
Covariance：If random variables X and Y＇s variance exist，then the covariance of X and Y is defined as

$$
\operatorname{Cov}(X, Y)=E[(X-E(X))(Y-E(Y))]
$$

For the case $X=Y$ ，then $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$ ．In practise，the covariance is calculated by

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)
$$

－协方差矩阵
Covariance Matrix：For the multivariate case，we defined the covariance matrix in the form of

$$
\left[\begin{array}{ccc}
\operatorname{Cov}\left(X_{1}, X_{1}\right) & \ldots & \operatorname{Cov}\left(X_{1}, X_{n}\right) \\
\ldots & \ldots & \ldots \\
\operatorname{Cov}\left(X_{n}, X_{1}\right) & \ldots & \operatorname{Cov}\left(X_{n}, X_{n}\right)
\end{array}\right]
$$

－众数
Mode：Let X be a random variable，then the $\bmod (X)$ denotes that x makes corresponding probability mass function or probability density function reaches the maximum value．

－中位数

Median：Median essentially is the 50 percent quar－ tile．

$\S 2.4$ 第四章：大数定律与中心极限定理

Chapter Four：Law of Large Numbers and Central Limit Theorem
－伯努利大数定理
Bernoulli＇s Law of Large Numbers：In case of Bernoulli distribution，f_{A} is the frequency of occur－ rences of event A in n －times independent experiments， p is the probability of event A in each trial，then for any positive number $\epsilon>0$ ，we have

$$
\lim _{n \rightarrow \infty} P\left\{\left|f_{A} / n-p\right|<\epsilon\right\}=1 .
$$

Bernoulli＇s Law of Large Numbers is a special case of Khinchine＇s Law of Large Numbers．

－大数定理

Law of Large Numbers：In probability theory，the law of large numbers（LLN）is a theorem that de－ scribes the result of performing the same experiment a large number of times．According to the law，the average of the results obtained from a large number of trials should be close to the expected value，and will tend to become closer as more trials are performed． There are several expressions to formularies LLN，a－ mong which two most common ways are Khinchine＇s Law of Large Numbers and Bernoulli＇s Law of Large Numbers．

－德莫弗－拉普拉斯中心极限定理

De Moivre－Laplace＇s Central Limit Theorem： Let $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ be a sequence of i．i．d random variables and $X_{i} \sim \operatorname{Bin}(1, p)$ for all $i \leq n$ ，then for any $x,-\infty<x<\infty$ ，we have

$$
\lim _{n \rightarrow \infty} P\left(\frac{\sum_{i} X_{i}-n p}{\sqrt{n p(1-p)}} \leq x\right)=\Phi(x)
$$

where $\Phi($.$) is the cumulative density function of stan－$ dard normal distribution．
－独立同分布
Independent Identical Distributed（I．I．D．）：We say a sequence of random variables are independen－ t identical distributed（i．i．d．）if each random variable has the same probability distribution as the others and all are mutually independent．
－独立同分布情况下的中心极限定理
Central Limit Theorem for i．i．d Random Vari－ ables：Let $\left\{X_{1}, X_{2}, \ldots\right\}$ be a sequence of i．i．d ran－ dom variables and $E\left(X_{i}\right)=\mu, \operatorname{Var}\left(X_{i}\right)=\sigma^{2}>0$ ，for $i=1,2, \ldots$ ，then for any $x,-\infty<x<\infty$ ，we have

$$
\lim _{x \rightarrow \infty} P\left(\frac{\sum_{i} X_{i}-n \mu}{\sqrt{n} \sigma} \leq x\right)=\Phi(x)
$$

where $\Phi($.$) is the cumulative distribution function of$ $N(0,1)$ ．This central limit theorem is also known as Lindberg－Levy＇s Central Limit Theorem．
－极限
Limits：In mathematics，the concept of a＂limit＂is used to describe the value that a function or sequence ＂approaches＂as the input or index approaches some value．
－林德泊格－列维中心极限定理
Lindberg－Levy＇s Central Limit Theorem：See独立同分布情况下的中心极限定理（Central Limit The－ orem for i．i．d Random Variables）．

－蒙特卡洛方法

Monte Carlo Methods：Monte Carlo methods are a class of computational algorithms that rely on re－ peated random sampling to compute their results．

－辛钦大数定理

Khinchine＇s Law of Large Numbers：A sequence of i．i．d random variables $\left\{X_{1}, X_{2}, \ldots\right\}$ have expectation of $E\left(X_{k}\right)=\mu, k=1,2, \ldots$ ，then for any $\epsilon>0$ we have

$$
\lim _{n \rightarrow \infty}\left\{\left|\frac{1}{n} \sum_{k} X_{k}-\mu\right|<\epsilon\right\}=1
$$

－算数平均值

Arithmetic Average：The arithmetic average of a sequence of numbers，$\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\}$ ，is defined as

$$
\frac{\sum_{i=1}^{n} x_{i}}{n}
$$

－中心极限定理

Central Limit Theorem：The term central limit theorem is a generic name used to designate any the－ orem that asserts that the sums of large numbers of random variables，after standardization（i．i，subtrac－ tion of the mean and division by standard deviation）， have approximately a standard normal distribution．

§2．5 第五章：统计量及其分布

Chapter Five：Statistical Quantities and Corresponding Distributions
－0－1分布
0－1 Distribution：Refers to 伯努利分布（Bernoulli Distribution）．
－抽样分布
Sampling Distribution：The distribution of a s－ tatistic is called a sampling distribution．
－次序统计量
Order Statistic：In statistics，the k－th order statistic of a sample is equal to its k－th smallest value．
－峰态
Kurtosis：In probability theory and statistics，kur－ tosis is a measure of the＂peakedness＂of the prob－ ability distribution of a real－valued random variable，
although some sources are insistent that heavy tails， and not peakedness，is what is really being measured by kurtosis．
－个体
Unit：A population consists of units．
－简单随机抽样
Simple Random Sampling：If elements in a ran－ dom sample is independently and identically distribut－ ed，the we say such sampling process the simple ran－ dom sampling．The sample is called i．i．d sample．
－渐进分布
Asymptotic Distribution：In mathematics and s－ tatistics，an asymptotic distribution is a hypothetical distribution that is in s sense the＂limiting＂distribu－ tion of a sequence of distributions．

－阶梯函数

Step Function：In mathematics，a function on the real numbers is called a step function if it can be writ－ ten as a finite linear combination of indicator functions of intervals．

－经验分布函数

Empirical Distribution Function：Let $\left\{X_{1}, \ldots, X_{n}\right\}$ be i．i．d real random variables with the common cdf $F(t)$ ．Then the empirical distribution function is defined as

$$
\hat{F}_{n}(t)=\frac{\text { number of elements in the sample } \leq t}{n} .
$$

－偏态
Skewness：In probability theory and statistics，skew－ ness is a measure of the asymmetry of the probability distribution of a real－valued random variable．The skewness value can be positive or negative，or even undefined．Qualitatively，a negative skew indicates that the tail on the left side of the probability density function is longer that the right side and the bulk of the values（including the median）lie to the right of the mean．
－频率
Relative Frequency：Relative frequency of an even－ t is the normalized ratio of frequency over the total number of events occurred in the experiment or the study．

－频数

Frequency：In statistics the frequency of an event is the number of times the event occurred in the exper－ iment or the study．

－统计量

Statistic：A statistic，$T=T(X)=T\left(X_{1}, \ldots, X_{n}\right)$ ， is a function of the data which does not depend on
any unknown parameter（s）．For example，suppose $\left\{X 1, \ldots, X_{n}\right\}$ is a random sample from a distribution． Then the sample mean \bar{X} and the sample variance S^{2} are statistics．

－样本

Sample：The sample is the set of units actually se－ lected in the investigation．

－样本方差和标准差

Sample Variance and Standard Deviation：If the sample data is $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ then the sample vari－ ance is given by

$$
\sigma_{n-1}^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1} .
$$

The sample deviation is defined as $\sigma_{n-1}=\sqrt{\sigma_{n-1}^{2}}$ ．

－样本极差

Sample Range：Give a sample data，the range of the sample is defined as the maximum value－minimum value in the data．

－样本四分位差

Sample Interquartile Range：Let $Q 1, Q 3$ be the 25 －th and 75 －th quartiles of a sample data according－ ly．The difference $Q_{3}-Q_{1}$ is called the interquartile range．

－样本均值

Sample Mean：Given a sample data $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ ， the sample mean is defined by

$$
\bar{X}=\frac{\sum_{i=1}^{n} x_{i}}{n} .
$$

－样本容量

Sample Size：The number of units in the sample is called the sample size．

－样本众数

Sample Mode：Given a sample data $\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$ ， the sample mode is the x_{i} with the highest frequency．

－样本中位数

Sample Median：Given a sample data $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ ，the sample median is x such that

$$
\text { numberof } x_{i}<x=\text { numberof } x_{i}>x .
$$

－正交矩阵

Orthogonal Matrix：Let M be a n by n matrix，we say M is an orthogonal matrix if

$$
M^{T} M=I,
$$

where I is an identity matrix．

－总体

Population：In statistics，population is a set of units in investigation．

§2．6 第六章：参数估计

Chapter Six：Parameter Estimation

－参数估计

Parameter Estimation：In statistics，parameter es－ timation is the process that sample statistics are em－ ployed to estimate the population parameters．It in－ cludes point estimation and interval estimation．
－点估计
Point Estimation：In statistics，point estimation in－ volves the use of sample data to calculate a single val－ ue（known as a statistic）which is to serve as a＂best guess＂for an unknown（fixed or random）population parameter．

－极大似然估计

Maximum Likelihood Estimation：Maximum likelihood estimation（MLE）is a popular statistical method used for fitting a statistical model to data， and providing estimates for the model＇s parameters． To use the method of maximum likelihood，one first specifies the joint density function or joint probability mass function for all observations．For example，in continuous case，we have

$$
L(\theta)=f\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n} \mid \theta\right),
$$

where θ is a set of unknown parameters for a given dis－ tribution $f($.$) ，and \left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is the set of sample data．Moreover，$L(\theta)$ is called the likelihood function． The maximum likelihood function estimates for $\theta, \hat{\theta}$ ， is a set of values that maximize $L(\theta)$ ．
－似然函数
Likelihood Function：In statistics，likelihood func－ tion for a specific distribution is the joint distribution of a sample data given unknown parameters．For more details，please see 极大似然估计（Maximum Likelihood Estimation）．

－矩估计

Moment Estimation：In statistics，the method of moments is a method of estimation of population pa－ rameters such as mean，variance，median，etc．by e－ quating sample moments with unobservable popula－ tion moments and then solving those equations for the quantities to be estimated．
For example，suppose $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ is a sample from an exponentially distributed population，$f(x)=$ $\frac{1}{\theta} e^{-x / \theta}, x>0$ ，then the moment estimate of unknown parameter is

$$
\begin{aligned}
\hat{\theta} & =E(X)=\hat{\mu}=\bar{X} \\
& =\frac{X_{1}+X_{2}+\ldots+X_{n}}{n} .
\end{aligned}
$$

－均方误差

Mean Square Error：The mean square error（MSE） of parameter estimator $\hat{\theta}$ with respect to the estimated parameter θ is defined as

$$
\operatorname{MSE}(\hat{\theta})=E\left[(\hat{\theta}-\theta)^{2}\right]=\operatorname{Var}(\hat{\theta})+\operatorname{bias}^{2}(\hat{\theta}) .
$$

－偏差平方

Square of Bias：Suppose an unknown parameter θ of a certain distribution has an estimator $\hat{\theta}$ ，then the square of bias of $\hat{\theta}$ is defined as

$$
\operatorname{bias}^{2}(\hat{\theta})=E[E(\hat{\theta}-\theta)]^{2}=[E(\hat{\theta})-\theta]^{2}
$$

－区间估计

Interval Estimation：In statistics，interval estima－ tion is the use of sample data to calculate an interval of possible values of an unknown population parame－ ter．Suppose θ is a parameter of a population with its parameter space Θ ，and $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ is a random sample，then for a given $\alpha(0<\alpha<1)$ ，we have two statistics $\hat{\theta}_{L}$ and $\hat{\theta}_{U}$ such that

$$
P\left(\hat{\theta}_{L} \leq \theta \leq \hat{\theta}_{U}\right) \geq 1-\alpha, \text { for all } \theta \in \Theta
$$

Then we call $\left(\hat{\theta}_{L}, \hat{\theta}_{U}\right)$ is the confidence interval for a confidence level $1-\alpha$ ，where $\hat{\theta}_{L}$ is called the lower bound and $\hat{\theta}_{U}$ ）is called the upper bound of the con－ fidence interval．
－无偏估计
Unbiased Estimation：Let $\hat{\theta}$ is an estimator of the parameter θ ，if

$$
E(\hat{\theta})=\theta, \text { for } \operatorname{all} \theta \in \Theta
$$

where Θ is the parameter space．Then $\hat{\theta}$ is a unbiased estimator of θ ．

－置信区间

Confidence Interval：For detail，please see 区间估计（interval estimation）．
－置信上限
Upper Bound of Confidence Interval：For detail， please see 区间估计（interval estimation）．
－置信水平
Confidence Level：For detail，please see 区间估计（interval estimation）．

－置信下限

Lower Bound of Confidence Interval：For detail， please see 区间估计（interval estimation）．

$\S 2.7$ 第七章：假设检验

Chapter Seven：Hypothesis Testing

－单边检验

One－sided Test：A hypothesis testing with null hy－ pothesis in form of $\theta \leq h$ or $\theta \geq h$ is a one－sided test．

－备择假设

Alternative Hypothesis：The complementary hy－ pothesis to null hypothesis is called alternative hy－ pothesis，denoted as H_{1} ．

－检验统计量

Test Statistic：In hypothesis testing，a hypothesis is typically specified in terms of a test statistic，which is a function of the sample；it is considered as a numeri－ cal summary of a set of data that reduces the data to one or a small number of values that can be used to perform a hypothesis test．
－假设
Hypothesis：In hypothesis testing，a hypothesis is a statement that θ belongs to Θ_{0} and the statement that θ does not belong to Θ_{0} are called hypothesis， where θ is a random variable of a model＇s parameter and θ belongs to some special subset Θ_{0} ．For exam－ ple，suppose μ is a parameter of normal distribution $N\left(\mu, \sigma^{2}\right)$ ，then the statement $\mu=1$ or $\mu>4$ are both hypotheses．

－假设检验

Hypothesis Testing：A hypothesis test is the use of statistics to determine the probability that a given hypothesis is true．The usual process of hypothesis testing consist of four steps．

1．Formulate the null hypothesis $\left(H_{0}\right)$ and the al－ ternative hypothesis $\left(H_{1}\right)$ ．

2．Identify the test statistic．
3．Compute the p－value，which is the probability that a test statistic at least as significant as the one observed would be obtained assuming the null hypothesis is true．The small the p－value， the stronger evidence against the null hypothe－ sis．

4．Compare p－value to a pre－determined significant level．If $p<\alpha$ ，the null hypothesis is rejected．

－接受域

Non－critical Region：In hypothesis testing，the non－critical region is a complementary region to the critical region．
－拒绝域
Critical Region：In hypothesis testing，if the p－value corresponding to the test statistic falls into the critical region，the null hypothesis is rejected．
－临界值
Critical Value：In hypothesis testing，a critical value is the edge value between the critical region and the non－critical region．
－拟合优度检验
Chi－square Goodness of Fit Test：A test of good－ ness of fit establishes whether or not an observed fre－ quency distribution differs from a theoretical distribu－ tion．The test statistic is followed chi－square distribu－ tion．

－双边检验

Two－sided Test：In hypothesis testing，a test with null hypothesis in form of $\theta=h$ is a two－sided test．

－显著性水平

Significance Level：In hypothesis testing，the amount of evidence required to accept that an even－ t is unlikely to have arisen by chance is known as the significance level．The significance level is pre－ determined，and usually denoted as α ．

－原假设

Null Hypothesis：In hypothesis testing，a hypothe－ sis with equal signs is a null hypothesis．For example， suppose θ is the parameter of exponential distribution $\operatorname{Exp}(\theta)$ ，then following statements，$\theta=0.5, \theta \leq 3$ ，and $\theta \geq 6$ ，are all null hypothesis，while $\theta \neq 0.5, \theta<3$ ，and $\theta>6$ are not null hypothesis．Usually，null hypothesis is written as H_{0} ．
－自由度
Degrees of Freedom：In statistics，the number of degrees of freedom is the number of values in the final calculation of a statistic that are to vary．

$\S 2.8$ 第八章：常用统计方法

Chapter Eight：Common Statistical Analysis Method

－回归分析

Regression Analysis：In statistic，regression analy－ sis includes any techniques for modeling and analyzing several variables，when the focus is on the relationship between a dependent variable and one or more inde－ pendent variables．

－回归模型

Regression Model：In regression analysis，regres－ sion models involve the following variables：

1．The unknown parameters denoted as $\beta 1$ this may be a scalar or a vector．

2．The independent variables，X ．
3．the dependent variable，Y ．
A regression model relates Y to a function of X and β

$$
Y \approx f(X, \beta)
$$

The approximation is usually formalized as

$$
E(Y \mid X)=f(X, \beta)
$$

－回归平方和
Sum Square of Regression（SSR）：In regression analysis，let $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ be a sample of the response random variable，then $\hat{y}_{i}(i=1, \ldots, n)$ is the fitted val－ ue by the regression model and \bar{y} is the sample mean． The sum square of regression（SSR）is defined as

$$
S S R=\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2} .
$$

－回归预测

Regression Forecasting：

－模型拟合值

Fitted Value：In regression analysis，the regression model is in form of $Y=f(X, \beta)$ ，where X and Y are explanatory variable and response variable according－ ly ，and β is a set of parameters．Then estimates of regression parameters β are essentially a function of observed values，i．e．，$\hat{\beta}=g(X, Y)$ ．The fitted values of Y is defined as

$$
\hat{Y}=f(X, \hat{\beta}) .
$$

－偏差

Residual：In regression analysis，residuals of the model is defined as

$$
R=Y-\hat{Y}
$$

where Y and \hat{Y} are a sample of response variable and corresponding fitted values．

－误差平方和

Sum Square of Error（SSE）：In regression analysis， let $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ be a sample of the response random variable，then $\hat{y}_{i}(i=1, \ldots, n)$ is the fitted value by the regression model．The sum square of Error（SSE）is defined as

$$
S S E=\sum_{i=1}^{n}\left(y_{i}-\hat{y_{i}}\right)^{2} .
$$

－线性回归
Linear Regression：In statistic，linear regression is an approach to modeling the relationship between a scalar variable y and one or more variables denoted X ． In linear regression，data is modeled using linear func－ tions，and unknown model parameters are estimated from the data．A generalized linear regression model is in form of

$$
Y \sim \beta_{0}+\sum_{i=1}^{n} \beta_{i} X_{i} .
$$

－因变量

Response Variable：Also known as the dependent variable．
－一元回归
Simple Regression：In linear regression，the simple regression model is defined as

$$
Y \sim \alpha+\beta X
$$

－自变量

Explanatory Variable：Also known as the indepen－ dent variable．
－总平方和
Sum Square of Total（SST）：In regression analysis， let $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ be a sample of the response random variable，then \bar{y} is the sample mean．The sum square of Error（SST）is defined as

$$
S S E=\sum_{i=1}^{n}\left(y_{i}-\overline{y_{i}}\right)^{2} .
$$

－最小二乘估计

Least Squares Estimation：In regression analysis， the least squares methods finds the regression model parameters β minimize sum of the squared residuals

$$
S=\sum_{i} r_{i}^{2} .
$$

The estimates of parameters using the least squares method is called the least squares estimates．

$\S 2.9$ 第九章：时间序列分析

Chapter Nine：Time Series Analysis

－AIC准则

AIC Criterion：The Akaike information criterion （AIC）is a measure of the goodness of fit a statisti－ cal model．It was developed by Hirotsugu Akaike．In general case，the AIC is

$$
A I C=2 k-2 \ln (L),
$$

where k is the number of parameters in the statistical model，and L is the maximized value of the likelihood function for the estimated model．

－求和自回归移动模型（ARIMA）

Autoregressive Integrated Moving Average Model：In statistics and econometrics，and in partic－ ular in time series analysis，an autoregressive integrat－ ed moving average（ARIMA）model is a generalization of an autoregressive moving average（ARMA）model with non－stationarity added．

－自回归模型（AR）

Autoregressive Model：In statistics，an autoregres－ sive（AR）model is a type of random process which is often used to predict various types of natural and so－ cial phenomena．The notation $A R(p)$ refers to the autoregressive model of order p ．The $A R(p)$ model is defined as

$$
X_{t}=c+\sum_{i=1}^{p} \varphi_{i} X_{t-i}+\epsilon_{t}
$$

where $\varphi_{1}, \ldots, \varphi_{p}$ are the parameters of the model，c is a constant and ϵ is the white noise．

－白噪音

White Noise：A random vector W is a white noise vector if and only if its mean vector and autocorrela－ tion matrix are the following：

$$
\begin{aligned}
\mu_{w} & =E(w)=0 \\
R_{w w} & =E\left(w w^{T}\right)=\sigma^{2} I
\end{aligned}
$$

where I is the identity matrix．
－残差平方和
Sum Squares of Residual Errors：In time series study，the sum squares of residual errors is defined as

$$
\sum_{i=1}^{n} \epsilon_{t}^{2}
$$

where ϵ_{t} is the residual error at Time t ．

－残差项

Residual Errors：In ARIMA process，let $\tilde{\beta}$ be the set of parameters and $F_{t}(\tilde{\beta})$ be the fitted value at Time t using ARIMA model．Then the residual error at Time t is defined as

$$
\epsilon_{t}=x_{t}-F_{t}(\tilde{\beta})
$$

where x_{t} is the observed value at Time t ．

－复根

Complex Roots

－LB检验统计量

Ljung－Box Test Statistic：The Ljung－Box test is a type of statistical test of whether any of a group of autocorrelations of a time series are different from ze－ ro．Instead of testing randomness at each distinct lag， it tests the＂overall＂randomness based on a number of lags，and is therefore a portmanteau test． The hypothesis can be defined as follows：
－H_{0} ：The data is random．
$-H_{1}$ ：The data is not random．
The test statistic is

$$
Q=n(n+2) \sum_{k=1}^{h} \frac{\hat{\rho}_{k}^{2}}{n-k}
$$

where n is the sample size，$\hat{\rho}_{k}$ is the sample autocor－ relation at lag k ，and h is the number of lags being tested．

－移动平均模型（MA）

Moving Average Model（MA）：In time series anal－ ysis，the moving average（MA）model is a common approach for modeling univariate time series model－ s．The notation $M A(q)$ refers to the moving average model of order q ．

$$
X_{t}=\mu+\epsilon_{t}+\theta_{1} \epsilon_{t-1}+\theta_{q} \epsilon_{t-q}
$$

where μ is the mean of the series，the $\theta_{1}, \ldots, \theta_{q}$ are pa－ rameters of the model，and $\epsilon_{t}, \epsilon_{t-1}, \ldots$ are white noise terms．

－拟和模型

Fitted Model

－平稳时间序列
Stationary Time Series：For a series of random variables $\left\{X_{t}\right\}$ ，if it satisfies following three condition－ s ，then $\left\{X_{t}\right\}$ is stationary．

1．For any $t \in T, E\left(X_{t}\right)=\mu$ ，where μ is a constant；
2．For any $t \in T, E\left(X_{t}^{2}\right)<\infty$ ；
3．For any $t, s, k \in T$ ，and $k+s-t \in T, \gamma(t, s)=$ $\gamma(k, k+s-t)$ ，where $\gamma(t, s)$ is the autocovariance function of $\left\{X_{t}\right\}$ ．

If the series does not satisfy any above condition，it is the non－stationary time series．

－SBC准则

SBC Criteria：In statistic，the Baysian information criterion（BIC）is a criterion for model selection among a class of parametric models with different numbers of parameters．The formula for the BIC is

$$
-2 \cdot \ln (L)+k \ln (n)
$$

where L is the maximized value of the likelihood func－ tion for the estimated model，k is the number of pa－ rameters to be estimated，and n is the number of ob－ servations．
－实根

Real Roots

－时间序列
Time Series：In statistics，a sequence of random vari－ ables in time order

$$
\ldots, X_{1}, X_{2}, \ldots, X_{t}, \ldots
$$

are called the time series of a random event，denoted as $\left\{X_{t}, t \in T\right\}$ or $\left\{X_{t}\right\}$ ．

－随机游走

Random Walk：In ARIMA process，ARIMA（ $0,1,0)$ model is formulated as

$$
\left\{\begin{array}{l}
x_{t}=x_{t-1}+\epsilon_{t} \\
E\left(\epsilon_{t}\right)=0, \operatorname{Var}\left(\epsilon_{t}\right)=\sigma_{\epsilon}^{2}, E\left(\epsilon_{t} \epsilon_{s}\right)=0, s \neq t \\
E\left(x_{t} \epsilon_{t}\right)=0, \text { for all } s<t
\end{array}\right.
$$

This model is also called Random Walk model．

－自相关系数

Autocorrelation Coefficient：Refer to 自协方差函数（Autocovariance）．

－自协方差函数

Autocovariance Function：Given a stationary time series $\left\{X_{t}, t \in T\right\}$ ，for any $t, t+k \in T$ ，the autocovari－ ance function with Lag $k, \gamma(k)$ ，is defined as

$$
\gamma(k)=\gamma(t, t+k)
$$

Also we can extend autocovariance function to the concept of autocorrelation coefficient，which takes the form of

$$
\rho_{k}=\frac{\gamma(k)}{\gamma(0)}
$$

－偏自相关系数
Partial Correlation Coefficient：In time series s－ tudy，the partial correlation coefficient with lag k is defined as

$$
\rho_{x_{t}, x_{t-k}}=\frac{E\left[\left(x_{t}-\hat{E x_{t}}\right)\left(x_{t-k}-E \hat{x_{t-k}}\right)\right]}{E\left[\left(x_{t-k}-E \hat{x_{t-k}}\right.\right.},
$$

where $\hat{E x_{t}}=E\left[x_{t} \mid x_{t-1}, \ldots, x_{t-k+1}\right]$ ，and $E \hat{x_{t-k}}=$ $E\left[x_{t-k} \mid x_{t-1}, \ldots, x_{t-k+1}\right]$ ．
－余弦
Cosine
－正弦
Sine
－指数平滑
Exponential Smoothing：Exponential smoothing is a technique that can be applied to time series data． When the sequence of observations $\left\{x_{0}, x_{1}, \ldots,\right\}$ be－ gins at time $t=0$ ，the simplest form of exponential smoothing is given by the formulas

$$
\begin{aligned}
s_{1} & =x_{0} \\
s_{t} & =\alpha x_{t-1}+(1-\alpha) s_{t-1}, t>1
\end{aligned}
$$

where α is the smoothing factor，and $0<\alpha<1$ ．

－自回归移动平均模型（ARMA）

Auto Regression Moving Average Model（AR－ MA）：In time series study，autoregressive moving av－ erage models are typically applied to autocorrelated time series data．The notation $\operatorname{ARMA}(p, q)$ refers to the model with p autoregressive terms and q moving average terms．This model contains the $A R(p)$ and $M A(q)$ models，

$$
X_{t}=c+\epsilon_{t}+\sum_{i=1}^{p} \varphi_{i} X_{t-i}+\sum_{i=1}^{q} \theta_{i} \epsilon_{t-i}
$$

where ϵ_{t} is a white noise．

§2．10 第十章：随机过程的基本概念和基本类型 Chapter Ten：Fundamental Concepts and Classification of Stochastic Process－ es

－布朗运动
Brownian Motion：In mathematics，Brownian mo－
tion is described by the Wiener process，a continuous－ time stochastic process．The Brownian motion B_{t} us characterized by three facts：

1．$B_{0}=0$
2．B_{t} is almost surely continuous
3．B_{t} has independent increment with distribution $W_{t}-W_{s} \sim N(0, t-s)$ for $0 \leq s \leq t$.

－点过程

Counting Process：Counting process is a stochastic process $\{N(t)\}_{t \geq 0}$ that possesses the following prop－ erties：

1．$N(t) \geq 0$
2．$N(t)$ is an integer
3．if $s \leq t$ ，then $N(s) \leq N(t)$ ．
Poisson process is an example of counting process．
－独立增量过程
Independent Increment Process
－更新过程
Renewal Process：Let R_{1}, R_{2}, \ldots be a sequence of positive i．i．d random variables such that

$$
0<E\left[S_{i}\right]<\infty
$$

We refer to the random variable S_{i} as the＂i－th＂hold－ ing time．Define for each $n>0$ ：

$$
J_{n}=\sum_{i=1}^{n} S_{i}
$$

each J_{n} referred to as the＂n－th＂jump time and the in－ tervals $\left[J_{n}, J_{n+1}\right]$ being called renewal intervals．Then the random variable $\left\{X_{t}\right\}_{t \geq 0}$ given by

$$
X_{t}=\sum_{n=1}^{\infty} 1_{\left\{J_{n} \leq t\right\}}=\sup \left\{n: J_{n} \leq t\right\}
$$

is called a renewal process．

－宽平稳过程

Weak Stationary Process：A continuous－time ran－ dom process X_{t} which is weak stationary process has the following restrictions on its mean function

$$
E X_{t}=m_{x}(t)=m_{x}(t+\tau), \text { for all } \tau \in \mathbb{R}
$$

and autocorrelation function

$$
\begin{aligned}
E\left[X_{t_{1}} X_{t_{2}}\right] & =R_{x}\left(t_{1}, t_{2}\right)=R_{x}\left(t_{1}+\tau, t_{2}+\tau\right) \\
& =R_{x}\left(t_{1}-t_{2}, 0\right) \text { for all } \tau \in \mathbb{R} .
\end{aligned}
$$

－马尔可夫过程
Markov Process：Let $\left\{X_{t}\right\}_{t \geq 0}$ be a set of stochastic random variables，then the process is called Markov process if the condition

$$
\begin{aligned}
\operatorname{Pr}\left[X_{t}\right. & \left.=x_{t} \mid X_{s}=x_{s}, X_{p_{1}}=x_{p_{1}}, X_{p_{2}}=x_{p_{2}}, \ldots\right] \\
& =\operatorname{Pr}\left[X_{t}=x_{t} \mid X_{s}=x_{s}\right]
\end{aligned}
$$

holds for all $t>s>p_{1}>p_{2}>\ldots$
－随机过程
Random Process：In probability theory，a stochas－ tic process，or sometimes random process，is the coun－ terpart to a deterministic process（or deterministic system）．Instead of dealing with only one possible reality of how the process might evolve under time，in a stochastic or random process there is some indeter－ minacy in its future evolution described by probability distributions．This means that even if the initial con－ dition（or starting point）is known，there are many possibilities the process might go to，but some paths may be more probable and others less so．

－随机游动

Random Walks：In stochastic process，the random walk is the most elementary process．Let $\left\{X_{t}\right\}$ be a time series of mutually independent random variables， then the process is called random walks if

$$
S_{t}=X_{1}+X_{2}+\ldots+X_{t} .
$$

－鞅
Martingale：A discrete－time martingale is a discrete－ time stochastic process $\left\{X_{t}\right\}_{t \geq 0}$ that satisfies for all n

$$
E\left(X_{n+1} \mid X_{1}, X_{2}, \ldots, X_{n}\right)=X_{n}
$$

And a continuous－time martingale is a stochastic pro－ cess such that for all t

$$
E\left(X_{t} \mid\left\{X_{\tau}, \tau<s\right\}\right)=X_{s}, \text { for all } s<t
$$

－严平稳过程

Strong Stationary Process：In the mathematical sciences，a stationary process（or strong stationary process）is a stochastic process whose joint probabil－ ity distribution does not change when shifted in time or space．Formally，let $\left\{X_{t}\right\}$ be a stochastic process and let $F_{X}\left(x_{t_{1}+\tau}, \ldots, x_{t_{k}+\tau}\right)$ represent the cumulative distribution function of joint distribution of $\left\{X_{t}\right\}$ at times $t_{1}+\tau, \ldots, t_{k}+\tau$ ．Then $\left\{X_{t}\right\}$ is a strong stationary process if for all k, τ and t_{i} ，

$$
F_{X}\left(x_{t_{1}+\tau}, \ldots, x_{t_{k}+\tau}\right)=F_{X}\left(t_{1}, \ldots, t_{k}\right) .
$$

So $F_{X}($.$) is not a function of time．$

§2．11 第十一章：几种常用的随机过程

Chapter Eleven：Several Widely－used S－ tochastic Process
－泊松过程
Poisson Process：Poisson process is a continuous－ time counting process $\left\{N_{t}\right\}_{t \geq 0}$ that possesses the fol－ lowing properties：
－$N_{0}=0$
－Independent increments（the numbers of occur－ rences counted in disjoint intervals are indepen－ dent from each other）
－Stationary increments（the probability distribu－ tion of the number of occurrences counted in any time interval only depends on the length of the interval）
－No counted occurrences are simultaneous．
Poisson process includes homogeneous Poisson pro－ cess，non－homogeneous Poisson process，compound Poisson process，and conditional Poisson process．

－布朗桥

Brownian Bridge：Brownian bridge is a continuous－ time stochastic process built on Brownian motion． Suppose $\left\{B_{t}\right\}_{t \geq 0}$ is a Brownian motion，let

$$
B_{t}^{*}=B_{t}-t B_{1}, 0 \leq t \leq 1,
$$

then $\left\{B_{t}^{*}\right\}_{0 \leq t \leq 1}$ is called Brownian bridge．
－常返态
Recurrent State：If a state i is not transient，then it is said to be recurrent．

－Chapman－Kolmogorov 方程

Chapman－Kolmogorov Equation：Let $P_{a b}^{(c)}$ be c－ step transition probability from State a to State b ， then Chapman－Kolmogorov equation is defined as
1．$P_{i j}^{(m+n)}=\sum_{k \in S} P_{i k}^{(m)} P_{k j}^{(n)}$ ；
2．$P^{(n)}=P \cdot P^{(n-1)}=P \cdot P \cdot P^{(n-2)}=\ldots=P^{n}$ ，
for all $n, m \geq 0, i, j \in S$ ，where S is the set of states．

－非齐次泊松过程

Non－homogenous Poisson Process：In Poisson process，if the rate parameter for event arriving may change over time，we call such a Poisson process non－ homogeneous Poisson process．
－复合泊松过程
Compound Poisson Process：A compound Poisson process with rate $\lambda>0$ and jump size distribution G is a continuous－time stochastic process $\left\{Y_{t}\right\}_{t \geq 0}$ given by

$$
Y_{t}=\sum_{i=1}^{N_{t}} X_{i}
$$

where $\left\{N_{t}\right\}_{t \geq 0}$ is a Poisson process with rate λ ，and $\left\{X_{i}\right\}_{i \geq 1}$ are i．i．d random variables with distribution function G ，which are also independent of $\left\{N_{t}\right\}_{t \geq 0}$ ．

－高斯过程

Gaussian Process：In probability theory and statis－ tics，a Gaussian process is a stochastic process whose realizations consist of random values associated with every point in a range of times such that random vari－ ables has a normal distribution．

－更新方程

Renewal Equation：The renewal equation satisfies

$$
K(t)=H(t)+\int_{0}^{t} k(t-s) d F(s)
$$

where $H(t)$ and $F(t)$ are known，and $H(t), F(t)$ equal 0 if and only if $t<0$ ．

－更新回报过程

Renewal－reward Process：Let W_{1}, W_{2}, \ldots be a se－ quence of i．i．d random variables satisfying

$$
E\left|W_{i}\right|<\infty
$$

Then the random variable

$$
Y_{t}=\sum_{i=1}^{X_{t}} W_{i}
$$

is called a renewal－reward process．Note each W_{i} may take negative values as well as positive values．
－马尔可夫链
Markov Chain：A Markov chain is a sequence of ran－ dom variable $X_{1}, X_{2}, X_{3}, \ldots$ with the Markov property， namely that，given the present state，the future and past states are independent．Formally，

$$
\begin{aligned}
& \operatorname{Pr}\left(X_{n+1}=x \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right) \\
= & \operatorname{Pr}\left(X_{n+1} \mid X_{n}=x_{n}\right) .
\end{aligned}
$$

－时齐马尔可夫链

Homogeneous Markov Chain：If the transition probability of a Markov chain $P\left\{X_{n+1}=j \mid X_{n}=i\right\}$ only relates to State i, j not n ，then we call such a Markov chain the homogeneous Markov chain．
－瞬态
Transient State：A state i is said to be transien－ t if，given that we start in state i ，there is non－zero probability that we will never return to i ．

－条件泊松过程

Conditional Poisson Process：Let $\Lambda>0$ be a ran－ dom variable，under the condition $\Lambda=\lambda$ ，the counting process $\left\{N_{t}\right\}_{t \geq 0}$ is a process process with parameter λ ，then such a counting process is called conditional Poisson process．

－Wald 等式

Wald＇s Equation：In probability theory，Wald＇s e－ quation is an important identity that simplifies the
calculation of the expected value of the sum of a ran－ dom number of random quantities．
Suppose $E\left(X_{i}\right)<\infty, i=1,2, \ldots$ ，then
$E\left(T_{N(t)+1}\right)=E\left(X_{1}+\ldots+X_{N(t)+1}\right)=E\left(X_{1}\right) E[N(t)+1]$.

－转移概率

Transition Probability：In Markov process，the conditional probabilities associated with various state－ changes are called transition probabilities．

$\S 2.12$ 第十二章：随机微积分

Chapter Twelve：Stochastic Calculus

－二次变差

Quadratic Variation：Let $\left\{X_{t}\right\}_{t \geq 0}$ be a stochastic process，its quadratic variation at t is defined as

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(X_{t_{k}}-X_{t_{k-1}}\right)^{2}
$$

where n is the number of partitions in time interval $[0, t]$ ．

－Fubini 定理

Fubini＇s Theorem：In mathematical analysis Fubi－ ni＇s theorem is a result which gives conditions under which it is possible to compute a double integral us－ ing iterated integrals．Suppose A and B are complete measure spaces．Suppose $f(x, y)$ is $A \times B$ measurable． If

$$
\int_{A \times B}|f(x, y)| d(x, y)<\infty
$$

where the integral is taken with respect to a product measure on the space over $A \times B$ ，then

$$
\begin{aligned}
\int_{A}\left(\int_{B} f(x, y) d y\right) d x & =\int_{B}\left(\int_{A} f(x, y) d x\right) d y \\
& =\int_{A \times B} f(x, y) d(x, y)
\end{aligned}
$$

－随机微积分

Stochastic Calculus：Stochastic calculus is a branch of mathematics that operates on stochastic processes．

－伊藤公式

Ito＇s Lemma：Ito＇s lemma is the version of the chain rule or change of variables formula which applies to the Ito＇s integral．Let $Y(t)=f(t, S(t))$ ，then

$$
\begin{aligned}
d Y(t) & =f_{t}(t, S(t)) d t+f_{S}(t, S(t)) d S(t) \\
& +\frac{1}{2} f_{S S}(t, S(t))(d S(t))^{2}
\end{aligned}
$$

－伊藤积分

Ito Calculus：Ito calculus extends the methods of calculus to stochastic processes such as Brownian mo－ tion．The usual notation for the Ito stochastic integral is：
$Y_{t}=\int_{0}^{t} H_{s} d X_{s}=\lim _{n \rightarrow \infty} \sum_{\left[t_{i-1}, t_{i}\right] \in \pi_{n}} H_{t_{i-1}}\left(X_{t_{i}}-X_{t_{i-1}}\right)$ where π_{n} is a sequence of partitions of $[0, t]$ with mesh going to zero and X_{t} is a Brownian motion．

A3 Manual

§3 A3 Manual

$\S 3.1$ 第一章：绪论

Chapter One：Introduction

This chapter contains reading materials，and most of technique terms can be found in previous context．

$\S 3.2$ 第二章：生存分析的基本函数及生存模型

Chapter Two：Basic Functions of Sur－ vival Analysis and Survival Models

－伴随变量

Adjoint Random Variable
－初始事件
Initial Event：The event or status at the beginning of the period $t=0$ is called the initial event．

－独立终止率

Independent Rate of Decrement：In associated single decrement model，${ }_{t} q_{x}^{(j)}$ is called independen－ t rate of decrement，because cause j does not com－ plete with other causes in determining ${ }_{t} q_{x}^{\prime(j)}$ ．It is also named as net probability of decrement and absolute rate of decrement．

－Gompertz分布

Gompertz Distribution：In survival analysis and mortality modeling，Gompertz distribution for hazard rate is defined as

$$
h(x)=B c^{x}, x \geq 0, B>0, c>1 .
$$

with survival function

$$
S(x)=\exp \left(\frac{B}{\ln c}\left(1-c^{x}\right)\right)
$$

－伽玛函数

Gamma Function：Gamma function is an important function in mathematics，which is defined in integral form

$$
\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t
$$

If z is a positive integer，gamma function also can be simplified as

$$
\Gamma(z)=(z-1)!.
$$

－截尾分布

Mean Excess Loss Distribution：Mean excess loss random variable is defined as $X \mid X>y$ ，and its cor－ responding distribution is called the mean excess loss distribution．

－联合单减因模型

Associated Single Decrement Model：In mortal－ ity study，we define the associated single decrement
model functions as follows：

$$
\begin{aligned}
{ }_{t} p_{x}^{\prime(j)} & =\exp \left[-\int_{0}^{t} \mu_{x}^{(j)}(s) d s\right] \\
{ }_{t} q_{x}^{\prime(j)} & ==1-{ }_{t} p_{x}^{(j)}
\end{aligned}
$$

－Makeham分布

Makeham Distribution：Makeham＇s law is pro－ posed to improve Gompertz＇s model，which encoun－ ters a systematic underestimation for mortality curve in older ages．Makeham＇s distribution assumes the hazard rates for different ages have independent parts to ages；therefore，an additional age－independent con－ stant is added to Gompertz＇s distribution．

$$
h(x)=A+B c^{x},
$$

and its survival function is

$$
S(x)=\exp \left(\frac{B}{\ln c}\left(1-c^{x}\right)-A x\right) .
$$

－生存模型

Survival Model：Models employed in survival anal－ ysis to study survival random variables are called sur－ vival models．

－生存分析

Survival Analysis：Survival analysis is a branch of statistics which deals with death in biological organ－ isms and failure in mechanical system．

－生存时间随机变量

Survival Time Random Variable：In survival analysis，we are interested in the time of an individual or a group terminating a status or an event since be－ ginning，and the associated random variable is called survival time random variable，usually denote as T ．
－韦伯分布
Weibull Distribution：Weibull distribution is a continuous－time distribution with density function in form of

$$
f(x)=\frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1} e^{-(x / \lambda)^{k}}, x \geq 0
$$

where $\lambda>0$ is the scale parameter and $k>0$ is the shape parameter．

－未来生命随机变量

Future Lifetime Random Variable：Let T_{x} be the length of time till death of an Age（ x ），then we call T_{x} the future lifetime random variable for an Age（ x ）．

－危险率函数

Hazard Rate Function：Let T be a lifetime ran－ dom variable and $S(T)$ be the corresponding Survival
distribution function，then the hazard rate is defined as

$$
h(t)=\frac{-S(t)^{\prime}}{S(t)}=\frac{f(t)}{S(t)}
$$

where $f(t)$ is the density function of T ．

－续存函数

Remaining Function：In multiple decrement mod－ eling，the probability function of Age (x) survives for t years is called the remaining function and denoted as ${ }_{t} p_{x}^{(\tau)}$ ．
－（指数分布的）无记忆性
Memoryless Property（of Exponential Distri－ bution）：If X is an exponential random variable，then it has memoryless property，i．e．，

$$
P(X>x+y \mid X>x)=P(X>y) .
$$

－中心死亡率

Central Death Rate：Central death rate is a mea－ sure of death rate within a age interval $(x, x+n$ ］，which is in form of

$$
{ }_{n} M_{x}=\frac{\int_{x}^{x+n} S(y) h(y) d y}{\int_{x}^{x+n} S(y) d y},
$$

where $h($.$) and S($.$) are density function and survival$ function accordingly．

－主要变量

Primary Random Variable

$\S 3.3$ 第三章：生命表

Chapter Three：Life Tables

－Balducci假设

Balducci＇s Assumption：Under Balducci＇s As－ sumption，survival function in fractional age interval has following property

$$
\frac{1}{S(x+t)}=\frac{1-t}{S(x)}+\frac{t}{S(x+1)}, 0<t<1
$$

where $S(x)$ is the survival function at age x ．

－死亡力恒定假设

Constant Force of Mortality Assumption：In mortality modeling and survival analysis，the constant force of mortality（CFM）assumes mortality rates un－ change in fractional age，that is，
$\ln S(x+t)=(1-t) \ln S(t)+t \ln S(x+1), 0<t<1$
or equivalently

$$
S(x+t)=S(x)^{1-t} \cdot S(x+1)^{t}, 0<t<1
$$

－死亡时间均匀分布假设

Uniform Distribution at Deaths Assumption： In mortality modeling and survival analysis，uniform
distribution at deaths（UDD）assumption assumes the death time in a unit interval（ $x, x+1$ ］is uniformly dis－ tributed．In this case，the survival function is a linear function

$$
S(x+t)=(1-t) S(x)+t S(x+1), 0<t<1,
$$

leading to

$$
{ }_{t} p_{x}=1-t q_{x}
$$

and

$$
{ }_{s \mid t} q_{x}=t q_{x}
$$

－选择期

Select Period：In life contingency study，an individ－ ual who enters the group at，say，age x ，is said to be selected，or just select，at age x ．The period d after which the age at selection has no effect on future sur－ vival probabilities is called select period for the model． The mortality that applies to lives after the select pe－ riod is complete is called the ultimate mortality．
－选择生命表
Select Life Table：A life table only containing infor－ mation of insurers in select period is called the select life table．

－选择一终极生命表

Select－Ultimate Life Table：A select－ultimate life table contains the death and survival information of insurers in select period as well as thereafter．
－终极生命表
Ultimate Life Table：A life table only with survival information after select period is a ultimate life table．

§3．4 第四章：理赔额和理赔次数的分布

Chapter Four：Distributions of Claim Amounts and Frequencies
－$(a, b, 0)$ 类分布
（ $\mathbf{a}, \mathbf{b}, \mathbf{0}$ ）Class of Distributions：In probability the－ ory，the distribution of a discrete random variable N is said to be a member of the（ $a, b, 0$ ）class of distri－ butions if its probability mass function obeys

$$
\frac{p_{k}}{p_{k-1}}=a+\frac{b}{k}, k=1,2,3, \ldots
$$

where $p_{k}=\operatorname{Pr}(N=k)$ ．
－$(a, b, 1)$ 类分布
$(\mathbf{a}, \mathbf{b}, \mathbf{1})$ Class of Distributions：Let p_{k} be the prob－ ability function of a discrete random variable．It is a member of the（ $a, b, 1$ ）class of distributions provided that there exists constants a and b such that

$$
\frac{p_{k}}{p_{k-1}}=a+\frac{b}{k}, k=2,3,4, \ldots
$$

Note that the only difference from the（ $\mathrm{a}, \mathrm{b}, 0$ ）class is that the recursion begins at p_{1} rather than p_{0} ．
－(a, b, k) 分布
（ $\mathbf{a}, \mathbf{b}, \mathbf{k}$ ）Class of Distribution ：Let p_{i} be the prob－ ability function of a discrete random variable．It is a member of the（a，b，k）class of distributions provided that there exists constants a and b such that

$$
\frac{p_{i}}{p_{i-1}}=a+\frac{b}{i}, i=k+1, k+2, k+3, \ldots
$$

Note（a，b，k）class of distributions start recursion at p_{k} ．

－保单限额

Policy Limit：The opposite of a deductible is a pol－ icy limit．The typical policy limit arises in a contract where for losses below u the insurance pays the full loss，but for losses above u the insurance pays for u ．
－比列赔付
Coinsurance：In this case the insurance company pays a proportion，α ，of the loss and the policyholder pays the remaining fraction．

－柏松一逆高斯分布

Poisson－Inverse Gaussian Distribution：

－对数正态分布
Log－normal Distribution：In probability theory，a log－normal distribution is a probability distribution of a random variable whose logarithm is normally dis－ tributed．If X is a random variable with a normal distribution，then $Y=\exp (X)$ has a log－normal dis－ tribution；likewise，if Y is log－normally distributed， then $X=\log (Y)$ is normally distributed．Formally， Y has probability density function

$$
f(x)=\frac{1}{x \sigma \sqrt{2 \pi}} e^{-\frac{(\ln x-\mu)^{2}}{2 \sigma^{2}}},
$$

where μ and σ are parameters．

－多项分布

Multinomial Distribution：In probability theory， the multinomial distribution is a generalization of the binomial distribution．The binomial distribution is the probability distribution of the number of＂success－ es＂in n independent Bernoulli trials，with the same probability of＂success＂on each trial．The probability mass function of multinomial distribution is

$$
\begin{aligned}
& f\left(x_{1}, \ldots, x_{k}\right)=\operatorname{Pr}\left(X_{1}=x_{1}, \ldots, \text { AND } X_{k}=x_{k}\right) \\
= & \left\{\begin{array}{l}
\frac{n!}{x_{1}!\ldots x_{k}!} p_{1}^{x_{1}} \ldots p_{k}^{x_{k}}, \text { when } \sum_{i=1}^{k} x_{i}=n \\
0,
\end{array}\right.
\end{aligned}
$$

for non－negative integers x_{1}, \ldots, x_{k} ．
－负二项分布
Negative Binomial：In probability theory and s－ tatistics，a discrete random variable N said to have
negative binomial distribution，$N \sim N B(r, p)$ if its probability mass function takes the form

$$
p_{k}=\operatorname{Pr}(N=k)=\binom{r+k-1}{k} p^{r}(1-p)^{k}
$$

where $0<p<1$ and $k \in \mathbb{N}$ are parameters．

－复合随机变量

Compounded Random Variable：In aggregate claim process，let

$$
S=X_{1}+X_{2}+\ldots+X_{N}
$$

where X_{i} s are i．i．d claim amount random variables and N is claim frequency random variable．Then S is the compound random variable．

－概率母函数

Probability Generating Function：Suppose a dis－ crete random variable N has the probability distribu－ tion $p_{k}=\operatorname{Pr}(N=k), k=0,1,2, \ldots$ ，then its probabil－ ity generating function is defined as

$$
P_{N}(t)=E\left(t^{k}\right)=\sum_{k=0}^{\infty} p_{k} t^{k} .
$$

－混合柏松分布

Mixed Poisson Distribution：In Poisson distribu－ tion，if the poisson rate，Λ is a density function $u(\lambda)$ instead of deterministic value，then such a distribution is called mixed Poisson distribution／Formally，

$$
P(N=k)=\int_{0}^{\infty} \frac{e^{-\lambda} \lambda^{k}}{k!} u(\lambda) d \lambda, k=0,1,2, \ldots
$$

－矩母函数

Moment Generating Function：In probability the－ ory and statistics，the moment－generating function of any random variable is an alternative definition of it－ s probability distribution．The definition of moment generating function is as follows

$$
M_{X}(t)=E\left(e^{t X}\right), t \in \mathbb{R}
$$

whenever this expectation exists．

－零点截断分布

Zero－truncated Distribution：In（a，b，1）class of dis－ tributions，if $p_{0}=0$ ，then this distribution is also called zero－truncated distribution．It is can be viewed as a mixture of a truncated distribution and a degen－ erate distribution with all the probability at zero．

－零点修正分布

Zero－modified Distribution：In（a，b，1）class of dis－ tributions，zero－modified distribution has probability at zero $p_{0}>0$ ．
－理赔额
Claim Amount

－免赔额

Deductible：Insurance policies are often sold with a per－loss deductible of d ．When the loss x ，is at or be－ low d ，the insurance pays nothing．When the loss is above d ，the insurance pays $x-d$ ．

－帕累托分布

Pareto Distribution：A continuous random variable X is said to have Pareto distribution if its probability density function obeys

$$
f(x)=\frac{\alpha \theta^{\alpha}}{(x+\theta)^{\alpha+1}}, x>0, \alpha>0, \theta>0
$$

and denote as $X \sim \operatorname{Pareto}(\alpha, \theta)$ ．
－损失额
Loss Amount
－右截断
Right Truncation：An observation is right truncat－ ed at u if when it is above u it is not recorded，but when it is below u it is recorded at its observed value．
－右删失
Right Censoring：An observation is right censored at u if when it is above u it is recorded as being e－ qual to u ，but when it is below u it is recorded at its observed value．

－有限期望函数

Limited Expected Function：For a random vari－ able X and a pre－determined real number u ，the lim－ ited loss variable is defined as

$$
Y=X \bigwedge u=\left\{\begin{array}{l}
X, X<u \\
u, X \geq u
\end{array}\right.
$$

Then its expected value，

$$
E(X \bigwedge u)=\int_{\infty}^{u} x f(x) d x+u[1-F(u)]
$$

is called the limited expected function．
－左截断
Left Truncation：An observation is left truncated at d if when it is below d it is not recorded，but when it is above d it is recorded at its observed value．

－左删失

Left Censoring：An observation is left censored at d if when it is below d it is recorded as being equal to d ，but when it is above d it is recorded as its observed value．

§3．5 第五章：短期个体风险模型

Chapter Five：Short－term Individual Risk Model

－贝努里分布

Bernoulli Distribution：Refer to 0－1分布（0－1 Dis－ tribution）．

－个体风险模型

Individual Risk Model：The individual risk model represents the aggregate loss as a sum，$S=X_{1}+\ldots+$ X_{n} ，of a fixed number，n ，of insurance contracts．The loss amounts for the n contracts are（ $X_{1}, X_{2}, \ldots, X_{n}$ ）， where the X_{j} s are assumed to be independent but are not assumed to be identically distributed．The dis－ tribution of the X_{j} s usually has a probability mass at zero，corresponding to the probability of no loss or payment．

－林德贝格条件

Lindeberg＇s Condition：In probability theory，Lin－ deberg＇s condition is a sufficient condition for the central limit theorem to hold for a sequence of in－ dependent random variables．Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are sequence of independent random variables with $E\left(X_{k}\right)=\mu_{k}, \operatorname{Var}\left(X_{k}\right)=\sigma_{k}^{2}$ ，and $F_{k}(x)$ is the dis－ tribution function．Also，let $s_{n}^{2}=\sum_{k=1}^{n} \sigma_{k}^{2}$ ．If this sequence satisfies the Lindeberg＇s condition：

$$
\lim _{n \rightarrow \infty} \frac{1}{s_{n}^{2}} \sum_{k=1}^{n} \int_{\left\{\left|X_{k}-\mu_{k}\right|>\epsilon S_{n}\right\}}\left(X_{k}-\mu_{k}\right)^{2} d F_{k}(x),
$$

for all $\epsilon>0$ ，then the central limit theorem holds．

$\S 3.6$ 第六章：短期聚合风险模型

Chapter Six：Short－term Aggregate Risk Model
－比例再保险
Proportional Reinsurance：Proportional reinsur－ ance involves one or more reinsurers taking a stated percent share of each policy that an insurer produces． This means that the reinsurer will receive that stated percentage of each dollar of premiums and will pay the percentage of each dollar of losses．

－复合柏松模型

Compound Poisson Model：Refer to 复合柏松过程（Compound Poisson Process）．
－复合负二项分布
Compound Negative Binomial Distribution：In aggregate claim process，if the claim frequency em－ ploys negative binomial distribution，then the aggre－ gate claim random variable follows the compound neg－ ative binomial distribution．

－聚合理赔量

Aggregate Claim Random Variable：In insurance risk study，the sum of i．i．d claim amount random vari－ ables X_{i} s

$$
S=\sum_{i=1}^{N} X_{i}
$$

is the aggregate claim random variable，where N is the claim frequency random variable．
－理赔次数变量
Claim Frequency Random Variable：Let $N \in \mathbb{N}$ which satisfies $P(N=0)>0$ represent the number of claims generated by insurance policies，then N is called the claim frequency random variable．

－理赔额变量

Claim Amount Random Variable：Let $\{N(t)\}_{t \geq 0}$ be the claim number process．For a determined $N(t)=n>0$ ，we have a sequence of random variables $X_{i}, i=1,2, \ldots, n$ representing the i－th claim amoun－ t ，and we call such random variables claim amount random variables．

－平移伽玛分布

Horizontally－shifted Gamma Distribution：Let $\operatorname{Gamma}(x ; \alpha, \beta)$ be the cumulated density function of Gamma random variable X with parameters α and β ． Then the horizontally－shifted Gamma distribution is defined as

$$
H\left(x ; \alpha, \beta, x_{0}\right)=\operatorname{Gamma}\left(x-x_{0} ; \alpha, \beta\right), x \geq x_{0} .
$$

The new distribution shifts the original distribution horizontally by x_{0} units．

－限额损失再保险

Stop－loss Reinsurance：Stop loss is a nonpropor－ tional type of reinsurance and works similarly to excess－of－loss reinsurance．While excess－of－loss is re－ lated to single loss amounts，either per risk or per event，stop－loss covers are related to the total amount of claims X in a year．

§3．7 第七章：破产模型

Chapter Seven：Ruin Model
：

－柏松盈余过程

Poisson Surplus Process：Poisson surplus process is defined as

$$
U(t)=u+c t-S(t), t \geq 0
$$

where
1．u is the initial surplus，and $u \geq 0$ ；
2．$\{S(t), t \geq 0\}$ is a compounded Poisson process with Poisson parameter λ ，and claim amount random variable $X \sim F(x)$ ；
3．and c is the premium rate．

－初始盈余

Initial Surplus：In surplus process，the surplus at time t is denoted as $U(t), t>0$ ．The initial surplus then is defined as $U(0)$ and simply written as u ．
－带漂移的布朗运动
Brownian Motion with Drift：The Brownian mo－ tion with a drift $\{W(t), t \geq 0\}$ is defined as follows：

1．$W(0)=0$ ；
2．$\{W(t), t \geq 0\}$ has independent and stationary increments；
3．For any $t>0, W(t) \sim N\left(\mu t, \sigma^{2} t\right)$ ，where $\mu \geq 0$ ．

－等待时间变量

Waiting－time Random Variable：In a counting process，the time difference between two events is called the waiting－time random variable．

－复合柏松过程

Compound Poisson Process：Let the number of claim process $\left\{N_{t}: t \geq 0\right\}$ be a Poisson process with rate λ ．let the individual losses $\left\{X_{1}, X_{2}, \ldots\right\}$ be inde－ pendent and identically distributed positive random variables，independent of N_{t} ，each with cumulative distribution function $F(x)$ and mean $\mu<\infty$ ．Thus X_{j} is the amount of the j th loss．Let S_{t} be the to－ tal loss in $(0, t]$ ．It is given by $S_{t}=0$ if $N_{t}=0$ and $S_{t}=\sum_{j=1}^{N_{t}} X_{j}$ if $N_{t}>0$ ．Then，for fixed t, S_{t} has a compound Poisson distribution．The process $\left\{S_{t}: t \geq 0\right\}$ is said to be a compound Poisson process． Because $\left\{N_{t}: t \geq 0\right\}$ has stationary and independent increments，so does $\left\{S_{t}: t \geq 0\right\}$ ．Also，

$$
E\left(S_{t}\right)=E\left(N_{t}\right) E\left(X_{j}\right)=(\lambda t)(\mu)=\lambda \mu t
$$

－负债
Liability
－计数随机过程
Counting Process：Refer to 计数过程（Counting Process）．

－理赔次数过程

Claim Number Process：Let $N(t) \in \mathbb{N}$ represent the aggregate claim numbers in time interval $[0, t]$ ，and $N(0)=0$ ，then we call $\{N(t)\}_{t \geq 0}$ the claim amount process．

－lundberg系数（调节系数）

Lundberg Coefficient（Adjust Coefficient）：For the Poisson surplus process，the non－negative root R satisfying the following equation

$$
\lambda+c r=\lambda M_{X}(r)
$$

is the adjust coefficient．

－破产时刻

Ruin Time：In a surplus process，the ruin time T is the time surplus revealing a negative value．Mathe－ matically，

$$
T=\inf \{t, t \geq 0, U(t)<0\}
$$

where $U(t)$ is the surplus at time t ．

－强度函数

Intensity Function：Let $\{N(t), t \geq 0\}$ be a counting process．Then define
$\lambda(t)=\lim _{\Delta t \rightarrow 0^{+}} \frac{1}{\Delta t} P[N(t+\Delta t)-N(t)=1 \mid N(s), 0<s \leq t]$, if the limit exists．$\lambda(t)$ is the intensity function of the counting process．

－无限时间破产概率

Infinite Time Ruin Probability：Ruin probability is sometimes called infinite time ruin probability．
－盈余
Surplus：Surplus is defined as the difference between assets and liabilities，written as：

$$
U(t)=A(t)-L(t), t \geq 0
$$

where $A(t)$ and $L(t)$ are assets and liabilities at time t accordingly．

－有限时间破产概率

Finite Time Ruin Probability：Given a surplus process $\{U(t)\}_{t \geq 0}$ ，the finite time ruin probability is defined as

$$
\psi(u, t)=P(\exists s \in(0, t], U(s)<0)
$$

This is the probability to ruin within time interval （ $0, t$ ］given initial surplus u ．

－终极破产概率

Ruin Probability：For a surplus process $\{U(t)\}_{t \geq 0}$ ，

$$
\psi(u)=P(\exists t \geq 0, U(t)<0)
$$

is called the ruin probability given initial surplus u ．

－终极生存概率

Survival Probability：For a surplus process $\{U(t)\}_{t \geq 0}$ ，the survival probability given initial sur－ plus u is defined mathematically as

$$
\phi(u)=P(U(t) \geq 0, \forall t \geq 0)
$$

－资产

Asset

－总理赔过程
Aggregate Claim Process：Define the process $\{S(t), t \geq 0\}$ be the aggregate claim process if

$$
S(t)=\sum_{i=1}^{N(t)} X_{i}
$$

where $\{N(t), t \geq 0\}$ is the claim number process and X_{i} s are claim amount random variables．

－最大损失随机变量

Maximal Aggregate Loss Random Variable：In a surplus process $\{U(t), t \geq 0\}$ ，the maximal aggregate loss random variable of the process is

$$
L=\max [S(t)-c t]
$$

§3．8 第八章：经验模型

Chapter Eight：Empirical Models

－带宽
Bandwidth：In kernel density estimation，especially uniform kernel and triangular kernel，there is a pa－ rameter that relates to the spread of the kernel，which is called the bandwidth．

－对数转化的置信区间

Log－transformed Confidence Interval：For Kaplan－Meier product－limit estimator，the log－ transformed confidence interval for a confidence level of α is defined by $\left(S_{n}(t)^{1 / U}, S_{n}(t)^{U}\right)$ ，where

$$
U=\exp \left[\frac{z_{0.5+\alpha / 2} \sqrt{\hat{\operatorname{Var}}\left[S_{n}(t)\right]}}{S_{n}(t) \ln S_{n}(t)}\right]
$$

For Nelson－Aalen estimator for cumulative hazard rate，the corresponding log－transformed confidence in－ terval is $(\hat{H}(t) \exp (-U), \hat{H}(t) \exp (U))$ ，where

$$
U=\frac{z_{0.5+\alpha / 2} \sqrt{\hat{\operatorname{Var}}\left[\hat{H}\left(y_{j}\right)\right]}}{\hat{H}(t)}
$$

$z_{0.5+\alpha / 2}$ is the $0.5+\alpha / 2$－th quartile of standard nor－ mal distribution，and $S_{n}(t)$ is the empirical survival distribution．

－多元终止概率

Multiple Decrement Probability：

－风险集

Risk Set：In survival analysis，the risk set at j the ordered observation y_{j} is denoted r_{j} ．When thinking in terms of a mortality study，the risk set comprises the individuals who are under observation at that age． Included are all who die at that age or later and all who are censored at that age or later．However，those who are first observed at that age or later were not under observation at that time．

－分组数据

Grouped Data：Grouped data is a statistical term used in data analysis．A raw data set can be orga－ nized by constructing a table showing the frequency distribution of the variable．Such a frequency table is often referred to as a grouped data．
－Greenwood近似公式
Greenwood Approximation：In survival analysis， the survival distribution is estimated by Kaplan－Meier product－limit estimator，then the variance of the esti－ mator can be simplified by Greenwood approximation：

$$
\hat{\operatorname{Var}}\left[S_{n}\left(y_{j}\right)\right]=S_{n}\left(y_{j}\right)^{2} \sum_{i=1}^{j} \frac{s_{i}}{r_{i}\left(r_{i}-s_{i}\right)}
$$

where y_{j}, s_{j}, r_{j} are defined as follows：
－let $y_{1}<y_{2}<\ldots<y_{k}$ be the k unique values that appear in the sample；
－let s_{j} be the number of times the uncensored ob－ servation y_{j} appears in the sample；
$-r_{j}$ is the risk set at time t.

－核密度估计方法

Kernel Density Estimation：In empirical model－ ing，Kernel density estimation is a method of obtain－ ing a smooth，empirical－like distribution．Let $p\left(y_{j}\right)$ ne the probability assigned to the value $y_{j}(j=1, \ldots, k)$ by the empirical distribution．Let $K_{y}(x)$ be a distribu－ tion function for a continuous distribution such that its mean is y ．Let $k_{y}(x)$ be the corresponding density function．A kernel density estimator of a distribution function is

$$
\hat{F}(x)=\sum_{j=1}^{k} p\left(y_{j}\right) K_{y_{j}}(x)
$$

and the estimator of the density function is

$$
\hat{f}(x)=\sum_{j=1}^{k} p\left(y_{j}\right) k_{y_{j}}(x)
$$

The function $k_{y}(x)$ is called the kernel．Three kernels are commonly used：uniform，triangular and gamma．

－伽玛核函数

Gamma Kernel Function：In kernel density esti－ mation，a gamma kernel function is a kernel densi－ ty function employing the gamma distribution with shape parameter α and scale parameter y / α ，i．e．，its kernel is given by：

$$
k_{y}(x)=\frac{x^{\alpha-1} e^{-x \alpha / y}}{(y / \alpha)^{\alpha} \Gamma(\alpha)}
$$

Note that the gamma distribution has a mean of $\alpha(y / \alpha)=y$ and a variance of $\alpha(y / \alpha)^{2}=y^{2} / \alpha$ ．

－截断数据

Truncated Data：Truncated data includes left－ truncated data and right－truncated data．For more details and formal definitions of both types of da－ ta refer to 左截断（Left Truncation）and 右截断（Right Truncation）．

－经验分布

Empirical Distribution：The empirical distribution is obtained by assigning probability $1 / n$ to each data point．Mathematically，

$$
F_{n}(x)=\frac{\text { number of observations } \leq x}{n}
$$

where n is the total number of observations．

－经验分布概率函数

Empirical Distribution Probability Function：

Let $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of observation data，and let $y_{1}<y_{2}<\ldots<y_{k}$ be k different observation val－ ues．Define s_{j} be the number of x_{i} having the value of y_{j} ，i．e．$s_{j}=\sum_{i=1}^{n} I\left(x_{i}\right)$ ，where $I($.$) is the indicator$ function．The the empirical distribution probability function is given by

$$
p_{n}(x)=\left\{\begin{array}{l}
\frac{s_{j}}{n}, x=y_{j} \\
0, \text { otherwise }
\end{array}\right.
$$

－经验分布光滑曲线（卵形线）

Ogive：For grouped data，the distribution function obtained by connecting the values of the empirical distribution function at the group boundaries with s－ traight lines is called the ogive．The formula is

$$
F_{n}(x)=\frac{c_{j}-x}{c_{j}-c_{j-1}} F_{n}\left(c_{j-1}\right)+\frac{x-c_{j-1}}{c_{j}-c_{j-1}} F_{n}\left(c_{j}\right)
$$

for $c_{j-1} \leq x \leq c_{j}$.

－经验生存函数

Empirical Survival Function：The empirical sur－ vival function is given by

$$
S_{n}(x)=\frac{\text { number of observations }>x}{n}
$$

where n is the total number of observations．

－均匀核函数

Uniform Kernel Function：In kernel density esti－ mation，a uniform kernel function is a kernel density function employing the uniform distribution，i．e．，its kernel is given by：

$$
\begin{gathered}
k_{y}(x)=\left\{\begin{array}{l}
0, x<y-b \\
\frac{1}{2 b}, y-b \leq x \leq y+b \\
0, x>y+b
\end{array}\right. \\
K_{y}(x)=\left\{\begin{array}{l}
0, x<y-b \\
\frac{x-y+b}{2 b}, y-b \leq x \leq y+b \\
1, x>y+b
\end{array}\right.
\end{gathered}
$$

where $k_{y}(x)$ is the kernel density function and $K_{y}(x)$ is the corresponding distribution function．There is a parameter that relates to the spread of the kernel， $b>0$ ，which is called the bandwidth．

－Kaplan－Meier乘积极限估计

Kaplan－Meier Product－limit Estimator：In sur－ vival analysis，the estimate function for survival func－ tion can be obtained by Kaplan－Meier product－limit estimator．The general formula is

$$
S_{n}(t)=\left\{\begin{array}{l}
1,0 \leq t<y_{1} \\
\prod_{i=1}^{j-1} \frac{r_{i}-s_{1}}{r_{i}}, y_{j-1} \leq t<y_{j}, j=2, \ldots, k \\
\prod_{i=1}^{k} \frac{r_{i}-s_{i}}{r_{i}} \operatorname{or} 0, t \geq y_{k}
\end{array}\right.
$$

where y_{j}, s_{j}, r_{j} are defined as follows：

- let $y_{1}<y_{2}<\ldots<y_{k}$ be the k unique values that appear in the sample；
－let s_{j} be the number of times the uncensored ob－ servation y_{j} appears in the sample；
$-r_{j}$ is the risk set at time t ．

－累积危险率函数

Cumulative Hazard Rate Function：The cumu－ lative hazard rate function is defined as

$$
H(x)=-\ln S(x)
$$

The name comes from the fact that，if $S(x)$ is differ－ entiable，

$$
H^{\prime}(x)=-\frac{S^{\prime}(x)}{S(x)}=\frac{f(x)}{S(x)}=h(x)
$$

then

$$
H(x)=\int_{-\infty}^{x} h(y) d y
$$

Note $S(x)$ is the survival distribution function and $h(x)$ is the hazard rate．

－Nelson－Aalen估计

Nelson－Aalen Estimator：Given a data set $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ ，the Nelson－Aalen estimate of the cu－ mulative hazard rate function is

$$
\hat{H}(x)=\left\{\begin{array}{l}
0, x<y_{1} \\
\sum_{i=1}^{j-1} \frac{s_{i}}{r_{i}}, y_{j-1} \leq x \leq y_{j}, j=2, \ldots, k \\
\sum_{i=1}^{k} \frac{s_{i}}{r_{i}}, x \geq y_{k}
\end{array}\right.
$$

where y_{j}, r_{j} and s_{j} are defined as follows：
－let $y_{1}<y_{2}<\ldots<y_{k}$ be the k unique values that appear in the sample；
－let s_{j} be the number of times the observation y_{j} appears in the sample；
－let $r_{j}=\sum_{i=j}^{k} s_{i}$ be the number of observations greater than or equal to y_{j} ．

－完整数据

Complete Data：A complete data set is a set of da－ ta without any truncation and censoring．It includes individual data and grouped data．

－三角核函数

Triangular Kernel Function：In kernel density es－ timation，a triangular kernel function is a kernel den－ sity function employing the triangular－shaped density function，i．e．，its kernel is given by：

$$
k_{y}(x)=\left\{\begin{array}{l}
0, x<y-b \\
\frac{x-y+b}{b^{2}}, y-b \leq x \leq y \\
\frac{y+b-x}{b^{2}}, y \leq x \leq y+b \\
0, x>y+b
\end{array}\right.
$$

$$
K_{y}(x)=\left\{\begin{array}{l}
0, x<y-b \\
\frac{(x-y+b)^{2}}{2 b^{2}}, y-b \leq x \leq y \\
1-\frac{(y+b-x)^{2}}{2 b^{2}}, y \leq x \leq y+b \\
1, x>y+b
\end{array}\right.
$$

where $k_{y}(x)$ is the kernel density function and $K_{y}(x)$ is the corresponding distribution function．There is a parameter that relates to the spread of the kernel， $b>0$ ，which is called the bandwidth．

－删失数据

Censored Data：Censored data includes left－ censored data and right－censored data．For more de－ tails and formal definitions of both types of data refer to 左删失（Left Censoring）and 右删失（Right Censor－ ing）．
－示性函数
Indicator Function：Indicator takes value of 1 if a designed event occurs and value of 0 otherwise．For－ mally，let S be a set of designed events and A be a certain event，then

$$
I(A)=\left\{\begin{array}{l}
1, \text { if } A \subseteq S \\
0, \text { otherwise }
\end{array}\right.
$$

－数据依赖型分布

Data－Dependent Distribution：A data－dependent distribution is at least as complex as the data or knowledge that produced or，and the number of＂pa－ rameters＂increases as the number of data points or amount of knowledge increases．

－完整个体数据

Complete Individual Data：A complete individual data set is a set of non－grouped complete data．

－线性插值

Linear Interpolation：Linear interpolation is a method of curve fitting using linear polynomials．If the two known points are given by the coordinates $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ ，the linear interpolant is the s－ traight line between these points．For a value x in the interval $\left(x_{0}, x_{1}\right)$ ，the value y along the straight line is given from the equation

$$
\frac{y-y_{0}}{x-x_{0}}=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}
$$

then

$$
y=\frac{x-x_{0}}{x_{1}-x_{0}} y_{1}+\frac{x_{1}-x}{x_{1}-x_{0}} y_{0}
$$

－右截断数据

Right－Truncated Data：Refer to 右截断（Right Truncation）．
－右删失数据
Right－Censored Data：Refer to 右删失（Right Cen－ soring）．
－直方图
Histogram
－左截断数据
Left－Truncated Data：Refer to 左截断（Left Trun－ cation）．
－左删失数据
Right－Censored Data：Refer to 左删失（Left Cen－ soring）．

$\S 3.9$ 第九章：参数模型的估计

Chapter Nine：Parametric Model Esti－ mation
－比例风险假定
Proportional Hazards Assumption：In Cox mod－ el，any pairs of individuals should satisfy the propor－ tional hazards assumption，that is，the proportion of any two hazard rates are unchanged with respect to time．

$$
\frac{h_{i}(t)}{h_{j}(t)}=\exp \left(a^{\prime}\left(z_{i}-z_{j}\right)\right), j=1, \ldots, n
$$

where $h_{i}(t)=h\left(t \mid z_{i}\right)$ ．
－Cox比例风险模型
Cox Proportional Hazards Model：Given a base－ line hazard rate function $h_{0}(t)$ and values z_{1}, \ldots, z_{p} as－ sociated with a particular individual，the Cox propor－ tional hazards model for that person is given by the hazard rate function

$$
h(x \mid \mathbf{z})=h_{0}(x) c\left(\beta_{1} z_{1}+\ldots+\beta_{p} z_{p}\right)=h_{0}(x) c\left(\beta^{T} \mathrm{z}\right)
$$

where $c(y)$ is any function that takes on only positive values； $\mathrm{z}=\left(z_{1}, z_{2}, \ldots, z_{p}\right)^{T}$ is a column vector of the z values（called covariates）；and $\beta=\left(\beta_{1}, \ldots, \beta_{p}\right)^{T}$ is a column vector of coefficients．Usually，Cox model takes the case of $c(y)=\exp (y)$ ．

－Delta方法

Delta Method：In statistics，the delta method is a method for deriving an approximate probability dis－ tribution for a function of an asymptotically normal statistical estimator from knowledge of the limiting variance of that estimator．Let $X_{1}, X_{2}, \ldots, X_{n}$ be a sequence of random variables such that

$$
n^{b}\left(X_{n}-a\right) \rightarrow_{D} X
$$

for some $b>0$ ．Suppose the function $g(x)$ is differen－ tiable at a and $g^{\prime}(a) \neq 0$ ．Then

$$
n^{b}\left[g\left(X_{n}\right)-g(a)\right] \rightarrow_{D} g^{\prime}(a) X,
$$

where $\rightarrow D$ means converges in distribution．

－对数似然函数

Loglikelihood Function：Let $L(\Theta)=$ $f\left(x_{1}, \ldots, x_{n} \mid \Theta\right)$ be likelihood function，then the log－ likelihood function is

$$
l(\Theta)=\ln (L(\Theta))=\ln \left(f\left(x_{1}, \ldots, x_{n} \mid \Theta\right)\right)
$$

－分位数估计

Percentile Matching Estimation：A percentile matching estimate of θ is any solution of the p equa－ tions

$$
\pi_{g_{k}}(\theta)=\hat{\pi}_{g_{k}}, k=1,2, \ldots, p
$$

where $g_{1}, g_{2}, \ldots g_{p}$ are p arbitrarily chosen percentiles， and $\hat{\pi}_{k}$ is the sample estimate of k－th moment．From the definition of percentile，the equations can also be written

$$
F\left(\hat{g_{k}} \mid \theta\right)=g_{k}, k=1,2, \ldots, p .
$$

－Fisher信息量

Fisher＇s Information：Let $l(\theta)$ be the loglikelihood function，then the Fisher＇s information is defined as

$$
I(\theta)=-E\left[\frac{\partial^{2}}{\partial \theta^{2}} l(\theta)\right] .
$$

－Frank耦合分布

Frank Copula：Frank copula is a commonly used copula，and it takes the form

$$
C(u, v)=\log _{\alpha}\left[1+\frac{\left(\alpha^{u}-1\right)\left(\alpha^{v}-1\right)}{\alpha-1}\right] .
$$

－个人年金

Individual Life Annuity
－广义线性回归模型
Generalized Linear Regression Model：In a gen－ eralized linear regression model，each outcome of the dependent variables， Y ，is assumed to be generated from a particular distribution in the exponential fam－ ily，a large range of probability distributions that in－ cludes the normal，binomial and poisson distributions， among others．The mean，μ ，of the distribution de－ pends on the independent variables，X，through：

$$
E(\mathrm{Y})=\mu=g^{-1}(\mathrm{X} \beta)
$$

where $E(\mathrm{Y})$ is the expected value of $\mathrm{Y} ; \mathrm{X} \beta$ is the linear predictor，a linear combination of unknown parame－ ters，$\beta ; g$ is the link function，and its inverse function g^{-1} is called the mean function．

－古典线性回归模型

Ordinary Linear Regression Model：In ordinary linear regression，the random variable，X ，has a nor－ mal distribution with mean $=\mu$ and variance $=\sigma^{2}$ ． Then the model is $\mu=\beta^{T} z$ ，where β is a vector of coefficients and z is a vector of covariates for an indi－ vidual．
－均值函数
Mean Function：Refer to 广义线性回归模型（Generalized Linear Regression Model）．
－矩估计
Method of Moments：In statistics，the method of moments is a method of estimation of population pa－ rameters such as mean，variance，media，etc．，by e－ quating sample moments with unobservable popula－ tion moments and then solving those equations for the quantities to be estimated．

－联合生存年金

Joint Life Annuity

－联结函数

Link Function：Refer to 广义线性回归模型（Generalized Linear Regression Model）．

－Logistic模型

Logistic Model：Logistic model employs the logis－ tic distribution as its underlying model．The logistic distribution is a continuous distribution whose cumu－ lative distribution is a logistic function．The logistic distribution has density function

$$
f(x)=\frac{e^{-(x-\mu) / \beta}}{\beta\left[1+e^{-(x-\mu) / \beta}\right]^{2}}
$$

where $\beta>0$ and μ are parameters．

－耦合分布

Copula Distribution：In statistic，a copula is used as a general way of formulating a multivariate distri－ bution in such a way that various general types of dependence can be represented．It is a multivariate joint distribution defined on the n－dimensional unit cube $[0,1]^{n}$ such that every marginal distribution is uniform on the interval $[0,1]$ ．Some common copu－ las include Gaussian copulas，Archimedean copulas， and periodic copula．Suppose $F_{X}(x), F_{Y}(y)$ be two marginal distributions for random variables X and Y ． Let $C(u, v)$ be the copula function．Then following relationship holds

$$
F_{X, Y}(x, y)=C\left[F_{X}(x), F_{Y}(y)\right] .
$$

－偏导数

Partial Derivative：In mathematics，a partial derivative of a function of several variables is its derivative with respect to one of those variables，with the others held constant．The partial derivative of a function f with respect to the variable x is variously denoted by

$$
f^{\prime}(x), f_{x}, \partial_{x} f, \text { or } \frac{\partial f}{\partial x}
$$

－先验权重

Predetermined Weights

－指数分布族

Exponential Family of Distributions：We say a distribution belongs to the exponential family if its density distribution has the form of

$$
f\left(y_{i} ; \theta_{i}, \phi\right)=\exp \left\{\frac{y_{i} \theta_{i}-b\left(\theta_{i}\right)}{a(\phi)}+c\left(y_{i}, \phi\right)\right\}
$$

where $a(),. b(),. c($.$) are functions and \theta_{i}$ and ϕ are parameters．
The alternative presentation is

$$
f\left(y_{j} ; \Theta\right)=\frac{p\left(y_{j}\right) e^{r(\Theta) y_{j}}}{q(\Theta)}
$$

where Θ is a set of parameters．

$\S 3.10$ 第十章：参数模型的检验和选择

Chapter Ten：Parametric Model Selec－ tion

－Anderson－Darling检验

Anderson－Darling Test：In statistics，the Anderson－Darling test is a statistical test of whether there is a evidence that a given sample of data did not arise from a given probability distribution．The test statistic is

$$
A^{2}=n \int_{t}^{u} \frac{\left[F_{n}(x)-F^{*}(x)\right]^{2}}{F^{*}(x)\left[1-F^{*}(x)\right]} f^{*}(x) d x
$$

That is，it is a weighted average of the squared differ－ ences between the empirical and model distribution function．This test statistic tends to place more em－ phasis on good fit in the tails than in the middle of the distribution．

－Bull分布

Bull Distribution：
－χ^{2} 拟合优度检验
Chi－square Goodness of Fit Test：Refer to 拟合优度检验（Chi－square Goodness of Fit Test）．

－K－S检验

K－S Test：In statistics，the Kolmogorov－Smirnov test （K－S test）is a nonparametric test for the equality of continuous，one－dimensional probability distributions that can be used to compare a sample with a refer－ ence probability distribution（one－sample K－S test）． The test statistic is

$$
D=\max _{t \leq x \leq u}\left|F_{n}(x)-F^{*}(x)\right|,
$$

where t is the left truncation point（ $t=0$ if there is no truncation）and u is the right censoring point（ $u=\infty$ if there is no censoring）．
－p－p图
P－P Plot：In statistics，a P－P plot（probability－ probability plot or percent－percent plot）is a probabil－ ity plot for assessing how closely two data sets agree，
which plots the two cumulative distribution functions against each other．
－q－q图
Q－Q Plot：In statistics，a Q－Q plot（quartile－quartile plot）is a probability plot，which is a graphical method for comparing two probability distributions by plot－ ting their quartiles against each other．
－似然比检验
Likelihood Ratio Test：Likelihood ratio test is test－ ing the null hypothesis $\left(H_{0}\right)$ that＂the data came from a population with distribution A and alternative hy－ pothesis $\left(H_{1}\right)$ that＂the data came from a population with distribution B ．Let the likelihood function be written as $L(\theta)$ ．Let θ_{0} and θ_{1} be the values of the pa－ rameters that maximizes the likelihood function under null hypothesis and alternative hypothesis correspond－ ingly．Then the test statistic is

$$
T=2 \ln \left(L\left(\theta_{1}\right) / L\left(\theta_{0}\right)\right) .
$$

$\S 3.11$ 第十一章：修匀理论

Chapter Eleven：Theory of Smoothing

－Baysian修匀

Baysian Graduation Method：Let T be the vector of unknown true values of interest，and U be the vec－ tor of sample data．Then Baysian graduation method uses $V=E(T \mid U)$ to have the best estimates of T ． The underlying concept is very similar to Baysian es－ timation．
－Dirichlet修匀
Dirichlet Smoothing：Dirichlet smoothing method is a modification of Baysian graduation method．
－Everett公式

Everett＇s Formula

－分段函数修匀（样条修匀）
Spline Smoothing：The smoothing spline is a method of smoothing using a spline function．
－Kimeldorf－Jones方法
Kimeldorf－Jones Graduation Method：
Kimeldorf－Jones graduation method，whose prior dis－ tribution is a multi－normal distribution，is a special case of Baysian graduation method

－Whittaker修匀

Whittaker Graduation：Let w_{x} be the weight on index x, v_{x} and u_{x} be the estimated value and real－ ized value for index x correspondingly．Then Whit－ taker graduating method produces the best estimates via minimizing the form

$$
M=\sum_{x=1}^{n} w_{x}\left(v_{x}-u_{x}\right)^{2}+h \sum_{x=1}^{n-z}\left[\Delta^{Z} v_{x}\right]^{2},
$$

where h is the parameter，and Δ^{k} is the k－th moment different quotient．
－修匀过程（修匀算子）

Smoothing Process

－修匀误差

Smoothing Error

－移动加权平均修匀（m－w－a）
Moving－Weighted－Average Smoothing：Let u_{x} be the realized data value at index x ，then the moving－ weighted－average smoothing employs the form

$$
v_{x}=\sum_{r=-n}^{n} a_{r} u_{x+r},
$$

with the condition $a_{r}=a_{-r}$ ，where v_{x} is the estimate after smoothing，and a_{r}＇s are the weights．

$\S 3.12$ 第十二章：信度理论

Chapter Twelve：Credibility Theory

－半参数估计

Semi－parametric Estimation

－贝叶斯信度估计值

Baysian Credibility Estimation：Given the past claim experience $X_{1}, X_{2}, \ldots, X_{n}$ ，the Baysian Credibil－ ity Estimation is essentially the conditional expecta－ tion given the past data，formally，

$$
P=E\left(X_{n+1} \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right) .
$$

－部分信度

Partial Credibility：In limited fluctuation credibil－ ity theory，if one individual does not qualified for the full credibility，he is charged for premium

$$
P_{c}=z \bar{X}+(1-z) M,
$$

where \bar{X} is the average experience of this individual， M is the manual premium，and z is the credibility factor．Furthermore，z is taking the form of

$$
z=\min \left\{\frac{\xi}{\sigma} \sqrt{\frac{n}{\lambda_{0}}}\right\}
$$

where $\xi=E(X), \sigma=\sqrt{\operatorname{Var}(X)}$ ，and $\lambda_{0}=\left(y_{p} / r\right)^{2}$ ， and n is the number of past data for the individual．

－Buhlmann信度

Buhlmann Credibility：Let X_{i} be the i．i．d claim amount random variable for i－th claim，define

$$
\mu(\theta)=E\left(X_{i} \mid \Theta=\theta\right) ; v(\theta)=\operatorname{Var}\left(X_{i} \mid \Theta=\theta\right) .
$$

Let we have

$$
\mu=E(\mu(\theta)), v=E(v(\theta)), a=\operatorname{Var}(\mu(\text { theta })) .
$$

The Buhlman credibility factor is in form of

$$
z=\frac{n}{n+v / a}
$$

where n is the number of past claims．
－Buhlmman信度因子
Buhlmann Credibility Factor：Buhlmann cred－ ibility factor is the the credibility factor defined in Buhlmann model to calculate the premium．Refer to Buhlmann模型（Buhlmann Model）．

－Buhlmman模型

Buhlmann Model：In Buhlmann model，let X_{i} be the i．i．d claim amount random variable for i－th claim， define

$$
\mu(\theta)=E\left(X_{i} \mid \Theta=\theta\right) ; v(\theta)=\operatorname{Var}\left(X_{i} \mid \Theta=\theta\right)
$$

Let we have

$$
\mu=E(\mu(\theta)), v=E(v(\theta)), a=\operatorname{Var}(\mu(\text { theta })) .
$$

The Buhlmann credibility factor is in form of

$$
z=\frac{n}{n+v / a},
$$

where n is the number of past claims．The Buhlmann premium is

$$
P=z \bar{X}+(1-z) \mu .
$$

－Buhlmman－straub模型

Buhlmann－Straub Model：Buhlmann－Straub model extends Buhlmann model to groups of individ－ uals．

－Buhlmann线性估计

The Credibility Premium：In the way to calcu－ late the credibility premium，a linear approximation is employed．Mathematically，

$$
\tilde{X_{n+1}}=\alpha_{0}+\sum_{j=1}^{n} \alpha_{j} X_{j}
$$

where $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}$ should satisfy following equations
1．$E\left(X_{n+1}\right)=\alpha_{0}+\sum_{j=1}^{n} \alpha_{j} E\left(X_{j}\right)$ ，
2． $\operatorname{Cov}\left(X_{i}, X_{n+1}\right)=\sum_{j=1}^{n} \alpha_{j} \operatorname{Cov}\left(X_{i} X_{j}\right)$ ．
－纯保费

Manual Premium

－古典信度模型
Classic Credibility Model：Limited fluctuation credibility model is also called the classic credibility model．Refer to 有限波动信度（Limited Fluctuation Credibility）．

－精确信度

Exact Credibility：When Bulhmann credibility es－ timation matches the Baysian Credibility estimation， then we can the estimation has the exact credibility．

－经验贝叶斯估计

Empirical Baysian Estimation：Empirical Baysian Estimator gives the credibility premium from empirical data．

－完全信度

Full Credibility：In limited fluctuation theory，the full credibility is assigned to the insurer if following conditions are satisfied：

$$
\operatorname{Pr}(-r \xi \leq \bar{X}-\xi \leq r \xi) \geq p,
$$

where \bar{X} is the average of past experience of the indi－ vidual，$\xi=E(X), r$ and p are predetermined quanti－ ties（commonly $r=0.05, p=0.9$ ）．
Then the insurance company charge the individual premium equating \bar{X} ．

－先验分布（结构分布）

Prior Distribution：In greatest accuracy credibility theory，let θ be unknown risk factors effecting the in－ surers＇claim experience，we assume the distribution of $\theta, \pi(\theta)$ ，is known or predetermined，and $\pi(\theta)$ is called the prior distribution．
－信度估计
Credibility Estimation：The credibility premium sometimes is called the credibility estimation．
－信度理论
Credibility Theory：Credibility theory is a set of quantitative tools that allows an insurer to perform prospective experience rating（adjust future premiums based on past experience）on a risk or group of risks．
－信度因子
Credibility Factor：In credibility theory，the credi－ bility premium usually takes the form

$$
P_{c}=z \bar{X}+(1-z) M,
$$

where \bar{X} is the average claim experience and M is the manual premium．The proportional assigned to aver－ age past experience is called the credibility factor．

－有限波动信度

Limited Fluctuation Credibility：In credibili－ ty theory，limited fluctuation credibility theory is a branch represents the first attempt to quantify the credibility problem．

－最大精算信度模型

Greatest Accuracy Credibility Model： Buhlmann credibility model is also named the greatest accuracy credibility model．

§3．13 第十三章：随机模拟

Chapter Thirteen：Random Simulation

－Bootstrap模拟

Bootstrap Simulation：In Statistic，bootstrapping is a computer－based，method for assigning measures
of accuarcy to sample estimates．This technique al－ lows estimation of the sample distribution of almost any statistic using only very simple method．

－Box－Muller方法

Box－Muller Method：A Box－Muller transform is a method of generating pairs of independent standard normally distributed random numbers．
－乘同余法
Congruential Method：The one of the most com－ mon pseudorandom number generator is linear con－ gruential generator which is employed so－called＂con－ gruential method＂．It uses the recurrence

$$
X_{n+1}=\left(a X_{n}+b\right) \quad \bmod m
$$

to generate numbers．The starting value X_{0} is called the seed．
－方差缩减技术
Variance Deduction Method：In Monte Carlo sim－ ulation method，variance reduction is a procedure used to increase the precision of the estimates that can be obtained for a given number of iteration．The main variance deduction methods are：common ran－ dom numbers，antithetic variates，control variates，im－ portance sampling，and stratified sampling．

－反函数法

Inversion Method：For a continuous random vari－ able X with cumulative distribution function F_{X} ，then we can simulate X by inversion method described as follows：

1．draw a uniform random number U
2．$X_{\text {sim }}=F^{-1}(U)$ ．

－吉布斯抽样

Gibbs Sampling：In statistics，Gibbs sampling is an algorithm to generate a sequence of samples from the joint probability distribution of two or more random variables．In its basic version，Gibbs sampling is a special case of the Metropolis－Hasting algorithm．

－MCMC方法

Markov Chain Monte Carlo Method：Markove chain Monte Carlo methods are a class of algorithm for sampling from probability distributions based on constructing a Markov chain that has the desired dis－ tribution as its equilibrium distribution．

－metropolis－hasting抽样

Metropolis－Hasting Algoritm：In statistics，the Metropolis－Hasting algorithm is a Markov chain Monte Carlo method for obtaining a sequence of ran－ dom samples from a probability distribution for which direct sampling is difficult．
－伪随机数
Pseudorandom Number：A pseudorandom num－ ber generator，also known as a deterministic random bit generator，is an algorithm for generating a se－ quence of numbers that approximates the properties of random number．
－种子
Seed：Refer to 乘同余法（Congruential Method）．

$\S 3.14$ 第十四章：案例分析

Chapter Fourteen：Case Study
This chapter contains reading materials，and most of technique terms can be found out in previous context．

A5 Manual

§4 A5 Manual

$\S 4.1$ 第一章：生存分布与生命表

Chapter One：Survival Distributions and Life Tables

－De Moivre 律

De Moivre＇s Law：De Moivre＇s Law is a survival model applied in actuarial science，named for Abra－ ham de Moivre．It is a simple law of mortality based on a linear survival function．Under De Moivre＇s law， the force of mortality takes the form

$$
\mu(x)=\frac{1}{\omega-x}, 0 \leq x<\omega
$$

where ω is the parameter indicating the limiting age．

－分数年龄假设

Fractional Age Assumption：Fractional age as－ sumptions postulate analytical forms about the dis－ tribution between integer ages．

－Gompertz律

Gompertz＇s Law：Gompertz＇s Law is a mortality model applied in actuarial science．It is based on the observation that mortality rate over ages reveals ex－ ponential type increasing．According to Gompertz＇s law，the force of mortality is defined as

$$
\mu(x)=B c^{x}, x \geq 0
$$

where $B>0$ and $c>1$ are model parameters．

－简略未来生命时间长度随机变量

Curtate Future Lifetime Random Variable：In actuarial science，a discrete random variable associ－ ated with the future lifetime is the number of future years completed by (x) prior to death．It is called the curtate－future0lifetime of x and is denoted by $K(x)$ ． Thus，the corresponding random variable is called the curtate future lifetime random variable．
－均匀分布假设（均予分布）
Uniform Distribution of Deaths Assumption： UDD fractional age assumption is also known as linear interpolation assumption．Refer to 线性假设（Linear Interpolation Assumption）．

－Makeham律

Makeham＇s Law：Makeham＇s Law is a mortality model applied in actuarial science，and it is an im－ proved version of Gompertz＇s Law．In Makeham＇s law， the force of mortality has the form of

$$
\mu(x)=A+B c^{x}, x \geq 0
$$

where $B>0, c>1, A \geq-B$ are parameters．
－平均余寿
Expected Future Lifetime：The expected future lifetime of age (x) is denoted by $\stackrel{\circ}{e}_{x}$ equating to

$$
\stackrel{\circ}{e}_{x}=\int_{0}^{\infty}{ }_{t} p_{x} d t
$$

－人口极限年龄

Limiting Age：Limiting age is the maximum age an age (x) can live to，which is denoted by ω ．Mathemat－ ically，

$$
S(\omega)=0
$$

－生存函数

Survival Function：Refer to 生存分布（Survival Dis－ tribution）．
－生命表
Life Table：
－生存分布
Survival Distribution：Let $F_{X}(x)$ denote the dis－ tribution function of X ，and set

$$
S(x)=1-F_{X}(x)=\operatorname{Pr}(X \geq x)
$$

The function $S(x)$ is called the survival function，and the corresponding distribution is called the survival distribution．

－寿命随机变量

Age Random Variable：In actuarial science，the age random variable is always denoted by (x) mean－ ing a life at age x ．

－寿险精算

Actuarial Mathematics for Life Contingent Risks：

－双曲假设（Balducci假设）

Harmonic Interpolation Assumption（Balduc－ ci Assumption）：Under harmonic interpolation as－ sumption，the survival function between ages has the relationship with two ended integer ages as follows：

$$
\frac{1}{S(x+t)}=\frac{1-t}{S(t)}+\frac{t}{S(x+1)},
$$

where $0<t<1$ ．This is what is known as the hy－ perbolic or Balducci assumption，for under it ${ }_{t} p_{x}$ is a hyperbolic curve．

－死亡解析律

Mortality Law：The analytical forms for mortality or survival functions are called mortality laws．
－死亡力
Force of Mortality：Let $F(x)$ and $f(x)$ be the cu－ mulative distribution function and the corresponding
probability density function associated with future lifetime random variable for age (x) ，then the force of mortality of (x) is defined as

$$
\mu(x)=\frac{f_{X}(x)}{1-F_{X}(x)} .
$$

－Weibull律

Weibull＇s Law：Weibull＇s Law is a mortality model in actuarial science，which is defined as：

$$
\mu(x)=k x^{n}, x \geq 0
$$

where $k>0, n>0$ are parameters．

－未来累计生存人年数

Year Lived in This and All Subsequent Age In－ tervals：
－未来生命时间长度随机变量
Future Lifetime Random Variable：The future lifetime random variable of (x) is denoted by $T(x)$ ．

－线性假设

Linear Interpolation Assumption：The linear in－ terpolation assumption on fractional ages is often known as the uniform distribution，or，perhaps more properly，a uniform distribution of deaths assumption within each year of age．Under this assumption，${ }_{t} p_{x}$ is a linear function．

－整值平均余寿

Curtate Expectation of Life：The expected value of curtate future lifetime，$K(x)$ ，is denoted by e_{x} and is called the curtate expectation of life．By definition， we have

$$
e_{x}=E[K]=\sum_{k=0}^{\infty} k_{k} p_{x} q_{x+k}
$$

－指数假设（常力假设）
Exponential Interpolation Assumption（Con－ stant Force of Mortality）：Exponential interpola－ tion，or linear interpolation on $\log S(x+t)$ is consistent with the assumption of a constant force of mortality within each year of age．Under this assumption ${ }_{t} p_{x}$ is exponential．

$\S 4.2$ 第二章：人寿保险的精算现值

Chapter Two：Actuarial Present Values of Life Insurance

－保险利益
Insurance Benefit：Insurance benefit is the contrac－ tual payout agreed to by the carrier for the policy holder．
－保险费
Insurance Premium：The amount to be charged for a certain amount of insurance coverage is called the premium．

－保额函数

Benefit Function：Usually，benefit payout of a insur－ ance contract can be expressed as a function of years that contract is in force and denoted by b_{t} ，which is called the benefit function．

－保险金

Sum of Insured：The insurance coverage is also known as the sum of insured．
－变额保险
Varying Benefit Insurance：A varying benefit in－ surance policy agrees to pay non－leveled benefit at the claim．

－等额保险

Level Benefit Insurance：In life insurance，level Benefit Insurance provides the same amount of bene－ fits whenever an age (x) is dead．

－定期死亡保险

Term Life Insurance：An n－year term life insurance provides for a payment only if the insured dies within the n－year term of an insurance commencing at issue． If a unit is payable at moment of death of (x) ，then actuarial present value random variable Z is

$$
Z=\left\{\begin{array}{l}
v^{T}, T \leq n \\
0, T>n
\end{array}\right.
$$

－歪缴净保费

Single Net Premium

－精算贴现因子

Acturial Discount Factor：The actuarial present value of the unit pure endowment insurance present random variable is also denoted by ${ }_{n} E_{x}$ and called the actuarial discount factor in annuity context．

－精算现值

Actuarial Present Value：In actuarial science，the expectation of the present value random variable，Z ， of a certain insurance contract is called the actuarial present value of the insurance．

－两全保险

Endowment Insurance：An n－year endowment in－ surance provides for an amount to be payable either following the death of the insured or upon the survival of the insured to the end of the n－year term，whichever occurs first．If the insurance is for a unit amount and the death benefit is payable at the moment of death， then

$$
Z=\left\{\begin{array}{l}
v^{T}, T \leq n \\
v^{n}, T>n
\end{array}\right.
$$

－年度递减寿险
Annually Decreasing Life Insurance：An annu－ ally decreasing n－year term life insurance provides n at the moment of death during the first year，$n-1$ at the moment of death during the second year，and so on，with coverage terminating at the end of the n－ th year，Such an insurance has the following present value random variable

$$
Z=\left\{\begin{array}{l}
v^{T}(n-\lfloor T\rfloor), T \leq n \\
0, T>n,
\end{array}\right.
$$

where the \rfloor denote the greatest integer function．

－年度递增终身寿险

Annually Increasing Whole Life Insurance：An annually increasing whole life insurance providing 1 at the moment of death during the first year， 2 at the moment of death in the second year，and so on，is characterized by present value random variable：

$$
Z=\lfloor T+1\rfloor v^{T}, T \geq 0
$$

where the \rfloor denote the greatest integer function．

－人寿保险

Life Insurance

－生存保险
Pure Endowment：An n－year pure endowment pro－ vides for a payment at the end of the n years if and only if the insured survives at least n years from the time of policy issue．If the amount payable is unit， then

$$
Z=\left\{\begin{array}{l}
0, T \leq n \\
v^{n}, T>n
\end{array}\right.
$$

－贴现函数

Discount Function：Discount function is the func－ tion of time used to discount cash flows，usually de－ noted by $v(t)$ ．
－投保人

Policyholder

－延期保险

Deferred Insurance：An m－year deferred insurance provides for a benefit following the death of the in－ sured only if the insured dies at least m years follow－ ing policy issue．The benefit payable and the term of the insurance may be any of those discussed above． For example，an m－year deferred whole life insurance with a unit amount payable at the moment of death has

$$
Z=\left\{\begin{array}{l}
v^{T}, T>m \\
0, T \leq m
\end{array}\right.
$$

－终生寿险

Whole Life Insurance：Whole life insurance pro－ vides for a payment following the death of the insured at any time in the future．If the payment is to be a unit amount at the moment of death of (x) ，then

$$
Z=v^{T}, T \geq 0
$$

§4．3 第三章：生命年金的精算现值

Chapter Three：Actuarial Present Values of Life Annuity
－定期生命年金
Temporary Life Annuity：For the continuous pay－ ment case，the present value of a benefits random variable for an n－year temporary life annuity of 1 per year，payable continuously while (x) survives during the next n years，is

$$
Y=\left\{\begin{array}{l}
\bar{a}_{\bar{T} \mid}, 0 \leq T<n, \\
\bar{a}_{\bar{n} \mid}, T \geq n .
\end{array}\right.
$$

For the discrete case，the present value of a benefit random variable can be retrieved in a similar way．

－精算累计值

Actuarial Accumulated Value：Actuarial accumu－ lated value for the benefit cash flows represents the accumulated value considering the survival probabili－ ty of an age．For example，

$$
\bar{s}_{x: \bar{n} \mid}=\frac{\bar{a}_{x: \bar{n} \mid}}{n E_{x}}=\int_{0}^{n} \frac{1}{n-t} E_{x+t} d t,
$$

representing the actuarial accumulated value at the end of the term of an n－year temporary life annuity of 1 per year payable continuously while (x) survives．
－可分配期初年金
Apportionable Annuity－Due：This type of annu－ ity due，one with a refund for the period between the time of death and the end of the period represented by the last full regular payment，is called an appor－ tionable annuity－due．

－年度递减定期生命年金

Annually decreasing Term Life Annuity：An n－ year annually decreasing term life annuity，say，with payable of unit value 1 ，has a stream of payable of amount $n, n-1, \ldots, 1$ given the life is survival at the payable date for n－year．

－年度递增终身生命年金

Annually Increasing Whole Life Annuity：This type of life annuity，say，with first payable of unit val－ ue 1 ，has a stream of payable of amount $1,2,3,4, \ldots$ given the life is survival at the payable date．
－年金
Annuity：Annuity refers to any terminating stream of fixed payments over a specified period of time．

－期初付生命年金

Life Annuity Due：If the payments of a life annuity is due at the beginnings of the payment intervals，this type of annuity is called the life annuity due．
－期末付生命年金
Life Annuity Immediate：If the payments of a life annuity is due at the ends of the payment interval－ s ，then this type of annuity is called the life annuity immediate．

－确定期生命年金

Guaranteed Life Annuity：A guaranteed life annu－ ity is also called an n－year certain and life annuity．In this case，it is a whole life annuity with a guarantee of payments for the first n years．The present value of annuity payments is

$$
Y=\left\{\begin{array}{l}
\bar{a}_{\bar{n} \mid}, T \leq n \\
\bar{a}_{\bar{T} \mid}, T>n
\end{array}\right.
$$

Other types of guaranteed life annuities share the sim－ ilar concepts．
－生命年金
Life Annuity：A life annuity is a series of pay－ ments made continuously or at equal intervals（such as months，quarters，years）while a given life survives．
－完全期末年金
Complete Annuity－Immediate：This type of life annuity immediate，one with a partial payment for the period between the last full payment and the time of death，is called a complete annuity－immediate．

－延期生命年金

Deferred Life Annuity：For a deferred life annu－ ity，the payable is delivered by a deferred period．For example，an n－year deferred whole life annuity with continuous payments has the present value random variable Y defined as

$$
Y=\left\{\begin{array}{l}
0,0 \leq T<n \\
v^{n} \bar{a}_{\overline{T-n} \mid}, T \geq n
\end{array}\right.
$$

Other types of deferred life annuities share the similar concepts．

－终身生命年金

Whole Life Annuity：For a continuous whole life annuity，the payable is lasted until (x) is dead．Thus， the present value of benefit random variable can be expressed as

$$
Y=\bar{a}_{\bar{T} \mid}
$$

A discrete whole life annuity shares the similar con－ cept．

§4．4 第四章：均衡净保费

Chapter Four：Equivalent Net Premiums

－保额
Sum of Insured：Refer to 保险金（Sum of Insured）．
－百分位保费原则
The Portfolio Percentile Premium Principle：
The portfolio percentile premium principle requires that the loss random variable be positive with no more than a specified probability．

－财富效用函数

Utility Function：In economics，utility is a measure of relative satisfaction．Given this measure，one may speak meaningfully of increasing or decreasing utili－ ty，and thereby explain economic behavior in terms of attempts to increase one＇s utility．Given a wealth amount of ω ，then the function associated with ω ， $u(\omega)$ ，is called the utility function．

－等价原则

The Equivalence Premium Principle：Using the equivalence premium principle，the premium amount of an insurance product requires the condition

$$
E[L]=0
$$

to be satisfied，where L is the loss random variable． Equivalently，benefit premiums will be such that
E［present value of benefits］
$=E[$ present value of benefit premiums $]$ ．

－歪缴保费

Single Benefit Premium：When the equivalent principle is used to determine a single premium at policy issue for a life insurance or a life annuity，the premium is equal to the actuarial present value of ben－ efit payments and is called the single benefit premium．

－附加保费

Expense－loaded Premium：If the premium calcu－ lation allows for the insurance company＇s expenses， the proportion of gross premium to cover expenses is called the expense－loaded premium，i．e．，

$$
\text { Gross Premium }=\text { Net Premium }
$$

＋Expense－loaded Premium．

－净保费

Net Premium：If the premium calculation does not allow for the insurance company＇s expenses，in this case we refer to a net premium．

－可分配保费

Apportionable Premium：The apportionable pre－ mium is a type of fractional premium．Here，at death，
a refund is made of a portion of the premium related to the length of time between the time of death and the time of the next scheduled premium payment．

－损失函数

Loss Function：In calculating the benefit premium－ s using the equivalent principle，we always first con－ sider the loss function of the insurance product．For example，for a whole life insurance with unit payable immediately on the death of (x) ，the loss function at time t is defined as

$$
l(t)=v^{t}-P \bar{a}_{\bar{t}},
$$

which is the present value of the loss to the insurer if death occurs at time t ．The corresponding loss ran－ dom variable is

$$
L=l(t)=v^{T}-P a_{\bar{T} \mid} .
$$

－损失随机变量

Loss Random Variable：Loss random variables are random variables corresponding to the loss function of insurance products．Refer to 损失函数（Loss Func－ tion）．

－指数保费

Exponential Premium：Premiums based on the ex－ ponential premium principle，using an exponential u－ tility function，are known as exponential premiums．

－指数保费原则

Exponential Premium principle：Exponential premium principle is based on the expected utility of the insurer＇s wealth employing the exponential utility function to calculate premiums．

$\S 4.5$ 第五章：责任准备金

Chapter Five：Benefit Reserves

－保费差公式

Premium－difference Formula：For the continuous－ ly n－year term life insurance，the benefit reserve at time $t,{ }_{t} \bar{V}\left(\bar{A}_{x: \bar{n} \mid}\right)$ ，can be obtained by the premium－ difference formula

$$
{ }_{t} \bar{V}\left(\bar{A}_{x: \bar{n} \mid}\right)=\left[\bar{P}\left(\bar{A}_{x+t: \overline{n-t} \mid}\right)-\bar{P}\left(\bar{A}_{x: \bar{n} \mid}\right)\right] \bar{a}_{x+t: \overline{n-t} \mid} .
$$

－风险净额

Net Amount at Risk：$b_{h}-{ }_{h} V$ is called the net amount at risk for policy year h ，where b_{h} is the benefit payable in policy year h and ${ }_{h} V$ is the corresponding reserve．
－回溯公式
Retrospective Formula：For the continuously n－ year term life insurance，the benefit reserve at time s ，
${ }_{s} \bar{V}\left(\bar{A}_{x: \bar{n} \mid}\right)$ ，can be obtained by the retrospective for－ mula

$$
\begin{aligned}
{ }_{s} \bar{V}\left(\bar{A}_{x: \bar{n} \mid}\right)= & \bar{A}_{x+s: \overline{\overline{\mid}}}^{1}+{ }_{t} E_{x+s s+t} \bar{V}\left(\bar{A}_{x: \bar{n} \mid}\right) \\
& -\bar{P}\left(\bar{A}_{x: \bar{n} \mid}\right) \bar{a}_{x+s: \bar{t} \mid},
\end{aligned}
$$

for $t<n-s$ ．

－缴清保险公式

Paid－up Insurance Formula：For the continuously n－year term life insurance，the benefit reserve at time $t,{ }_{t} \bar{V}\left(\bar{A}_{x: \bar{n} \mid}\right)$ ，can be obtained by the paid－up insurance formula

$$
{ }_{t} \bar{V}\left(\bar{A}_{x: \bar{n} \mid}\right)=\left[1-\frac{\bar{P}\left(\bar{A}_{x: \bar{n} \mid}\right)}{\bar{P}\left(\bar{A}_{x+t: \overline{n-t \mid} \mid}\right)}\right] \bar{A}_{x+t: \overline{n-t} \mid} .
$$

－积累成本

Accumulated Cost of Insurance：For continuous case，the accumulated cost of insurance is defined as

$$
{ }_{t} \bar{k}_{x}=\frac{\bar{A}_{x: \bar{t} \mid}^{1}}{{ }_{t} E_{x}} .
$$

The discrete case shares the similar concept．
－前瞻损失
Prospective Loss

－期初责任准备金

Initial benefit Reserve：Let π_{h} be the benefit pre－ mium for the policy year h ，the sum ${ }_{h} V+\pi_{h}$ is called the initial benefit reserve for policy year h ．

－期末责任准备金

Terminal benefit Reserve：${ }_{h+1} V$ stands for the ter－ minal benefit reserve for policy year h ．
－责任准备金（准备金）
Benefit Reserve：The benefit reserve，also known as the actuarial reserve，is a liability equal to the net present value of the future expected cash flows of a contingent event．

－指数准备金

Exponential Reserve：The type of reserves calcu－ lated by the exponential principle，which utilizes the utility function of wealth，is called the exponential re－ serve．

§4．6 第六章：毛保费与修正准备金

Chapter Six：Gross Premiums and Mod－ ified Reserves

－保单费

Policy Fee：In calculating the gross premium，some parts of expenses do not vary directly with the death benefit b ，these type of expenses are included in gross premium and called the policy fee．
－保单维护费用
Renewal Expense：Renewal expenses are normal－ ly incurred by the insurer each time a premium is payable，and in the case of an annuity，they are nor－ mally incurred when an annuity payment is made．

－等价的续年度均衡保额

Equivalent Level Renewal Amount

－理赔费用
Termination Expense：In calculating the gross pre－ mium，the termination expenses occur when a policy expires，typically on the death of a policyholder or on the maturity date of a term insurance or endowmen－ t insurance．Generally these expenses are small，and are largely associated with the paperwork required to finalize and pay a claim．
－利润边际
Profit Margin：In life insurance，the profit margin is the net present value expressed as a proportion of the expected present value of the premiums，evaluated at the risk discount rate．
－毛保费
Gross Premium：The gross premium is calculated incorporating expenses．

－销售费用

Commission Expense：Commission if often paid to an agent in the form of a high percentage of the first year＇s premiums plus a much lower percentage of sub－ sequent premiums，payable as the premiums are paid．

－修正准备金

Modified Reserve

－业务获得费用
Initial Expense：Initial expenses are incurred by the insurer when a policy is issued．There are two major types of initial expenses－commission to agents for selling a policy and underwriting expenses．
－盈余

Surplus

－一年定期全缴费期修正法（FPF法）
Full Preliminary Term Method

$\S 4.7$ 第七章：多元生命函数

Chapter Seven：Multiple Life Functions

－Common Shock模型

Common Shock Model：Let $T^{*}(x)$ and $T^{*}(y)$ de－ note two future lifetime random variable that，in the absence of the possibility of a common shock，are in－ dependent；that is

$$
\begin{aligned}
S_{T^{*}(x) T^{*}(y)}(s, t) & =\operatorname{Pr}\left[T^{*}(x)>s \cap T^{*}(y)>t\right] \\
& =S_{T^{*}(x)}(s) S_{T^{*}(y)}(t) .
\end{aligned}
$$

In addition，there is a common shock random vari－ able，to be denoted by Z ，that can affect the joint distribution of time－until－death of lives (x) and（ y ）． This common shock random variable is independent of $\left[T^{*}(x), T^{*}(y)\right]$ and has an exponential distribution； that is

$$
s_{Z}(z)=e^{-\lambda z}, z>0, \lambda \geq 0 .
$$

The model described above is called the common shock model．
－多元生命函数

Multiple Life Functions

－Frank Copula模型

Frank Copula Model：Frank copula model has fol－ lowing settings．Given marginal distribution functions for time－until－death of lives (x) and $(y), F_{T(x)}(s)=$ ${ }_{s} q_{x}$ and $F_{T(y)}(t)={ }_{t} q_{y}$ ，and a parameter $\alpha \neq 0, T(x)$ and $T(y)$ have joint distribution function

$$
F_{T(x), T(y)}(s, t)=\frac{1}{\alpha} \ln \left[1+\frac{\left(e^{\alpha_{s} q_{x}}-1\right)\left(e^{\alpha_{t} q_{y}}-1\right)}{e^{\alpha}-1}\right] .
$$

－联合生存状态

Joint Life Status：A status that survives as long as all members of a set of lives survive and fails upon the first death is called a joint life status．
－边际分布函数
Marginal Distribution Function：Refer to 边缘分布（Marginal Distribution）．

－最后生存状态

Last Survivor Status：A survival status that exists as long as at least one member of a set of lives is alive and fails upon the last death is called the last survivor status．

§4．8 第八章：多元风险模型

Chapter Eight：Multiple Decrement

 Models－伴随单风险模型
Associated Single Decrement Model：For each of the causes of decrement recognized in a multiple decre－ ment model，it is possible to define a single decrement model that depends only on the particular cause of decrement．We define the associated single decrement model functions as follows：

$$
\begin{aligned}
{ }_{t} p_{x}^{\prime}{ }^{\prime(j)} & =\exp \left[-\int_{0}^{t} \mu_{x}^{(j)}(s) d s\right] \\
{ }_{t} q_{x}^{\prime}{ }^{\prime(j)} & =1-{ }_{t} p_{x}{ }^{\prime(j)}
\end{aligned}
$$

－多元风险表

Multiple Decrement Table：In a random survivor－ ship group，let us consider a group of $l_{a}^{(\tau)}$ lives age a years．Each life is assumed to have a distribution of
time－until－decrement and cause of decrement specified by the p．d．f

$$
f_{T, J}(t, j)={ }_{t} p_{a}{ }^{(\tau)} \mu_{a}^{(j)}(t), t \geq 0, j=1,2 \ldots, m
$$

Let ${ }_{n} d_{x}^{(j)}$ denote the expected number of lives who leave the group between ages x and $x+n, x \geq a$ ． Then we can derive following relationships

$$
\begin{aligned}
l_{x}^{(\tau)} & =l_{a}^{(\tau)}{ }_{x-a} p_{a}^{(\tau)}, \\
d_{x}^{(j)} & =l_{x}^{(\tau)} q_{x}^{(j)}
\end{aligned}
$$

This result allow us to display a table of $p_{x}^{(\tau)}$ and $q_{x}^{(j)}$ values in a corresponding table of $l_{x}^{(\tau)}$ and $d_{x}^{(j)}$ ．Either table is called a multiple decrement table．
－多元风险理论
Multiple Decrement Theory：The theory associ－ ated with multiple decrement model is called the mul－ tiple decrement theory．
－多元风险模型
Multiple Decrement Model：The model used to construct the multiple decrement table is called the multiple decrement model．

－确定存续群体

Deterministic Survivorship Group
－随机存续群体

Random Survivorship Group

－中心终止率
Central Rate of Decrement：The central rate of decrement from all causes is defined by

$$
m_{x}^{(\tau)}=\frac{\int_{0}^{1}{ }_{t} p_{x}^{(\tau)}(t) d t}{\int_{0}^{1} t p_{x}^{(\tau)} d t}
$$

－终止力
Force of Decrement：In multiple decrement model， the force of decrement due to cause j is defined as

$$
\mu_{x}^{(j)}(t)=\frac{f_{T, J}(t, j)}{1-F_{T}(t)}=\frac{f_{T, J}(t, j)}{{ }_{t} P_{x}^{(\tau)}},
$$

where $f_{T, J}(t, j)$ is the joint distribution of future life－ time random variable and the cause of decrement ran－ dom variable．

$\S 4.9$ 第九章：养老金计划的精算方法
 Chapter Nine：The Actuarial Calculation for Pension Plans

－解约
Withdraw
－捐纳金
Contribution：Pension contribution shares the sim－ ilar concept of premiums in life insurance contract．
－确定给付计划
Defined Benefit Plan：The defined benefit plan specifies a level of benefit，usually in relation to salary near retirement，or to salary throughout employment． The contributions，from the employer and，possibly， employee are accumulated to meet the benefit．If the investment or demographic experience is adverse，the contributions can be increased；if experience is favor－ able，the contributions may be reduced．

－确定缴费计划

Defined Contribution Plan：The defined contri－ bution plan specifies how much the employer will con－ tribute，as a percentage of salary，into a plan．The employee may also contribute，and the employer＇s con－ tribution may be related to the employee＇s contribu－ tion．The contributions are accumulated in a notional account，which is available to the employee when he or she leaves the company．The contributions may be set to meet a target benefit level，but the actual retire－ ment income may be well below or above the target， depending on the investment experience．

－养老金筹资理论

Theory of Pension Funding
－养老金计划
Pension Plan：The pension plan is usually sponsored by an employer．Pension plans typically offer employ－ ees either lump sums or annuity benefits or both on retirement，or deferred lump sum or annuity benefits （or both）on either withdrawal．

§4．10 第十章：多种状态转换模型

Chapter Ten：Multiple States Transi－ tion Models
－不可约的
Irreducible：A Markov chain is said to be irreducible if its state space is a single communicating class；in other words，if it is possible to get to any state from any state．

－常返状态

Recurrent State：Refer to 常返态（Recurrent State）．
－非常返状态
Transient State：Refer to 瞬态（Transient State）．
－基本矩阵
Fundamental Matrix：The fundamental matrix of the Markov chain is defined as

$$
Q=(I-S)^{-1}
$$

where I is the identity matrix and S is the transition probability matrix．
－吸收状态
Absorbing State：A state i is called absorbing if it is impossible to leave this state．Therefore，the state i is absorbing if and only if

$$
\operatorname{Pr}\left(X_{n+1}=i \mid X_{n}=i\right)=1,
$$

and

$$
\operatorname{Pr}\left(X_{n+1}=j \mid X_{n}=i\right)=0, \text { for } i \neq j .
$$

－极限概率

Limiting Probability：If the limiting probabilities of a Markov chain exist，then it can be expressed as

$$
\pi_{j}=\lim _{n \rightarrow \infty} P_{i j}^{(n)}
$$

where $P_{i j}^{(n)}$ is the n－step transition probability matrix from state i to j ．Moreover，$\left(\pi_{0}, \ldots, \pi_{n}\right)$ satisfy the condition

$$
\left(\pi_{0}, \ldots, \pi_{n}\right)=\left(\pi_{0}, \ldots, \pi_{n}\right) \cdot P
$$

－离散时间马尔可夫链

Discrete－time Markov Chain：
－示性变量
Indicator Random Variable：In statistics，an indi－ cator random variable only takes value 0 and 1 with probability p and $1-p$ ．

－相通的状态

Communicating State：In a Markov chain，a state i is said to communicate with state j if state j is ac－ cessible from state i and state i is also accessible from state j ．A state i accessible from state j means

$$
\operatorname{Pr}\left(X_{n}=i \mid X_{0}=j\right)>0
$$

－转移概率矩阵

Transition Probability Matrix：n－step transition probabilities can be collected in a matrix form，which is namely the transition probability matrix and denot－ ed by $P^{(n)}$ ．

§4．11 第十一章：人寿保险的主要类型

Chapter Eleven：Main Types of Life In－ surance

－保单红利

Reversionary Bonuses：In participating insurance， Reversionary bonuses are awarded during the term of the contract；once a reversionary bonus is awarded it is guaranteed．

－分红保险

Participating Insurance：Participating insurance is also known as with－profit insurance．Under with－ profit arrangements，the profits earned on the invested
premiums are shared with the policyholders．In North America，the with－profit arrangement often takes the form of cash dividends or reduced premiums．In the UK and in Australia the traditional approach is to use the profits to increase the sum insured，through bonuses called＂reversionary bonuses＂and＂terminal bonuses＂．

－投资连结保险

Equity－linked Insurance：Equity－linked insurance has a benefit linked to the performance of an invest－ ment fund．There are two different forms．The first is where the policyholder＇s premiums are invested in an open－ended investment company style account；at maturity，the benefit is the accumulated value of the premiums．The is a guaranteed minimum death bene－ fit payable if the policyholder dies before the contract matures．In some cases，there is also a guaranteed maturity benefit．The second form of equity－linked insurance is the equity－indexed annuity（EIA）in USA． Under an EIA the policyholder is guaranteed a mini－ mum return on their premium．At maturity，the poli－ cyholder receives a proportion of the return on a spec－ ified stock index，if that is greater than the guaranteed minimum return．

－万能保险

Universal Life Insurance：Universal life insurance combines investment and life insurance．The policy－ holder determines a premium and a level of life insur－ ance over．Some of premium is used to fund the life insurance；the remainder is paid into an investment fund．Premiums are flexible，as long as they are suffi－ cient to pay for the designated sum insured under the term insurance part of the contract．Under variable universal life，there is a range of funds available for the policyholder to select from．

§4．12 第十二章：特殊年金与保险

Chapter Twelve：Special Life Annuities and Insurance

－分期退还年金

Installment Refund Annuity：For the installment refund annuity contract，a sufficient number of pay－ ments is guaranteed so that the annuitant receives at least as much as the contract premium that was paid． Thus，for such a continuous annuity with contract pre－ mium，G ，the actuarial present value of benefits is

$$
\bar{a}_{\bar{G} \mid}+{ }_{G} E_{x} \bar{a}_{x+G} .
$$

－假设投资收益率

Assumed Investment Return

－家庭收入保险

Family Income Insurance：An n－year family in－ come insurance provides an income from the data of death of the insured，continuing until n years have elapsed from the date of issue of the policy．It is typ－ ically paid for by premiums over the n－year period， or some period shorter than n years，to keep benefit reserves positive．For a continuous annuity，if T is the time of death of the insured，the present value of benefits is

$$
Z=\left\{\begin{array}{l}
v^{T} \overline{a_{\overline{n-T}}}, T \leq n \\
0, T>n
\end{array}\right.
$$

－退休收入保险

Retirement Income Insurance

－现金退还年金
Partial Cash Refund Annuity：In a cash refund annuity contract，the death benefit is defined as the excess，if any，of the contract premium paid over the annuity payments received．If G is the single contract premium and T is the time of death，the present value of benefits on a continuous basis is

$$
Z=\left\{\begin{array}{l}
\bar{a}_{\bar{T} \mid}+(G-T) v^{T}, T \leq G \\
\bar{a}_{\bar{T} \mid}, T>G
\end{array} .\right.
$$

－最低保证年金

Guaranteed Minimum Annuity：

$\S 4.13$ 第十三章：寿险定价概述

Chapter Thirteen：Introduction on Pricing

This chapter contains reading materials，and most of technique terms can be found in previous context．

§4．14 第十四章：资产份额定价法

Chapter Fourteen：Calculation on As－ sets Share

－风险贴现利率
Risk Adjusted Discount Rate：Opposite to the risk free rate，risk adjusted discount rate is used to discount the risky cash flow which has possibilities to occur default．

－积累盈余

Emerging Surplus

－利润边际
Profit Margin：In life insurance，the profit margin is the net present value expressed as a proportion of the expected present value of the premiums，evaluated at the risk discount rate．

－投资回报率

Internal Rate of Return：The internal rate of re－ turn（IRR）is the interest rate such that the present value of the expected cash flows in zero．

－盈余平衡年

Payback Period：Payback period in capital budget－ ing refers to the period of time required for the return on an investment to＂repay＂the sum of the original investment．

－资产份额

Assets Share：In practice，the invested premium－ s may have earned a greater or smaller rate of return than that used in the premium basis，the expenses and mortality experience will differ from the premium ba－ sis．Each policy contributes to the total assets of the insurer through the actual investment，expense and mortality experience．It is of practical importance to calculate the share of the insurer＇s assets attributable to each policy in force at any given time．This amount is known as the asset share of the policy at that time and it is calculated by assuming the policy being con－ sidered is one of a large group of identical policies issued simultaneously．

$\S 4.15$ 第十五章：资产份额法的进一步应用

Chapter Fifteen：Further Applications of Asset Share

－通货膨胀

Inflation：In economics，inflation is a rise in the gen－ eral level of prices of goods and services in an economy over a period of time．
－退保
Withdraw

$\S 4.16$ 第十六章：保单现金价值及退保选择权

Chapter Sixteen：Cash Values and Withdraws

－现金价值

Cash Value：A policy which is canceled at the the request of the policyholder before the end of its origi－ nally agreed term，is said to lapse or to be surrendered， and any lump sum payable by the insurance company for such a policy is called a surrender value or a cash value．

－展期保险

Extended Insurance

$\S 4.17$ 第十七章：准备金评估I
 Chapter Seventeen：Valuation on Re－ serves I

－敏感性测试

Sensitivity Test：Sensitivity test is the study of how the variation in the output of a mathematical model can be apportioned，qualitatively or qualitatively，to different sources of variation in the input of the model．

§4．18 第十八章：准备金评估II
 Chapter Eighteen：Valuation on Re－ serves II

－偿付能力
Solvency：The solvency of a company indicates it－ s ability to meet its long－term fixed expenses and to accomplish long－term expansion and growth．

§4．19 第十九章：偿付能力监管制度介绍

Chapter Nineteen：Introduction on Su－ pervisory System of Insurance Solvency

This chapter contains reading materials，and most of technique terms can be found in previous context．

References

Bowers, N. L., Gerber, H. U., Hickman, J. C., Jones, D. A., and Nesbitt, C. J. (1997) Actuarial Mathematics. The Society of Actuaries.

Dickson, D. C. M., Hardy, M. R., and Waters, H. R. (2009) Actuarial Mathematics for Life Contingent Risks. Cambridge University Press.

Simonoff, J. S. (1996) Smoothing Methods in Statistics. Springer.

Klugman, S. A., Panjer, H. H., and Willmot, G. E. (2008) Loss Models: From Data to Decisions. John Wiley \& Sons.
Makridakis, S. G., Wheelwrights, S. C., and Hyndman, R. J. (1998) Forecasting: Methods and Applications. John Wiley \& Sons.

