Analysis of an Optimal Stopping Problem Arising from Hedge Fund Investing *

Xinfu Chen† David Saunders‡ John Chadam§

April 28, 2016

Abstract

We analyze the optimal withdrawal time for an investor in a hedge fund with a first-loss or shared-loss fee structure, given as the solution of an optimal stopping problem on the fund’s assets with a piecewise linear payoff function. Assuming that the underlying follows a geometric Brownian motion, we present a complete solution of the problem in the infinite horizon case, showing that the continuation region is a finite interval, and that the smooth-fit condition may fail to hold at one of the endpoints. In the finite horizon case, we show the existence of a pair of optimal exercise boundaries and analyze their properties, including smoothness and convexity.

*The authors thank Ben Djerroud, Kurt Henry, Luis Seco, and Mohammad Shakourifar, for helpful comments and suggestions. Chen is supported by NSF-DMS-1516344. David Saunders gratefully acknowledges support from an NSERC Discovery Grant.

†Department of Mathematics, University of Pittsburgh, xinfu@pitt.edu.

‡Corresponding Author. Department of Statistics and Actuarial Science, University of Waterloo, dsauanders@uwaterloo.ca.

§Department of Mathematics, University of Pittsburgh, chadam@pitt.edu.
1 Introduction

Traditionally, a “two and twenty” fee structure has been very common in the hedge fund industry. Under such an arrangement, investors pay the fund manager a flat fee of 2% of assets under management, together with a performance fee of 20% of the profits. The performance fee is essentially a call option on the underlying hedge fund value. More recently, a number of variants on the traditional fee structure have been proposed. “High watermark” provisions stipulate that fees for a given period are only paid when the fund value exceeds the previous maximum since the initial investment. See Goetzmann et al. [2003], Panageas and Westerfield [2009], Guasoni and Obloj [2013] for mathematical treatments. “First loss” and “shared loss” structures require the hedge fund manager to contribute capital to insure investors against losses on their investment in the fund. The resulting fee structures resemble portfolios of options, with the investor’s position being equivalent to a long position in the fund, a short position in a call option on the fund (the performance fee), and a long position in a put option bear spread\(^1\) on the fund. In a first-loss fee structure, He and Kou [2013] consider the portfolio selection decision of the fund manager, and its impact on the utility of both the manager and the hedge fund investor. Saunders et al. [2016] discuss the motivation for first-loss and shared-loss structures, and analyze the contracts using a risk-neutral valuation approach.

In this paper, we consider the liquidation timing decision of the investor in a hedge fund with a first-loss and/or shared-loss fee structure. We assume that the investor seeks to maximize the risk-neutral expected value of the payoff and that the underlying asset price, \(\{X_t^x\}_{t \geq 0}\), of the hedge fund follows a geometric Brownian motion:

\[
dX_t^x = rX_t^x dt + \sigma X_t^x dW_t, \quad X_0^x = x
\]

(1.1)

where \(\{W_t\}_{t \geq 0}\) is a standard Browian motion on a probability space \((\Omega, \mathcal{F}, P)\) with filtration \(\mathcal{F} = \{\mathcal{F}_t\}_{t \geq 0}\), the standard augmentation of the filtration generated by \(W\), satisfying the usual conditions. If we consider an infinite horizon, the investor’s optimal stopping problem becomes the optimization

\[
V(x) = \sup_{\tau \in \mathcal{T}} E[e^{-r\tau} g(X_\tau^x)]
\]

(1.2)

where \(\mathcal{T}\) is the set of all \(\mathcal{F}\) stopping times and \(\tau\) is interpreted as the time at which the investor withdraws from the fund. If there is a finite investment horizon \(T\), the optimal stopping problem becomes

\[
v(x, T) = \sup_{\tau \in \mathcal{T}_{[0,T]}} E[e^{-r\tau} g(X_\tau^x)]
\]

(1.3)

where \(\mathcal{T}_{[0,T]}\) is the set of all \(\mathcal{F}\) stopping times such that \(\tau \leq T\) almost surely. Under both the first-loss and the shared-loss fee structures, the payoff function \(g\) has the general form

\[
g(x) = \begin{cases}
A + Bx & \text{if } 0 \leq x \leq \kappa, \\
q + (1-q)x & \text{if } \kappa \leq x \leq 1, \\
p + (1-p)x & \text{if } 1 \leq x
\end{cases}
\]

(1.4)

\(^1\)Buying a put option with a higher strike price and selling a put option with a lower strike price.
where \((A, B, p, q, \kappa)\) is a set of parameters in the range

\[B \geq 1 \geq q > 0, \quad p \in (0, 1), \quad \kappa \in (0, 1), \quad A := q + (1 - q - B)\kappa \geq 0. \]

Note that \(g\) is non-negative and Lipschitz continuous with Lipschitz constant \(B\). In the above formulation, for normalization purposes, we have assumed that the initial fund investment (against which profits and losses are measured) was equal to 1. Figure 1 shows an example of the payoff with \(B = q = 1\). In this case, \(g(S) = 1 + (1 - p)\max\{S - 1, 0\} - \max\{\kappa - S, 0\}\), being a portfolio of unit cash (initial investment), a long position on \((1 - p)\) share of a call option with strike price one, and a short position on a put option with strike price \(\kappa\). We can view the investor as owning the fund, giving to the hedge fund manager 20% of all of the profits in return for the losses of the investor, up to a maximum of 30% of the initial investment. Other variations on this structure are possible, all leading to payoffs of the form (1.4). For example, in many cases the manager will make a direct investment in the fund, and the investor’s losses will be partially covered by this investment. See Saunders et al. [2016] for details.

The purpose of this paper is to provide a rigorous mathematical analysis for the value functions \(V\) and \(v\), as well as the optimal stopping times that attain the suprema in (1.3) and (1.2), for the payoff function given by (1.4).

The value function \(V\) for the optimal stopping problem (1.2) can be found explicitly. When \(p \geq q\), \(g\) is concave and it is optimal to exercise immediately. Otherwise, \(g\) is concave on \([0, 1]\), convex on \([\kappa, \infty)\), and there are two stopping boundaries, satisfying \(\kappa \leq S_1 < 1 < S_2\), and it is optimal to stop at the first time either of these boundaries is reached. The smooth-fit condition \(V' = g'\) always holds at \(S_2\), but it may fail at \(S_1\) depending on the values of the parameters. The finite horizon problem (1.3) inherits from the infinite horizon case the property of having two exercise boundaries \(s_1(T) < 1 < s_2(T)\). Furthermore, \(\lim_{T \to \infty} s_1(T) = S_1\), and \(\lim_{T \to 0} s_1(T) = 1\), and \(s_1\) is decreasing and \(s_2\) is increasing. In addition, we show that \(\ln s_1\) is convex and \(\ln s_2\) is concave.

The results are mainly derived by considering the value functions \(V, v\) as the unique solutions of variational inequalities, and then employing analytical techniques. Solution of the perpetual optimal
stopping problem (to find V) requires relatively elementary methods. To analyze the finite horizon problem, we consider the time derivative $u = \partial v/\partial T$ of the value function. Chen et al. [2008] employed a similar strategy to prove convexity of the exercise boundary for an American put option on an asset without dividends. We note that u satisfies a Stefan problem (in our case, with a delta function for the initial condition), an observation dating back to Schatz [1969] (see also van Moerbeke [1976]). Our approach involves analyzing a regularized version of the Stefan problem directly, employing uniform estimates to derive properties of the limiting solution as the regularizing parameter ε tends to zero, and then verifying that an appropriate integral of this Stefan problem solution is indeed the value function of the optimal stopping problem.

We note that our formulation of the problem ignores some aspects of the fee agreement that may be present in practice. First of all, we do not consider the fee for assets under management. If this is taken to be a lump sum paid at the time of initial investment, it will have no impact on the analysis of the timing decision. Secondly, if there is a maintenance fee to be paid continuously, it may be modeled by modifying the geometric Brownian motion (1.1) to have a constant dividend rate; this may have an impact on the nature of the solution of the optimal stopping problem. Thirdly, there may be a penalty for withdrawing investments from the hedge fund, which would alter the structure of the payoff g. The impact of these potential modifications is the subject of ongoing research.

For simplicity of presentation, we shall work with classical solutions, avoiding viscosity solutions as much as possible.

The remainder of the paper is structured as follows. Section Two analyzes the perpetual optimal stopping problem (1.2). Section Three considers the finite horizon problem (1.3), introduces the Stefan problem for $u := \partial v/\partial T$ and its regularization, and employs these to derive basic properties of the value function v. Section Four uses a more detailed analysis of the Stefan problem to derive convexity properties of the boundaries $s_1(T)$ and $s_2(T)$. Section Five discusses how to recover the value function v from the solution u of the underlying Stefan problem.

2 Perpetual Problem

In this section, we analyze the infinite horizon optimal stopping problem (1.2), by finding an expression for the value function. The expression is explicit, except for the need (for certain combinations of the parameters) to solve a nonlinear algebraic equation.

The payoff function g is Lipschitz continuous, and nonnegative, but not smooth. We first dispense with the uninteresting case when $p \geq q$.

Lemma 2.1. Consider the optimal stopping problem $V(x) = \sup_{\tau \in T} E[e^{-r\tau}g(X_\tau)]$, where g is concave, nonnegative, and continuous on $[0, \infty)$. Then $V = g$ and it is optimal to stop immediately.

Consequently, if g is given by (1.4) with $q \geq p$, then $V = g$ and it is optimal to stop immediately.
Proof. Set \(\mathcal{A} = \{(a,b)|g(x) \leq a + bx \ \forall x \in [0, \infty)\} \). For each \((a,b) \in \mathcal{A}\) and \(\tau \in \mathcal{T}\), \(a \geq g(0) \geq 0\) and

\[
\mathbb{E}[e^{-\tau t}g(X^x_\tau)] \leq \mathbb{E}[e^{-\tau t}(a + bX^x_\tau)] \leq a\mathbb{E}[e^{-\tau t}] + bx \leq a + bx
\]

by applying Theorem II.77.5 from Rogers and Williams [1994] (pages 189-190). Taking the supremum over \(\tau \in \mathcal{T}\) and \((a,b) \in \mathcal{A}\) we obtain \(V(x) \leq \min_{(a,b) \in \mathcal{A}} \{a + bx\} = g(x)\).

Throughout the remainder of the paper, we always assume that \(q > p\).

2.1 General Properties of the Value Function

In this subsection we first establish a few properties of the value function \(V\) and then convert the problem into a free boundary problem for an ordinary differential equation. We shall use the Dynamic Programming Principle (Pham [2009], page 97, El Karoui [1981], Theorem 1.17, pages 95–97): for any stopping time \(\sigma \in \mathcal{T}\),

\[
V(x) = \sup_{\tau \in \mathcal{T}} \mathbb{E}[e^{-\tau t}g(X^x_\tau)1_{\tau < \sigma} + e^{-\tau \sigma}V(X^x_\tau)1_{\sigma \leq \tau}]. \quad (2.1)
\]

For future use, we introduce a constant \(\beta\) and the Black-Scholes operator \(L\) by

\[
\beta := \frac{2r}{\sigma^2}, \quad Lf(x) := \frac{\sigma^2 x^2}{2}f''(x) + rx f'(x) - rf(x). \quad (2.2)
\]

It is easy to check that for given constants \(x_0 > 0\) and \(v_1 \in \mathbb{R}\), the solution to the initial value problem

\[
LW = 0 \text{ in } (0, \infty), \quad W(x_0) = g(x_0), \quad W'(x_0) = v_1 \quad (2.3)
\]

is unique and is given by

\[
W(x, x_0, v_0) = g(x_0) \left(\frac{\beta}{1 + \beta} \frac{x}{x_0} + \frac{1}{1 + \beta} \left(\frac{x}{x_0} \right)^{-\beta} \right) + \frac{v_1 x_0}{1 + \beta} \left(\frac{x}{x_0} - \left(\frac{x}{x_0} \right)^{-\beta} \right). \quad (2.4)
\]

Now we establish a few basic properties of the value function \(V\).

Lemma 2.2

Let \(g\) be given by \((1.4)\) (with \(q > p\)) and \(V\) be defined by \((1.2)\). Then the following holds:

(i) \(V\) is increasing, Lipschitz continuous, and \(g(x) \leq V(x) \leq \min\{A + Bx, g(x) + (A + B)x^{-\beta}\}\) for each \(x \in (0, \infty)\). In particular,

\[
V = g \text{ on } [0, \kappa], \quad \lim_{x \to \kappa} \left\{ V(x) - g(x) \right\} = 0. \quad (2.5)
\]

(ii) If \(V(a) = g(a)\) for some \(a \in [\kappa, 1)\), then \(V(x) = g(x)\) for all \(x \in [0, a]\).

(iii) If \(V(b) = g(b)\) for some \(b \in (1, \infty)\), then \(V(x) = g(x)\) for all \(x \in [b, \infty)\).

(iv) \(V(1) > g(1)\).

(v) If \(V > g\) on \((a, b) \subset [\kappa, \infty)\), then \(LV = 0\) on \((a, b)\) and \(V|_{[a,b]} \in C^\infty([a,b])\).
Proof. (i) $V(x) \geq g(x)$ is immediate, as is the fact that V is increasing (since g is increasing). The proof of Lipschitz continuity (with Lipschitz constant B), follows as in (Pham [2009], Lemma 5.2.1, page 96).

The bound of Lipschitz continuity (with Lipschitz constant B), follows as in (Pham [2009], Lemma 5.2.1, page 96).

Next we show that $V(x) \leq g(x) + (A+B)x^{-\beta}$. We need only consider the case when $x > 1$. Set $X_t^x = \inf\{t \geq 0 : X_t^x = 1\}$. Then $X_t^x > 1$ when $t \in [0, \sigma_x)$. Using the Dynamic Programming Principle:

$$V(x) = \sup_{\tau \in T} \mathbb{E}[e^{-r\tau}g(X_\tau^x)1_{\{\tau < \sigma_x\}} + e^{-r\sigma_x}V(X_{\sigma_x}^x)1_{\{\sigma_x \leq \tau\}}]$$

$$\leq \sup_{\tau \in T} \mathbb{E}[e^{-r\tau}(p + (1-p)X_\tau^x) + V(1)e^{-r\sigma_x}]$$

$$\leq p + (1-p)x + V(1)e^{-r\sigma_x}$$

$$\leq g(x) + (A+B)x^{-\beta}$$

where the last line follows from Itô and McKean [1974], pages 128-129.

(ii) Define a concave function \tilde{g} by $\tilde{g}(x) = \min\{g(x), q+(1-q)x\}$. Let $a \in [\kappa, 1)$ be such that $V(a) = g(a)$. For $x \in (0,a]$ set $\sigma_{x,a} = \inf\{t \geq 0 : X_t^x = a\}$. Then $X_t^x < a$ when $t \in [0, \sigma_{x,a})$ so

$$V(x) = \sup_{\tau \in T} \mathbb{E}[e^{-r\tau}g(X_\tau^x)1_{\{\tau < \sigma_{x,a}\}} + e^{-r\sigma_{x,a}}V(a)1_{\{\tau \geq \sigma_{x,a}\}}]$$

$$= \sup_{\tau \in T} \mathbb{E}[e^{-r(\tau \wedge \sigma_{x,a})}(\tilde{g}(X_{\tau \wedge \sigma_{x,a}})] \leq \tilde{g}(x) = g(x).$$

(iii) The proof is similar to that for (ii), except we define $\hat{g}(x) = \min\{g(x), p + (1-p)x\}$.
(iv) For \(\varepsilon > 0 \) and \(x \in (1 - \varepsilon, 1 + \varepsilon) \), set \(\tau_{x,\varepsilon} = \inf\{t > 0 : |X^x_t - 1| = \varepsilon\} \) and \(\tilde{V}(x) = \mathbb{E}[e^{-r\tau_{x,\varepsilon}}g(X^x_{\tau_{x,\varepsilon}})] \). Then \(\tilde{V}(x) \leq V(x) \), and \(\tilde{V} \) is a solution of \(L\tilde{V} = 0 \) in \((1 - \varepsilon, 1 + \varepsilon) \) and \(\tilde{V}(x) = g(x) \) at \(x = 1 \pm \varepsilon \). Solving this boundary value problem for \(\varepsilon \ll 1 \) we see that \(V(1) \geq \tilde{V}(1) > g(1) \).

(v) Suppose \(V > g \) on \((a, b) \). It follows from standard theory (Pham [2009]) that \(LV = 0 \) in \((a, b) \). Indeed, fix \(x \in (a, b) \), let \(\varepsilon \) be a small positive constant and define \(\tilde{V} \) as the solution of \(L\tilde{V} = 0 \) on \((x - \varepsilon, x + \varepsilon) \) with boundary condition \(\tilde{V}(x \pm \varepsilon) = V(x \pm \varepsilon) \). Set \(\sigma_x = \inf\{t : |X^x_t - x| = \varepsilon\} \). By taking \(\varepsilon \) small we have \(\tilde{V} > g \) in \([x - \varepsilon, x + \varepsilon] \). Also, \(e^{-rt\wedge\sigma_x} \tilde{V}(X^x_{t\wedge\sigma_x}) \) is a martingale. Then

\[
\tilde{V}(x) = \mathbb{E}[e^{-r\sigma_x}V(X^x_{\sigma_x})] \\
\leq \sup_{\tau \in T}\{e^{-rt}g(X^x_{\tau})\mathbf{1}_{\tau < \sigma_x} + e^{-r\sigma_x}V(X^x_{\tau})\mathbf{1}_{\tau \geq \sigma_x}\} \\
= V(x) \leq \mathbb{E}[e^{-rt\wedge\sigma_x}\tilde{V}(X^x_{t\wedge\sigma_x})] = \tilde{V}(x).
\]

Thus, \(V = \tilde{V} \) on \([a, b]\). In view of (2.4), we see that \(V|_{[a, b]} \), the restriction of \(V \) on the closed interval \([a, b]\), is smooth.

(vi) Clearly, \(S_1 \) and \(S_2 \) are well-defined. By the assertions (ii) and (iii), we see that \(V > g \) in \((S_1, S_2)\) and \(V = g \) on \([0, S_2] \cup [S_2, \infty)\). Now we show that \(S_2 < \infty \).

Suppose to the contrary that \(S_2 = \infty \), so that \(V > g \) in \([1, \infty)\). Then \(LV = 0 \) on \([1, \infty)\) so there exists constants \(C_1 \) and \(C_2 \) such that \(V(x) = C_1 x + C_2 x^{-\beta} \) for all \(x \in [1, \infty) \). This implies that

\[
\lim_{x \to \infty} \{V(x) - g(x)\} = \lim_{x \to \infty} \{C_1 x + C_2 x^{-\beta} - p(1 - p)x\} = -p + \lim_{x \to \infty} (C_1 + (1 - p))x \neq 0,
\]

contradicting (2.5). Thus, \(S_2 < \infty \).

(vii) Since \(V|_{[S_1, S_2]} \in C^\infty((S_1, S_2)) \), \(V > g \) on \((S_1, S_2)\) and \(V(S_2) = g(S_2) \), we have \(V'(S_2-) \leq g'(S_2) \).

Suppose to the contrary that \(V'(S_2-) < g'(S_2) \). For small positive \(\varepsilon \), define \(\tilde{V} \) as the solution of \(L\tilde{V} = 0 \) in \((S_2 - \varepsilon, S_2 + \varepsilon)\) with boundary condition \(\tilde{V}(S_2 \pm \varepsilon) = V(S_2 \pm \varepsilon) \). For \(x = S_2 \), set \(\sigma_x = \min\{t : |X^x_t - S_2| = \varepsilon\} \). Then we have

\[
\tilde{V}(x) = \mathbb{E}[e^{-r\sigma_x}V(X^x_{\sigma_x})] \leq V(x).
\]

However, since \(V'(S_2-) < V'(S_2+) \), by taking \(\varepsilon \) small, one can check that \(\tilde{V}(S_2) > V(S_2) = g(S_2) \). This contradicts the above inequality. Thus, we have the smooth fit \(V'(S_2 \pm) = g'(S_2) \).

(viii) If \(S_1 \in (\kappa, 1) \), a similar argument as above shows that \(V'(S_1+) = V'(S_1-) = g'(S_1) \). If \(S_1 = \kappa \), then since \(V \geq g \) we have \(V'(S_1+) \geq g'(S_1+) \). By a similar argument as above we can show that \(V'(S_1+) \leq g'(S_1-) \). Thus, \(V'(S_1) \in [g'(S_1+), g'(S_1-)] \).

(ix) Let \(\tau_x^* \) be defined as in (2.6). If \(x \in [0, S_1] \cup [S_2, \infty) \), then \(\tau_x^* = 0 \) and \(V(x) = g(x) = \mathbb{E}[e^{-r\tau_x^*}g(X^x_{\tau_x^*})] \).

If \(x \in (S_1, S_2) \), then since \(LV = 0 \) on \((S_1, S_2)\), we have (Pham [2009], pages 101–102)

\[
V(x) = \mathbb{E}[e^{-r\tau_x^*}V(X^x_{\tau_x^*})] = \mathbb{E}[e^{-r\tau_x^*}g(X^x_{\tau_x^*})].
\]
Thus, τ^* is an optimal stopping time. This completes the proof of Lemma 2.2. \qed

We can now translate part of Lemma 2.2 as follows:

Theorem 1. Let g be given by (1.4) ($q > p$) and V be the value function defined in (1.2). Then V, together with some unknown constants $S_1 \in [\kappa, 1)$ and $S_2 \in (1, \infty)$, solve the free boundary problem:

\[
\begin{aligned}
LV &= 0, \quad V > g & \text{in } (S_1, S_2), \\
V &= g & \text{in } [0, S_1] \cup [S_2, \infty), \\
V'(S_2) &= g'(S_2), \\
V'(S_1+) &= [g'(S_1+), g'(S_1-)].
\end{aligned}
\tag{2.7}
\]

Remark 2.1. We call S_1 and S_2 the free boundaries since a priori, they are unknown. The optimal stopping time τ^*_x can be interpreted as follows: It is suboptimal to continue holding the option once the asset value X_t^r drops below S_1, as it would be better to receive payment immediately. Similarly, it would be suboptimal to hold the option when the asset value is higher than S_2, since it is optimal to lock in gains when $X_t^r \geq S_2$.

Remark 2.2. Typically the underlying problem is formulated as a viscosity solution (see Crandall et al. [1992] or Touzi [2013]) of the variational inequality

\[
\min\{-LV, V - g\} = 0 \quad \text{in } (0, \infty), \quad V(0) = g(0), \quad \lim_{x \to \infty} \{V(x) - g(x)\} = 0.
\]

Instead of using the viscosity approach, we can use an alternative approach by defining the inequality $-LV \geq 0$ in $(0, \infty)$ as follows: $V \geq \hat{V}$ on $[a, b]$ if \hat{V} is the solution of $L\hat{V} = 0$ in (a, b) with boundary condition $\hat{V}(a) = V(a), \hat{V}(b) = V(b)$.

Another interpretation of $-LV \geq 0$ at non smooth points of V is that V'' has an upper bound. This implies that $V'(S+) \leq V'(S-)$ for any $S \in (0, \infty)$, since otherwise V'' would be a positive delta function at S. As $V > g$ in (S_1, S_2), this condition implies the smooth fit condition $V'(S_2) = g'(S_2)$ and the general consistent fit condition $V'(S_1+) \in [g'(S_1+), g'(S_1-)]$.

The simplest interpretation of $-LV \geq 0$ can be defined as $\{e^{-rt}V(X_t^r)\}_{t \geq 0}$ being a super-martingale (V is r-excessive for X).

2.2 Solution of the Perpetual Problem

Here we solve the free boundary problem (2.7), for unknown $(V, S_1, S_2) \in \text{Lip}([0, \infty)) \times [\kappa, 1) \times (1, \infty)$.

For parameters $S_1 \in [\kappa, 1)$ and $v_1 \in [1 - q, B]$, the solution of the initial value problem $LW = 0$ on $(0, \infty)$ with $W|x=S_1 = g(S_1), W'|x=S_1 = v_1$ has the form $W(x, S_1, v_1) = C_1 x + C_2 x^{-\beta}$ with

\[
C_1 = 1 - q + \frac{v_1 - (1 - q)}{1 + \beta} + \frac{\beta q}{(1 + \beta)S_1},
\tag{2.8}
\]

\[
C_2 = \frac{S_1^\beta}{1 + \beta} \left(q - [v_1 - (1 - q)]S_1 \right).
\tag{2.9}
\]
Note that \(v_1 < g(S_1)/S_1 \). One then can verify from (2.4) that \(W''(\cdot, S_1, v_1) > 0 \) on \((0, \infty)\).

If we seek for \(S_2 > 1 \) such that \(W = g \) and \(W' = g \) at \(S_2 \), we must solve

\[
C_1 S_2 + C_2 S_2^{-\beta} = p + (1 - p)S_2, \quad C_1 - \beta C_2 S_2^{-\beta - 1} = 1 - p,
\]

which are equivalent to

\[
C_1 = (1 - p) + \frac{\beta p}{1 + \beta} S_2, \quad C_2 = \frac{p}{1 + \beta} S_2^\beta.
\]

Eliminating \(S_2 \), we see that it is necessary and sufficient for \(C_1 \) and \(C_2 \) to obey the relation

\[
C_1 = (1 - p) + \frac{\beta p}{1 + \beta} \left(\frac{(1 + \beta)C_2}{p} \right)^{-1/\beta}.
\]

Substituting (2.8) and (2.9) into (2.10) and dividing both sides by \(q \) we obtain the condition for \((S_1, v_1)\) :

\[
0 = \frac{p}{q} - 1 + \frac{\beta}{1 + \beta} \frac{1}{S_1} \left\{ 1 - \left(\frac{p}{q} \right)^{1 + \frac{1}{\beta}} \left[1 - \frac{v_1 - (1 - q)\eta}{qS_1} \right]^{-\frac{1}{\beta}} \right\} + \frac{v_1 - (1 - q)}{q(1 + \beta)}.
\]

Set \(\eta = p/q \). If \(S_1 \in (\kappa, 1) \), then \(v_1 = g'(S_1) = 1 - q \), so (2.11) becomes \(S_1 = H(\eta) \) where:

\[
H(z) = \begin{cases} \frac{\beta}{1 + \beta} - \frac{1 - z}{1 - z} & \text{if } z \neq 1, \\ 1 & \text{if } z = 1. \end{cases}
\]

The following result is elementary.

Lemma 2.3. \(H \in C^\infty([0, \infty)), H' > 0 \) on \([0, \infty)\), \(H(1) = 1 \), and \(\lim_{z \to \infty} H(z) = \infty \).

The following result follows immediately from the above calculations together with Theorem 1 and the strict convexity of \(W \) on \([S_1, S_2]\) which ensures that \(W > g \) on \((S_1, S_2)\).

Lemma 2.4. If \(S_1 \in (\kappa, 1) \), then \(S_1 = H(\eta) > \kappa, \) \(S_2 = H(\frac{1}{\eta}) \), and

\[
V(x) = \begin{cases} W(x, S_1, 1 - q) & \text{if } x \in [S_1, S_2], \\ g(x) & \text{if } x \in [0, S_1] \cup [S_2, \infty). \end{cases}
\]

Finally, we give a complete characterization of the value function.

Theorem 2. The solution of the free boundary problem (2.7) is uniquely given as follows:

1. If \(\kappa \leq H(\eta) \), then \(S_1 = H(\eta), S_2 = H\left(\frac{1}{\eta}\right) \), and \(V \) is given by (2.13).

2. If \(\kappa > H(\eta) \), then

\[
S_1 = \kappa, \quad S_2 = \left(\frac{1 - \delta}{\eta} \right)^{\frac{1}{\beta}} \kappa,
\]

and

\[
V(x) = \begin{cases} W(x, \kappa, 1 - q + \frac{\delta S_2}{\kappa}) & \text{if } x \in [\kappa, S_2], \\ g(x) & \text{if } x \in [0, \kappa] \cup [S_2, \infty). \end{cases}
\]

where \(\delta \) is the unique root of \(F(\cdot) = 0 \) on \([0, 1 - \eta)\) and

\[
F(z) := z - \beta \eta^{1 + \frac{1}{\beta}} \left((1 - z)^{-\frac{1}{\beta}} - 1 \right) + (1 + \beta)(1 - \eta)\left(H(\eta) - \kappa \right).
\]
Proof. If $S_1 = \kappa$, we set $v_1 = 1 - q + \delta q / \kappa$, where $\delta \in [0,1-A/q]$, and (2.11) becomes $F(\delta) = 0$. Note that $F'(0) = (1 + \beta)(1 - \eta)(H(\eta) - \kappa)$, $F'' < 0$ on $[0,1)$, $F'(1 - \eta) = 0$, $F(1 - \eta) > 0$, and $F(1) = -\infty$.

Suppose $\kappa < H(\eta)$. There is no solution to $F(\cdot) = 0$ on $[0,1-\eta]$ and the solution of $F(\cdot) = 0$ in $(1-\eta,1)$ yields $S_2 < \kappa$ which cannot be used. Thus, $S_1 \in (\kappa,1)$ and we have the assertion of Lemma 2.4.

Suppose $k \geq H(\eta)$. We must have $S_1 = \kappa$, $\delta \in [0,1)$ and $F(\delta) = 0$. There are two solutions to $F(\delta) = 0$, $\delta_1 \in [0,1-\eta)$ and $\delta_2 \in (1-\eta,1)$. One can verify that setting $\delta = \delta_2$ yields $S_2 \in (0,\kappa)$, which thus cannot lead to a solution of (2.7). On the other hand, $\delta = \delta_1$ leads to $S_2 > 1$. It is then clear that V as specified above yields the unique solution of (2.7).

\[\square\]

3 Finite Horizon Case

In this section, we analyze the finite horizon optimal stopping problem; i.e., the value function given in (1.3), where $T_{[0,T]}$ is the set of all stopping times τ such that $0 \leq \tau \leq T$ almost surely.

As in the infinite horizon case, if $p \geq q$, it is optimal to exercise immediately, and $v(x,T) = g(x)$ for all T. Thus, in the sequel, we always assume that $p < q$.

3.1 Basic Properties of the Finite Horizon Problem

We begin with the following stability result. While we believe the result to be well-known, we are unaware of a precise reference:

Lemma 3.1. Let h be such that $\|h - g\|_{\infty} < \infty$ and let $v_h(x,T) = \sup_{\tau \in T_{[0,T]}} [E[e^{-r\tau}h(X_{\tau}^x)]]$. Then $\|v - v_h\|_{L^\infty([0,\infty) \times (0,\infty))} \leq \|h - g\|_{L^\infty((0,\infty))}$.

Proof. Let $\varepsilon > 0$ and τ_ε be an ε-optimal stopping time for v. Then

\[v(x,T) - v_h(x,T) \leq E[e^{-r\tau}g(X_{\tau}^x)] + \varepsilon - E[e^{-r\tau}h(X_{\tau_\varepsilon}^x)] \leq \|g - h\|_{\infty} + \varepsilon.\]

(3.1)

Since ε is arbitrary, $v(x,T) - v_h(x,T) \leq \|g - h\|_{\infty}$. The proof of $v_h(x,T) - v(x,T) \leq \|g - h\|_{\infty}$ is similar. Thus, $|v - v_h| \leq \|g - h\|_{\infty}$. \[\square\]

Since g is not smooth, in applications, this stability results allows us to replace g by its smooth regularization.

Next, we establish a relation between v and V. While we expect the following result be well-known in greater generality than presented here, we are unaware of a precise reference in the general case (for the American put, see Karatzas and Shreve [1998], Corollary 7.3, page 70, or Chen and Chadam [2007], Theorem 2.3, pages 1619-1620, for an analytic approach).

Lemma 3.2. For each $x \in [0,\infty)$ and $0 \leq T_1 \leq T_2$,

\[g(x) = v(x,0) \leq v(x,T_1) \leq v(x,T_2) \leq V(x), \quad \lim_{T \to \infty} v(x,T) = V(x).\]
Proof. Since $\mathcal{T}_{[0,T]} \subseteq \mathcal{T}_{[0,T]} \subseteq \mathcal{T}$, it is immediate that $v(x,T)$ is increasing in T and $g(x) = v(x,0) \leq v(x, T_1) \leq v(x, T_2) \leq V(x)$. In particular, for a fixed x, the $\lim_{T \to \infty} v(x,T)$ is well-defined.

Since $v(x,T) \leq V(x)$ for all T, we have that $\lim_{T \to \infty} v(x,T) \leq V(x)$. Let τ^*_x, given by (2.6), be the optimal stopping time for the perpetual problem. Then by Fatou’s Lemma:

$$\lim_{T \to \infty} v(x,T) \geq \lim_{T \to \infty} \mathbb{E}[e^{-r(\tau^*_x \wedge T)}g(X^x_{\tau^*_x \wedge T})] \geq \mathbb{E}[\lim_{T \to \infty} e^{-r(\tau^*_x \wedge T)}g(X^x_{\tau^*_x \wedge T})] = \mathbb{E}[e^{-r\tau^*_x}g(X^x_{\tau^*_x})] = V(x).$$

This completes the proof.

Since $g(x) \leq v(x,T) \leq V(x) = g(x)$ when $x \in [0,S_1] \cup [S_2, \infty)$, we have the following:

Proposition 1. The value function v is the unique continuous viscosity solution of

$$\min \left\{ \frac{\partial v}{\partial T} - Lv, v - g \right\} = 0 \quad \text{in} \quad (0, \infty) \times (0, \infty),$$

$$v(\cdot,0) = g(\cdot), \quad v(x,T) = g(x) \quad \forall x \in [0,S_1] \cup [S_2, \infty), T \geq 0. \quad (3.3)$$

Proof. That v is a viscosity solution is a standard derivation; see for example, Touzi [2013], pages 95–99. An alternative approach for viscosity solution is to use the interpretations described in Remark 2.2. We omit the details.

Consider the stopping and continuation regions at time to expiry T,

$$\mathcal{S}_T = \{x \geq 0|v(x,T) = g(x)\}, \quad \mathcal{C}_T = \{x > 0|v(x, T) > g(x)\}.$$

The following Lemma lists analogous properties in the finite horizon case to those given for the perpetual case in Lemma 2.2.

Lemma 3.3. For all $T \in (0, \infty)$, the following holds:

1. $1 \in \mathcal{C}_T$.
2. If $a \in (S_1,1) \cap \mathcal{S}_T$, then $[0,a] \subseteq \mathcal{S}_T$.
3. If $b \in (1,S_2) \cap \mathcal{S}_T$, then $[b,\infty) \subseteq \mathcal{S}_T$.

Proof. 1. Let ψ be the solution of the parabolic problem $\partial \psi/\partial T = Lv$ in $(0, \infty)^2$, $\psi(\cdot,0) = g$. Then $\psi(x,T) = \mathbb{E}[e^{-rT}g(X^x_T)] \leq v(x,T)$. Since $g'(1-) < g'(1+)$, one can check that $\psi(1,T) > g(1)$ for every $0 < T \ll 1$. Thus, $v(1,T) > g(1)$ for small T. Since v is increasing in T, we see that $v(1,T) > g(1)$ for all $T > 0$.

2. Suppose $a \in (S_1,1) \cap \mathcal{S}_T$. If the assertion $[0,a] \subseteq \mathcal{S}_T$ is not true, then $F(\cdot) := v(\cdot, T) - g(\cdot)$ on $[S_1,a]$ will attain a positive local maximum at some $\hat{x} \in (S_1,a)$. Also, v is a smooth solution of $\partial v/\partial T = L v$ in a neighborhood of (\hat{x}, T). Thus, $F''(\hat{x}) \leq 0, F'(\hat{x}) = 0, F(\hat{x}) > 0$. This implies that

$$0 < -LF(\hat{x}) = -v_T + Lg \leq Lg = -rq,$$

which is impossible. Thus, $[0,a] \in \mathcal{S}_T$.

3. Using $Lg = -rp$ on $(1, \infty)$, the proof follows in a manner analogous to the previous step.

The above lemma immediately implies the existence of free boundaries:

Lemma 3.4. For each $T > 0$, define

$$s_1(T) := \inf\{x > 0|v(x, T) > g(x)\}, \quad s_2(T) = \sup\{x > 0|v(x, T) > g(x)\}.$$ \hfill (3.4)

Then

$$v(\cdot, T) > g(\cdot) \text{ in } (s_1(T), s_2(T)), \quad v(\cdot, T) = g \text{ on } [0, s_1(T)] \cup [s_2(T), \infty).$$

Furthermore, $s_2(\cdot)$ is an increasing function, $s_1(\cdot)$ is a decreasing function, and

$$\lim_{T \to \infty} s_1(T) = S_1, \quad \lim_{T \to \infty} s_2(T) = S_2.$$

In the remainder of this paper, we shall study the free boundaries $x = s_1(\cdot)$ and $x = s_2(\cdot)$. Besides smoothness, we shall show that $\ln s_1(\cdot)$ is a convex function and $\ln s_2(\cdot)$ is concave function.

Remark 3.1. The fits $v_x(s_2(T), T) = g'(s_2(T))$ and $v_x(s_1(T)+, T) \in [g'(s_1(T)+), g'(s_1(T)-)]$ are typically hard to establish for viscosity solutions due to the lack of regularity. Here they can be proven by two facts: (i) viscosity solution of (3.1) is unique and (ii) taking the limit of regularization one can construct a viscosity solution satisfying $v_x \in C([\kappa, \infty) \times (0, \infty))$ so the smooth fit conditions are automatically satisfied.

3.2 Formal Derivation of a Stefan Problem

As outlined earlier, our basic strategy is to analyze the Stefan problem that is solved (at first formally) by the time derivative of the value function, and then to derive (rigorously) properties of the value function from the properties of the Stefan problem solution. In this section, we present a formal derivation of the Stefan problem, and outline the strategy to derive its properties. A rigorous verification will be given in Section 5.

We begin with the assumption that $\kappa \leq H(\eta)$, so for the infinite horizon problem, we have the smooth-fit free boundary condition. It is more convenient to carry out this analysis after having performed a change of variables as follows. We write the functions in the previous section as $v(S, T)$ and $s_j(T)$. We introduce new variables

$$x = \ln S, \quad t = \frac{\sigma^2}{2} T, \quad \mathcal{L} = \frac{\partial^2}{\partial x^2} + (\beta - 1) \frac{\partial}{\partial x} - \beta$$

$$x_j(t) = \ln s_j(T), \quad u = \frac{2}{(q-p)\sigma^2} \frac{\partial v}{\partial T} = \frac{1}{q-p} \frac{\partial v}{\partial t}.$$

Assume that the boundaries s_j are smooth. In the image of the continuation region, we should have $u_t = \mathcal{L} u$, since v should be a classical solution of $v_T = Lv$ in C. On the boundary of this region
Thus, formally, we should have $u = 0$ (by considering the left time derivative $\frac{\partial u}{\partial T}(s_j(T), T^-)$ and using that $v = g$ in \mathcal{S}). To derive a second condition on the boundary, assume that the smooth fit condition $(v - g)_S = 0$ at $s_j(T)$ holds. Differentiating with respect to T at $s_j(T)$ gives

$$
\frac{ds_j}{dT} = -\frac{v_{ST}(s_j(T), T)}{(v - g)_S}, \quad j = 1, 2.
$$

(3.5)

Now, on the boundaries,

$$
0 = v_T - Lv = -\frac{\sigma^2 s^2}{2}(v_{SS} - g_{SS}) - Lg \Rightarrow (v - g)_S = -\frac{2Lg}{\sigma^2 s^2}.
$$

Thus

$$
\frac{dx_j}{dt} = \frac{2}{\sigma^2 s_j} \frac{ds_j}{dT} = \frac{2}{\sigma^2 s_j} \frac{v_{ST}(s_j(T), T)}{(v - g)_S} = \frac{s_j v_{ST}}{Lg(s_j)} = \frac{(q - p)\sigma^2}{2Lg(s_j)} u_x.
$$

Note that $Lg = -rp$ in $(1, \infty)$ and $Lg = -rq$ in $(\kappa, 1)$, hence, we

$$
\ell_j \frac{dx_j}{dt} = -u_x(x_j(t), t)
$$

(3.6)

where:

$$
\ell_1 = \frac{2qr}{(q - p)\sigma^2}, \quad \ell_2 = \frac{2pr}{(q - p)\sigma^2} < \ell_1.
$$

(3.7)

Since it will turn out that $\dot{x}_2(t) > 0 > \dot{x}_1(t)$, from now on we use the notation $x_+(t) = x_2(t)$, $\ell_+ = \ell_2$, $x_- = x_1(t)$, $\ell_- = \ell_1$.

We show that $s_j(0+) = 1$, i.e. $x_\pm(0+) = 0$. Thus, at time zero, $u = \frac{2}{\sigma^2} \cdot \frac{1}{q - p} \cdot \frac{\partial u}{\partial T} = \frac{2}{\sigma^2(q - p)} Lg = \delta(x)$. Thus, formally, u, together with free boundary x_\pm, is the solution of the free boundary problem:

$$
\begin{cases}
 u_t - Lu = 0 & t > 0, \quad x_-(t) < x < x_+(t), \\
 u = 0 & t > 0, \quad x = x_\pm(t), \\
 \ell_+ \dot{x}_+(t) = -u_x(x_+(t), t) & t > 0, \quad x = x_+(t), \\
 \ell_- \dot{x}_-(t) = -u_x(x_-(t), t) & t > 0, \quad x = x_-(t), \\
 x_+(0) = x_-(0) = 0, \\
 \lim_{t \to 0} u(\cdot, t) = \delta(\cdot),
\end{cases}
$$

(3.8)

where $\ell_- = \ell_1$ and $\ell_+ = \ell_2$ is given by (3.7).

Note that the problem (3.8) does not depend on κ. Hence, as $t \to \infty$ we have

$$
\lim_{t \to \infty} x_-(t) = \ln H(\eta), \quad \lim_{t \to \infty} x_+(t) = \ln H(\eta^{-1}).
$$

Now consider two cases:

1. Suppose $\kappa \leq H(\eta)$. Then the function v can be recovered from the solution of (3.8) alone.

2. Suppose $\kappa > H(\eta)$. Then there exists a finite time $t^* > 0$ such that

$$
x_-(t^*) = \ln \kappa, \quad x'_-(t^*) < 0.
$$
where

\[x \in \mathbb{R} \]

Thus, for each small \(\varepsilon > 0 \), we study

\[
\begin{align*}
\tilde{u}_t - \mathcal{L}\tilde{u} &= 0, & t > t^*, \quad \ln \kappa < x < \tilde{x}_+(t), \\
\ell_+ \dot{x}_+(t) &= -u_x(x_+(t), t), & t > t^*, \\
\tilde{u}(\kappa, t) &= 0, \quad \tilde{u}(x_+(t), t) = 0, & t > t^*, \\
\dot{x}_+(t^*) &= x_+(t^*), \quad \tilde{u}(\cdot, t^*) = u(\cdot, t^*).
\end{align*}
\] (3.9)

The analysis of this free boundary problem with one free boundary is not more difficult than that of the free boundary problem (3.8) which has two free boundaries to consider.

3.3 Regularization of The Stefan Problem

The singularity of the initial condition in (3.8) makes it somewhat difficult to analyze directly. Consequently, we study its regularization. The stability result Lemma 3.1 allows us to replace \(u_0 \) by its smooth regularization. Thus, for each small \(\varepsilon > 0 \), we study

\[
\begin{align*}
\frac{d}{dt} x^\varepsilon_+(t) &= -u_x^\varepsilon(x_+^\varepsilon(t), t), & t > 0, \quad x_+^\varepsilon(t) < x < x_+^\varepsilon(t), \\
\frac{d}{dt} x^-_+(t) &= -u_x^\varepsilon(x_-^\varepsilon(t), t), & t > 0, \quad x = x_-^\varepsilon(t), \\
x_+^\varepsilon(0) &= x_+^0, \\
u^\varepsilon(x, 0) &= u^\varepsilon_0(x)
\end{align*}
\] (3.10)

where \(x_+^0 \) and \(u^\varepsilon_0 \) are carefully selected initial data, and \(\ell^\varepsilon_\pm \) are carefully selected parameters. As \(\varepsilon \searrow 0 \), we want

\[
x_+^\varepsilon, x_-^\varepsilon, u^\varepsilon \to x_+^0, x_-^0, u^\varepsilon_0 \text{ as } x \to x_+^\varepsilon, x_-^\varepsilon, u^\varepsilon \to u^\varepsilon_0 \text{ as } x \to x_+^0, x_-^0, u^\varepsilon \to u^\varepsilon_0 \text{ as } x \to \infty.
\]

We extend \(u^\varepsilon \) over \(\mathbb{R} \times (0, \infty) \) by \(u^\varepsilon = 0 \) for \(t \geq 0, x \in (-\infty, x_-^\varepsilon(t)) \cup (x_+^\varepsilon(t), \infty) \). The function \(v^\varepsilon \) will be defined by \(v^\varepsilon(x, t) = g^\varepsilon(x) + (q - p) \int_0^t u(x, \tau) d\tau \) for some suitably chosen \(g^\varepsilon \). It will be shown that \(v^\varepsilon \) is the value function with payoff function \(g^\varepsilon \). Thus, by comparison, \(\|v^\varepsilon - v\|_{L^\infty} \leq \|g^\varepsilon - g\|_{L^\infty} \).

After showing that \(g^\varepsilon \to g \), we find that \(v^\varepsilon \to v \) and \(x_+^\varepsilon \to x_\pm \). The boundaries \(x_\pm^\varepsilon \) are smooth and monotone, and it will be shown that \(x_+^\varepsilon \) is concave and \(x_-^\varepsilon \) is convex, and these properties carry over to their respective limits. The convexity properties are the most challenging. The strategy for their proof is as follows. First, it is shown that with a careful choice of the initial condition \(u^\varepsilon_0 \) the signs of the derivatives of \(u^\varepsilon \) have the pattern given in Figure 3.3.

The next step is to differentiate (with respect to \(t \)) the two boundary conditions for \(u^\varepsilon \) (i.e. \(u^\varepsilon = 0 \) and \(u^\varepsilon_x = -\ell^\varepsilon_\pm x^\varepsilon_\pm \)) on the boundaries \(x^\varepsilon_\pm \) to obtain

\[
\begin{align*}
u^\varepsilon_x(x_+^\varepsilon(t), t) \dot{x}_+^\varepsilon(t) + u^\varepsilon_t(x_+^\varepsilon(t), t) &= 0, \\
u^\varepsilon_x(x_-^\varepsilon(t), t) + u^\varepsilon_{xx}(x_+^\varepsilon(t), t) \dot{x}_+^\varepsilon(t) &= \ell^\varepsilon_+ \dot{x}_+^\varepsilon.
\end{align*}
\] (3.11) (3.12)

This gives that \(\dot{x}_+^\varepsilon(t) = -\phi^\varepsilon(x_+^\varepsilon(t), t) \), where

\[
\phi^\varepsilon(x, t) = \frac{u^\varepsilon_x(x, t)}{u^\varepsilon_x(x, t)}.
\]
Differentiating ϕ^ε with respect to x at $x^\varepsilon_\pm(t)$ and using (3.11) and (3.12) yields

$$
\phi^\varepsilon_x(x^\varepsilon_\pm(t), t) = u^\varepsilon_{xx}(u^\varepsilon_t + u^\varepsilon_{xx} \dot{x}^\varepsilon_\pm) - \frac{u^\varepsilon_{xx}}{u^\varepsilon_t + u^\varepsilon_{xx} \dot{x}^\varepsilon_\pm} = \frac{\dot{x}^\varepsilon_\pm}{u^\varepsilon_t + u^\varepsilon_{xx} \dot{x}^\varepsilon_\pm}.
$$

Therefore,

$$
x^\varepsilon_\pm(t) = \frac{\dot{x}^\varepsilon_\pm(t)}{u^\varepsilon_t + u^\varepsilon_{xx} \dot{x}^\varepsilon_\pm} \phi^\varepsilon_x(x^\varepsilon_\pm(t), t) = -\phi^\varepsilon(x^\varepsilon_\pm(t), t) \phi^\varepsilon_x(x^\varepsilon_\pm(t), t).
$$

(3.13)

From the signs of the derivatives of u^ε in Figure 3.3, we see that $\phi^\varepsilon(x^\varepsilon_-(t), t) > 0$ and $\phi^\varepsilon(x^\varepsilon_+(t), t) < 0$, so that the asserted convexity properties of x^ε_\pm will follow if it can be shown that $\phi^\varepsilon_x(x^\varepsilon_\pm(t), t) < 0$. For a careful choice of the initial condition u^ε_0, this can be proved using the PDEs satisfied by ϕ^ε and $\psi^\varepsilon := \phi^\varepsilon_x$ and a maximum principle argument.

4 The Stefan Problem

In this section, we study (3.10), establishing certain properties of the solution $(u^\varepsilon, x^\varepsilon_\pm)$. Since we directly connect v with u^ε, we omit most of the process of taking the limit as $\varepsilon \downarrow 0$ to obtain a classical solution of (3.8). In order to carry out the strategy outlined in Section 3.3, we require that the solutions u^ε have sufficient regularity, including on the boundaries x^ε_\pm. For this to hold, the conditions on the boundaries x^ε_\pm, and the initial condition u^ε_0 must satisfy consistency conditions (see, for example, Friedman [1964], Chapter 3). The zeroth order consistency condition comes from matching the values of the initial condition and the boundary conditions at time zero, and leads to:

$$
u^\varepsilon_0 > 0 \text{ in } (x^\varepsilon_-, 0, x^\varepsilon_+, 0), \quad u^\varepsilon_0(x^\varepsilon_\pm, 0) = 0.
$$

(4.1)
Note that since \(u^\varepsilon(x^\pm_+,t),t = 0 \), differentiation gives \(u^\varepsilon_t + u^\varepsilon_x x^\pm_+ = 0 \), so \(u^\varepsilon_t = -x^\pm_+ u^\varepsilon_x \) on \(x = x^\pm_+(t) \).
Using the second boundary condition \(x^\pm_+ = -\frac{1}{\ell^\pm_x} u^\varepsilon_x \) we obtain \(u^\varepsilon_t = \frac{1}{\ell^\pm_x}(u^\varepsilon_x)^2 \), which leads to the first order consistency condition:

\[
\ell^\pm_x \mathcal{L} u^\varepsilon_0(x^\pm_+,0) = (u^\varepsilon_x(x^\pm_+,0))^2. \tag{4.2}
\]

The following result can be proved using well-known techniques from the analysis of the Stefan problem. A sketch of the proof is given in the Appendix.

Lemma 4.1. Assume that \(u^0_\varepsilon \in C^4([x^-_+,0, x^-_+,0]) \) and satisfies (4.1) and (4.2). Then (3.10) admits a unique classical solution \((x^\pm_+,x^\pm_-,u^\varepsilon)\) with the following properties:

\[
x^\pm_+ \in C^\infty((0,\infty)) \cap C^{2+\alpha/2}(0,\infty) \quad \forall \alpha \in (0,1),
\]

\[
u^\varepsilon \in C^\infty(\cup_{t>0}[x^-_+(t),x^+_+(t)] \times \{t\}) \cap C^{3+\alpha,(3+\alpha)/2}(\cup_{t>0}[x^-_+(t),x^+_+(t)] \times \{t\}),
\]

\[
\dot{x}^\pm_+(t) > 0 > \dot{x}^\pm_-(t), \quad u^\varepsilon(x,t) > 0 \quad \forall x \in (x^-_+(t),x^+_+(t)), t \geq 0.
\]

The arguments in the appendix also yield the following estimate (used in the appendix to derive global existence for (3.10) from local existence). Recall that \(x_+(t) = \ln s_2(T), x_-(t) = \ln s_1(T) \) with \(T = 2t/\sigma^2 \).

Theorem 3. As \(\varepsilon \searrow 0 \), \(x^\pm \to x^\pm \). Also, \(x^\pm \in C^\infty((0,\infty)) \cap C([0,\infty)) \), \(\pm x^\pm(t) > 0 \) for \(t > 0 \), and

\[
x^\pm(0+)=0, \quad \left| \frac{dx^\pm(t)}{dt} \right| \leq \frac{|x^\pm(t)|}{\ell^\pm_x \sqrt{4\pi t}} \exp \left(-\frac{|x^\pm(t)|^2}{\ell^\pm_x 4t} - \frac{(\beta-1)x^\pm(t)}{2} - \frac{(\beta+1)^2}{4}t \right) \quad \forall t > 0. \tag{4.3}
\]

The differential inequality in (4.3) implies that \(x^\pm(t) = O(\sqrt{t} \ln t) \) as \(t \searrow 0 \). We omit the details.

Next, we proceed to show that under additional conditions on \(u^0_\varepsilon \), the signs of the derivatives of the solution \(u^\varepsilon \) to problem (3.10) have the pattern displayed in Figure 3.3. The proofs of the next two Lemmas are similar to the proof of Lemma 3.1 in Chen et al. [2008].

Lemma 4.2. Suppose, in addition to the conditions (4.1), (4.2), assumed in Lemma 4.1, that there exists \(x^\varepsilon_0 \in (x^-_+,0, x^+_+,0) \) such that \(u^\varepsilon_0 > 0 \) in \([x^-_+,0, x^+_+,0] \), \(u^\varepsilon_0 < 0 \) in \([x^+_0,0, x^-_+,0] \), and \(u^\varepsilon_0 x(x^\varepsilon_0) < 0 \). Then there exists a smooth curve \(x^\varepsilon_0(t) \) with \(x^\varepsilon_0(0) = x^\varepsilon_0 \) such that \(u^\varepsilon_0(x^\varepsilon_0(t),t) = 0, u^\varepsilon_0(x,t) > 0 \) for \(x \in [x^-_+(t),x^+_0(t)] \), and \(u^\varepsilon_0(x,t) < 0 \) for \(x \in (x^\varepsilon_0(t),x^+_+(t)) \). Furthermore, \(u^\varepsilon_0(x^\varepsilon_0(t),t) < 0 \).

Proof. Let \(D^\varepsilon = \{(x,t) | x^\varepsilon_-(t) < x < x^\varepsilon_+(t), t > 0 \} \). The Strong Maximum Principle (Friedman [1964], Theorem 3.1, pages 34–38) implies that \(u^\varepsilon > 0 \) in \(D^\varepsilon \). Since \(u^\varepsilon = 0 \) on \((-\infty,x^\varepsilon_-(t)) \cup [x^\varepsilon_+(t),\infty) \) there exists a point \(x^\varepsilon_0(t) \in (x^\varepsilon_-(t),x^\varepsilon_+(t)) \) where \(u^\varepsilon(\cdot,t) \) attains its (positive) maximum, and at which \(u^\varepsilon_0(x^\varepsilon_0(t),t) = 0 \). From Hopf’s boundary point lemma (Friedman [1964], Theorem 3.14, page 49), we have that \(u^\varepsilon_0(x^\varepsilon_-(t),t) > 0 \) and \(u^\varepsilon_0(x^\varepsilon_+(t),t) < 0 \). By differentiating, we see that \(w^\varepsilon = u^\varepsilon_0 \) solves \(\partial_t w^\varepsilon - \mathcal{L} w^\varepsilon = 0 \). Uniqueness of the point \(x^\varepsilon_0(t) \) in \((x^\varepsilon_-, x^\varepsilon_+)\) at which \(u^\varepsilon_0(x^\varepsilon_0(t),t) = w^\varepsilon(x^\varepsilon_0(t),t) = 0 \) then follows since \(w^\varepsilon \) has only one sign change on the parabolic boundary of \(D^\varepsilon \) (i.e. the single root at time 0; the number of
To prove smoothness, it is enough to show that $u_{xx}^ε(x_0^ε(t),t) < 0$, and then apply the Implicit Function Theorem. Let \(\tilde{w}^ε = e^{βt}u^ε \), \(\tilde{w}^ε = \tilde{u}^ε_x \), and note that \(\tilde{w}^ε_t = \tilde{w}^ε_{xx} + (β - 1)\tilde{w}^ε_x \) in \(D^ε \). For \(δ > 0 \), let \(t_1(δ) = \inf\{t > 0|\tilde{w}^ε(x^ε_+(t),t) = −δ\} \), \(t_2(δ) = \inf\{t > 0|\tilde{w}^ε(x^ε_-(t),t) = δ\} \), \(t^*(δ) = \min(t_1(δ),t_2(δ)) \), and note that \(\lim_{δ\to0} t^*(δ) = ∞ \) (if \(t^* \) were bounded along some sequence \(δ_n \) tending to zero, passing to a convergent subsequence would yield a point on one of the lateral boundaries of \(D^ε \) at which \(w^ε = 0 \), contradicting what was shown above). Fix \(ε < 1 \). For small enough \(δ > 0 \), both \(\tilde{w}^ε ± δ \) have only a single sign change on the parabolic boundary of \(D^ε,δ \) = \{ \((x,t)|x^ε_+(t) < x < x^ε_-(t),0 < t < ct^*(δ) \}\). Therefore, using the argument above, at each \(0 \leq t < ct^* \) there exist unique \(y^ε,δ^ε(t) \in D^ε,δ \) such that \(y^ε,δ^ε(t) < x^ε_+(t) < y^ε,δ^ε(t) \), and \(w^ε(y^ε,δ^ε(t),t) = ±δ \). Furthermore, Sard’s Theorem (see, e.g., Guillemin and Pollack [1974], pages 39–45), ensures the existence of a sequence \(δ_n \downarrow 0 \) such that \(y^ε,δ_n \) are smooth curves. Consider the domains \(B^ε,δ_n \subseteq D^ε,δ_n \), defined by \(B^ε,δ_n = \{ (x,t)|y^ε,δ_n(x,t) < x < y^ε,δ_n(x,t),0 < t < ct^*(δ_n) \} \), and note that the assumption that \(u_{0xx}^ε(x_0^ε) < 0 \) ensures that for small \(δ_n \), \(\tilde{w}^ε \) attains its minimum value of \(−δ \) on \(y^ε,δ_n \), and its maximum value of \(δ \) on \(\tilde{y}^ε,δ_n \). Thus for small enough \(δ_n \), \(\tilde{w}^ε < 0 \) on the entire parabolic boundary of \(B^ε,δ \) (by applying the Hopf Boundary point lemma on \(y^ε,δ_n \), and smoothness and the fact that \(u_{0xx}^ε(x_0^ε) < 0 \) for \(t = 0 \)). Since \((\tilde{w}^ε_x) = (\tilde{w}^ε_x)_xx + (β - 1)(\tilde{w}^ε_x)_x \), the Strong Maximum Principle implies that \(\tilde{w}^ε_x < 0 \) in all of \(B^ε,δ_n \), and in particular \(w^ε_x(x_0^ε(t),t) = u_{xx}^ε(x_0^ε(t),t) < 0 \) for \(0 \leq t < ct^*(δ_n) \). Since \(t^*(δ_n) \to ∞ \), smoothness of \(x_0^ε(t) \) follows.

Finally, on \(x_0^ε(t) \),

\[
u^ε_t(x_0^ε(t),t) = u_{xx}^ε(x_0^ε(t),t) + (β - 1)u^ε_x(x_0^ε(t),t) - βw^ε(x_0^ε(t),t) = u_{xx}^ε(x_0^ε(t),t) - βw^ε(x_0^ε(t),t) < 0.
\]

Lemma 4.3. Suppose, in addition to the conditions assumed in Proposition 4.2, that there exist \(z^ε_{x,0} \) with \(x^ε_{-,0} < z^ε_{-,0} < x_0^ε < z^ε_{+,0} \) \(< x_+^ε \) such that \(\mathcal{L}u_0^ε > 0 \) for \(x \in [ε,z^ε_{-,0}) \cup (z^ε_{+,0},ε] \), \(\mathcal{L}u_0^ε < 0 \) for \(x \in (z^ε_{-,0},z^ε_{+,0}) \), and \(\mathcal{L}u_0^ε = \frac{1}{ε^2}(u_0^ε)^2 \) at \(x = z^ε_{x,0} \). Then there exist smooth functions \(z^ε_{\pm}(t) \) satisfying:

\[
x^ε_-(t) < z^ε_-(t) < x_0^ε(t) < z^ε_+(t) < x^ε_+(t)
\]

such that \(u^ε_t > 0 \) if \(x \in [x^ε_-(t),z^ε_-(t)) \cup (z^ε_+(t),x^ε_+(t)) \), \(u^ε_t < 0 \) if \(x \in (z^ε_-(t),z^ε_+(t)) \), and \(u^ε_t = 0 \) if \(x = z^ε_±(t) \).

Proof. Since \(u^ε \equiv 0 \) on the boundaries \(x^ε_{\pm} \), differentiating yields \(u^ε_t + \dot{x}^ε u^ε_x = 0 \), so \(u^ε_t = -\dot{x}^ε u^ε_x = \frac{1}{ε^2}(u_0^ε)^2 > 0 \) on \(x = x^ε_{\pm} \). Furthermore, from Proposition 4.2 we have that \(u^ε_t < 0 \) on \(x = x_0^ε(t) \). The result then follows by applying the same arguments as in Proposition 4.2 on the domains \(D^ε_1 = \{ (x,t): x^ε_-(t) < x < x_0^ε(t),t > 0 \} \) and \(D^ε_2 = \{ (x,t): x_0^ε(t) < x < x^ε_+(t),t > 0 \} \).

\(^2\)The result in this reference is stated for a cylindrical domain; however the result immediately generalizes to our case with the same proof.
The following result asserts that there is an indeed an initial condition u_0^ϵ satisfying all of our requirements (the third requirement is used in the proof of convexity below). It turns out that the sum of a Gaussian function and a linear function suffices. The proof is given in the Appendix.

Lemma 4.4. There exist functions $u_0^\epsilon : [x_{-0}^\epsilon, x_{+0}^\epsilon] \to \mathbb{R}_+$ satisfying:

1. $u_0^\epsilon(x_{0+}^\epsilon, x_{0-}^\epsilon) = 0$, $u_0^\epsilon > 0$ in $(x_{-0}^\epsilon, x_{+0}^\epsilon)$, and there exists $x_0^\epsilon \in (x_{-0}^\epsilon, x_{+0}^\epsilon)$ such that $u_{0x}^\epsilon > 0$ in $[x_{-0}^\epsilon, x_{0-}^\epsilon]$.

2. $\mathcal{L}u_0^\epsilon = 1/\epsilon^2 (u_0^\epsilon)^2$ at $x = x_{0+}^\epsilon$, and there exist $z_{-0}^\epsilon, z_{+0}^\epsilon \in (x_{-0}^\epsilon, x_{+0}^\epsilon)$, with $z_{-0}^\epsilon < x_0^\epsilon < z_{+0}^\epsilon$, such that $\mathcal{L}u_0^\epsilon > 0$ in $[x_{-0}^\epsilon, x_{-0}^\epsilon] \cup (z_{-0}^\epsilon, x_{+0}^\epsilon)$, $\mathcal{L}u_0^\epsilon < 0$ in $(z_{-0}^\epsilon, z_{+0}^\epsilon)$, $\mathcal{L}u_0^\epsilon = 0$ at z_{-0}^ϵ.

3. $\frac{\partial}{\partial x} \left(\frac{\mathcal{L}u_0^\epsilon}{u_{0x}^\epsilon} \right) < 0$ in $[x_{-0}^\epsilon, x_{-0}^\epsilon] \cup [z_{+0}^\epsilon, x_{+0}^\epsilon]$.

4. $u_0^\epsilon \in C^4([-x_{-0}^\epsilon, x_{+0}^\epsilon])$. Extending u_0^ϵ by zero on $(-\infty, x_{-0}^\epsilon] \cup [x_{+0}^\epsilon, \infty)$ we have

$$\int_{\mathbb{R}} u_0^\epsilon(x) \, dx = 1.$$

Theorem 4. Suppose that u_0^ϵ satisfies all the properties enumerated in Lemma 4.4. Then the function ϕ_z is concave, and ϕ_z is convex.

Proof. As outlined in Section 3.2 we consider the function $\phi_\epsilon = \frac{\psi_\epsilon}{u_\epsilon}$ in $\{ (x, t) : t \geq 0, x \in [x_\epsilon(t), z_\epsilon(t)] \cup [z_\epsilon(t), x_\epsilon(t)] \}$. Differentiating gives

$$0 = \left(\frac{\partial}{\partial t} - \mathcal{L} \right) \phi_\epsilon = \left(\frac{\partial}{\partial t} - \mathcal{L} \right) (\phi_\epsilon \cdot u_x^\epsilon) = \phi_\epsilon \left(\frac{\partial}{\partial t} - \mathcal{L} \right) u_x^\epsilon + u_x^\epsilon (\phi_\epsilon - \phi_{xx} - (\beta - 1) \phi_x^\epsilon) - 2u_{xx}^\epsilon \phi_x^\epsilon,$$

so that

$$\phi_\epsilon'' - \phi_{xx} - (\beta - 1 + \frac{2u_{xx}^\epsilon}{u_x^\epsilon}) \phi_x^\epsilon = \phi_\epsilon' - \phi_{xx} - b^\epsilon \phi_x^\epsilon = 0,$$

(4.5)

where

$$b^\epsilon(x) = \beta - 1 + \frac{2u_{xx}^\epsilon}{u_x^\epsilon} \in C^{1+\alpha, (1+\alpha)/2}.$$

Differentiating again, and defining $\psi_\epsilon = \phi_x^\epsilon$ yields

$$\psi_\epsilon'' - \psi_{xx} - b^\epsilon \psi_x - b_x^\epsilon \psi_x = 0.$$

(4.6)

Next, we investigate the boundary behaviour of ψ_ϵ. Recalling that on $x_\epsilon(t)$,

$$\phi_\epsilon(x_\epsilon(t), t) = -x_\epsilon(t),$$

we have that

$$\dot{x}_\epsilon(t) = -\frac{d}{dt} \phi_\epsilon = -((\phi_\epsilon') + \phi_x^\epsilon \dot{x}_\epsilon^\epsilon) = -((\phi_x^\epsilon' + b^\epsilon \phi_x^\epsilon) - \phi_x^\epsilon') \text{ on } x_\epsilon(t).$$

Furthermore, by (3.13),

$$\dot{x}_\epsilon = -\phi_\epsilon'^\epsilon + \phi_x^\epsilon,$$

and equating these two expressions for \dot{x}_ϵ yields

$$\phi_{xx}(x_\epsilon(t), t) = \phi_{xx}(x_\epsilon(t), t) \cdot (2\phi_\epsilon(x_\epsilon(t), t) - b^\epsilon(x_\epsilon(t), t));$$

thus,

$$\psi_\epsilon(x_\epsilon(t), t) = \psi_\epsilon(x_\epsilon(t), t) \left[2\phi_\epsilon(x_\epsilon(t), t) - b^\epsilon(x_\epsilon(t), t) \right].$$

(4.7)
We proceed to show that \(\psi^\varepsilon(x^+_\varepsilon(t), t) < 0 \), which by (3.13) implies that \(x^+_\varepsilon \) is concave and \(x^-_\varepsilon \) is convex.

First, notice that \(\phi^\varepsilon < 0 \) on \(x^+_\varepsilon \), \(\phi^\varepsilon(x, 0) < 0 \) on \((z^+_{\varepsilon,0}, x^+_\varepsilon)\), and \(\phi^\varepsilon(z^-_{\varepsilon,0}(t), t) = 0 \) for \(t \geq 0 \). These observations, together with (4.5) and the Hopf Boundary Point Lemma imply that \(\psi^\varepsilon < 0 \) on \(z^+_\varepsilon \).

Furthermore, it is assumed (condition 3 in Lemma 4.4) that \(\psi^\varepsilon(x, 0) < 0 \) on \([z^+_{\varepsilon,0}, x^+_\varepsilon] \). Suppose that there exists \(t > 0 \) such that \(\psi^\varepsilon(x^+_\varepsilon(t), t) \geq 0 \), and let \(t_0 = \inf\{t > 0 : \psi^\varepsilon(x^+_\varepsilon(t), t) \geq 0\} > 0 \). Then, using (4.6), and noting that \(b^\varepsilon \) and \(b^\varepsilon_\varepsilon \) are smooth and bounded on \(D^\varepsilon = \{(x, t) : z^+_{\varepsilon}(t) < x < z^-_{\varepsilon}(t), 0 < t < t_0\} \), by the Strong Maximum Principle we have that \(0 = \psi^\varepsilon(x^+_\varepsilon(t_0), t_0) \) is the maximum of \(\psi^\varepsilon \) in \(D^\varepsilon \). The Hopf Boundary Point Lemma then implies that \(\psi^\varepsilon(x^+_\varepsilon(t_0), t_0) > 0 \). But \(\psi^\varepsilon(x^+_\varepsilon(t_0), t_0) = 0 \) and \(\psi^\varepsilon_\varepsilon(x^+_\varepsilon(t_0), t_0) > 0 \) contradict (4.7), and thus we must have \(\psi^\varepsilon(x^+_\varepsilon(t), t) < 0 \) for all \(t \). The proof that \(\psi^\varepsilon(x^+_\varepsilon(t), t) < 0 \) follows from a similar argument.

\[\square \]

Proposition 2. Assume that \(\kappa > H(\eta) \). Then there there is a \(t^* > 0 \) such that \(x^+_\varepsilon(t^*) = \ln \kappa \). Denote by \((u^\varepsilon, x^+_\varepsilon)\) for \(t > t^* \) as the solution \((\bar{u}, \bar{x}+)\) of (3.9). Then the function \(x^+_\varepsilon \) is concave.

The proof follows along the same lines as above.

5 Recovering the Value Function

In this section, we discuss how to recover the value function \(v \) from the solution of the Stefan problem \(u \).

Also, for notational simplicity, we abuse the notation \(g(x) \) and \(v(x, t) \) for the original functions \(g(S) \) and \(v(S, T) \) with \(S = x^\varepsilon \) and \(t = \sigma^2 T/2 \). For simplicity, we assume that \(\kappa \leq H(\eta) \). Then \(x_+(-\infty) = \ln H(1/\eta) \) and \(x_-(\infty) = \ln H(\eta) \). Extend \(u^\varepsilon \) by zero outside of the region \(D^\varepsilon = \{(x, t) : t > 0, x^\varepsilon(t) < x < x_+(t)\} \), and given a function \(g^\varepsilon \) (to be defined later), we define:

\[
v^\varepsilon(x, t) = g^\varepsilon(x) + (q - p) \int_0^t u^\varepsilon(x, s) \, ds, \quad \forall x \in \mathbb{R}, t \geq 0. \tag{5.1}
\]

For convenience, we define:

\[
T^\varepsilon(x) = \begin{cases}
\infty & x \in (-\infty, \ln H(\eta)] \cup [\ln H(1/\eta), \infty), \\
T^\varepsilon_\varepsilon(x) & x^\varepsilon(\infty) > x \geq x^\varepsilon(0) \quad \text{or} \quad x^\varepsilon(\infty) < x \leq x^-_\varepsilon(0), \\
0 & x^-_\varepsilon(0) < x < x^\varepsilon(0),
\end{cases}
\]

where \(t = T^\varepsilon_\varepsilon \) is the inverse function of \(x = x^\varepsilon_\varepsilon(t) \), \(0 \leq t < \infty \). Note that: \(u^\varepsilon > 0 \) if \(t > T^\varepsilon(x) \), \(u^\varepsilon = 0 \) if \(t \leq T^\varepsilon(x) \) and \(u^\varepsilon \) is Lipschitz continuous in \(\mathbb{R} \times [0, \infty) \). We obtain:

\[
v^\varepsilon(x, t) = g^\varepsilon(x) + (q - p) \int_{T^\varepsilon(x) \land t}^t u^\varepsilon(x, s) \, ds.
\]

Direct differentiation yields:

\[
\frac{1}{q - p} \frac{\partial v^\varepsilon}{\partial t} = u^\varepsilon = u^\varepsilon_0 + \int_0^t \frac{\partial u^\varepsilon}{\partial t}(x, s) \, ds
\]

\[
= u^\varepsilon_0 + \int_{T^\varepsilon(x) \land t}^t \frac{\partial u^\varepsilon}{\partial t}(x, s) \, ds \in C(\mathbb{R} \times [0, \infty))
\]
and:
\[
\frac{1}{q-p} \left(\frac{\partial v^\varepsilon}{\partial x} - g^\varepsilon_x \right) = \int_0^t \frac{\partial u^\varepsilon}{\partial x}(x, s) \, ds = \int_{T^\varepsilon(x) \wedge t} \frac{\partial u^\varepsilon}{\partial x}(x, s) \, ds \in C(\mathbb{R} \times [0, \infty)).
\]

When \(x^\varepsilon_+(0) \leq x \leq x^\varepsilon_+(t) \),
\[
\frac{1}{q-p} \left(\frac{\partial^2 v^\varepsilon}{\partial x^2} - g^\varepsilon_{xx} \right) = \int_{T^\varepsilon(x)} \frac{\partial^2 u^\varepsilon}{\partial x^2} (x, s) \, ds - \frac{\partial u^\varepsilon}{\partial x} (x, T^\varepsilon_+(x)) \cdot \frac{dT^\varepsilon_+}{dx} = \int_{T^\varepsilon_+(x)} \frac{\partial^2 u^\varepsilon}{\partial x^2} (x, s) \, ds + \ell^\varepsilon_+.
\]

Similarly,
\[
\frac{1}{q-p} \left(\frac{\partial^2 v^\varepsilon}{\partial x^2} - g^\varepsilon_{xx} \right) - \int_{T^\varepsilon(x) \wedge t} \frac{\partial^2 u^\varepsilon}{\partial x^2} \, dx = \begin{cases}
\ell^\varepsilon_+ & x^\varepsilon_+(0) < x < x^\varepsilon_+(t) \\
0 & x^\varepsilon_+(0) \leq x \leq x^\varepsilon_+(0) \\
\ell^\varepsilon_- & x^\varepsilon_+(t) < x < x^\varepsilon_-(0) \\
0 & x \in (-\infty, x^\varepsilon_-(t)] \cup [x^\varepsilon_+(t), \infty). \end{cases}
\]

Thus, \(v^\varepsilon_x - g^\varepsilon_x \in C(\mathbb{R} \times [0, \infty)), \ v^\varepsilon_{xx} - g^\varepsilon_{xx} \in L^\infty(\mathbb{R} \times [0, \infty)) \). Consequently, since \(u^\varepsilon - \mathcal{L} u^\varepsilon = 0 \) when \(t > T^\varepsilon(x) \), we have
\[
\frac{\partial v^\varepsilon}{\partial t} - \mathcal{L} v^\varepsilon = -\mathcal{L} g^\varepsilon + (q-p)[u^\varepsilon_0 - \ell^\varepsilon_+ 1_{(-\infty,x^\varepsilon_-(t))} - \ell^\varepsilon_- 1_{(x^\varepsilon_+(t),x^\varepsilon_-(0))}].
\]

Now we define \(g^\varepsilon \) as the unique solution of
\[
\mathcal{L} g^\varepsilon = (q-p)[u^\varepsilon_0 - \ell^\varepsilon_+ 1_{(-\infty,x^\varepsilon_- (0))} - \ell^\varepsilon_- 1_{(x^\varepsilon_+ (0),\infty)}]. \tag{5.2}
\]

Then we have:
\[
\frac{\partial v^\varepsilon}{\partial t} - \mathcal{L} v^\varepsilon = (q-p)[\ell^\varepsilon_+ 1_{(-\infty,x^\varepsilon_-(t))} + \ell^\varepsilon_- 1_{(x^\varepsilon_+(t),\infty)}] \geq 0 \quad \text{on } \mathbb{R} \times (0, \infty)
\]
and furthermore \(v^\varepsilon \geq g^\varepsilon \) on \(\mathbb{R} \times [0, \infty) \) so \(v^\varepsilon \) is solution of the variational inequality
\[
\min \left\{ \frac{\partial v^\varepsilon}{\partial t} - \mathcal{L} v^\varepsilon, v^\varepsilon - g^\varepsilon \right\} = 0 \quad \text{on } \mathbb{R} \times (0, \infty), \quad v^\varepsilon = g^\varepsilon \quad \text{on } \mathbb{R} \times \{0\}
\]
and therefore by the Comparison Principle
\[
\| v^\varepsilon - v \|_{L^\infty(\mathbb{R} \times [0, \infty))} \leq \| g^\varepsilon - g \|_{L^\infty(\mathbb{R})}. \tag{5.3}
\]

Note that
\[
\mathcal{L} g = (q-p) \left\{ \delta(x) - \ell_- 1_{(-\infty,0)} - \ell_+ 1_{(0,\infty)} \right\}.
\]

Thus,
\[
\frac{1}{q-p} \mathcal{L} (g^\varepsilon - g) = u^\varepsilon_0 - \delta(x) + \ell^-_+ 1_{[x^\varepsilon_-(0),0)} + \ell^-_+ 1_{[0,x^\varepsilon_+(0))} + (\ell_- - \ell^-_+) 1_{(-\infty,0]} + (\ell_+ - \ell^+_+) 1_{(0,\infty)}. \]
The Green’s function of the operator L is

$$G(x, y) = \begin{cases} e^{x-y} / (x-y), & x < y \\ e^{\beta(x-y)} / (x-y), & y \leq x, \end{cases}$$

so

$$\frac{g^\varepsilon(x) - g(x)}{q - p} = \int_\mathbb{R} G(x, y) \left(u_0^\varepsilon(y) - \delta(y) + \ell^\varepsilon_+ 1_{[x^\varepsilon_-, 0)} + \ell^\varepsilon_- 1_{(0, x^\varepsilon_+)} \right) dy + (\ell^\varepsilon_+ - \ell^\varepsilon_-) \int_0^\infty G(x, y) dy + (\ell^\varepsilon_- - \ell^\varepsilon_+) \int_{-\infty}^0 G(x, y) dy.$$

Since $\int_{-\infty}^\infty u_0^\varepsilon(x) \, dx = 1$ and $u_\varepsilon^\varepsilon(x) = 0$ if $x \leq x^\varepsilon_- (0)$ or $x \geq x^\varepsilon_+ (0)$, we derive that

$$\int_\mathbb{R} \left(u_0^\varepsilon(y) - \delta(y) \right) G(x, y) dy = \int_{x^\varepsilon_-, 0}^{x^\varepsilon_+, 0} (G(x, y) - G(x, 0)) u_0^\varepsilon(y) dy.$$

Hence,

$$\frac{|g^\varepsilon(x) - g(x)|}{q - p} \leq \|G\|_{x^\varepsilon_- (0)} \int_{x^\varepsilon_- (0)}^{x^\varepsilon_+ (0)} |y| u_0^\varepsilon(y) dy + \|G\|_{x^\varepsilon_- (0)} (\ell^\varepsilon_+ |x^\varepsilon_- (0)| + \ell^\varepsilon_- |x^\varepsilon_+ (0)|) + |\ell^\varepsilon_- - \ell^\varepsilon_+| + |\ell^\varepsilon_- - \ell^\varepsilon_+|$$

$$\leq \max(x^\varepsilon_- (0), |x^\varepsilon_+ (0)|) \left(1 + \frac{\ell^\varepsilon_+ + \ell^\varepsilon_-}{1 + \beta} \right) + |\ell^\varepsilon_- - \ell^\varepsilon_+| + |\ell^\varepsilon_- - \ell^\varepsilon_+|.$$

Sending $\varepsilon \searrow 0$ we have

$$\lim_{\varepsilon \searrow 0} \|v - v^\varepsilon\|_{L^\infty(\mathbb{R} \times (0, \infty))} = 0.$$

Since the free boundary of v^ε is $x = x^\varepsilon_\pm (t)$, by its convexity and the uniform estimate of its derivative on $[\delta, \infty)$ ($\delta > 0$), we see that

$$x^\pm(t) = \lim_{\varepsilon \searrow 0} x^\varepsilon_\pm(t).$$

The estimate in Theorem 3 and a bootstrap argument shows that $x^\pm \in C^\infty((0, \infty)) \cap C([0, \infty))$. In addition, $x^\pm(\cdot)$ is concave and x_- is convex.

We summarize our result as follows:

Theorem 5. Let v be solution of (1.3) with $q > p$ and let s_j be the function derived in Lemma 3.4. Then $\ln s_1(T)$ is a convex function and $\ln s_2(T)$ is a concave function. Also, $s_2 \in C^{\infty}((0, \infty)) \cap C([0, \infty))$ with $s_2(0) = 1$ and $s_2'(T) > 0$ for all $T > 0$.

If $k \leq H(\eta)$, then $s_1 \in C^{\infty}((0, \infty)) \cap C([0, \infty))$ with $s_1(0) = 1$ and $s_1'(T) < 0$ for all $T > 0$.

If $k > H(\eta)$, then there exists $T^* \in (0, \infty)$ such that $s_1'(T^*) < 0$ and $s_1(T) = \kappa$ for all $T \geq T^*$.
6 Appendix

6.1 Proof of Lemma 4.1

Fix \(\alpha \in (0, 1) \) and \(0 < h \ll 1 \). We first establish existence locally in time (i.e. for \(t \in [0, h] \)). We define by \(\mathbf{X} \) the subset of all \((x_+, x_-) \in C^{(3+\alpha)/2}([0, h]) \times C^{(3+\alpha)/2}(0, h]) \) satisfying:

\[
\begin{cases}
 x_\pm(0) = x^\pm_{\pm,0}, & \dot{x}_\pm(0) = -\frac{1}{\ell_\pm} u^\pm_{0,x} (x^\pm_{\pm,0}), \\
 \pm \dot{x}_\pm \geq 0 & \text{in } [0, h], \quad \|\dot{x}_\pm - \dot{x}_\pm(0)\|_{C^{(3+\alpha)/2}([0, h])} \leq 1.
\end{cases}
\]

For \((x_+, x_-) \in \mathbf{X} \) we define \(Q = \cup_{0 \leq t \leq h} \{ (x_-(t), x_+(t)) \times \{ t \} \} \) and let \(u \) be the solution of the initial boundary value problem:

\[
\begin{align*}
 u_t - \mathcal{L}u &= 0 \quad \text{in } Q, \\
 u(\cdot, 0) &= u^\circ_0 \quad \text{on } [x^-_{-0}, x^+_{+0}], \\
 u(x_\pm(t), t) &= 0 \quad \forall t \in (0, h].
\end{align*}
\]

We can transform the above into a problem on a cylindrical domain by considering:

\[
u(x, t) = U(z, t), \quad z = \frac{2z - (x_+(t) + x_-(t))}{x_+(t) - x_-(t)}, \quad x = \frac{x_+(t) + x_-(t)}{2} + \frac{x_+(t) - x_-(t)}{2} z.
\]

Then the above problem becomes:

\[
\begin{cases}
 U_t - a^2(t) U_{zz} - b(z, t) U_z - \beta U = 0 & \text{in } (-1, 1) \times (0, h], \\
 U(\pm1, t) = 0 & \text{for } t \in (0, h], \\
 U(z, 0) = U_0(z) := u^\circ_0 \left(\frac{x^+_{-0} + x^+_{+0}}{2} + \frac{x^+_{+0} - x^+_{-0}}{2} z \right) & \text{for } z \in [-1, 1],
\end{cases}
\]

where

\[
a(t) = \frac{2}{x_+(t) - x_-(t)}, \quad b(z, t) = \frac{\beta - 1 + (1 + z)x'_+(t) + (1 - z)x'_-(t)}{x_+(t) - x_-(t)}.
\]

Note that the zeroth order and first order compatibility is satisfied: \(U_0(\pm1) = 0 \) and

\[
a^2(0) U'''_0 + b(0) U' + \beta U_0 \bigg|_{z=\pm1} = \mathcal{L} u_0(x^+_{-0}) + x'_+(0) u_0(x^+_{+0}) = \mathcal{L} u_0(x^+_{-0}) - \frac{1}{\ell_\pm} u^\circ_{0x} x^2(x^+_{\pm,0}) = 0.
\]

Note that there exists a constant \(C_{1\varepsilon} \) such that

\[
\|a, b\|_{C^{(3+\alpha)/2}([0, h])} \leq C_{1\varepsilon}, \quad a(t) \geq \frac{2}{x^+_{+0} - x^+_{-0}} \forall t \in [0, h].
\]

Thus there exists another constant \(C_{2\varepsilon} \) such that

\[
\|U\|_{C^{3+\alpha}([0, h] \times [-1, 1])} + \|U_x\|_{C^{2+\alpha}([0, h] \times [-1, 1])} \leq C_{2\varepsilon}.
\]

Notice that, by Hopf Lemma,

\[
\pm \frac{\partial u}{\partial x}(x_\pm(t), t) = \pm a(t) \frac{\partial U}{\partial z}(\pm1, t) < 0 \quad \forall t \in [0, h].
\]

We now define \(\mathbf{T} : (x_+, x_-) \to (\dot{x}_+, \dot{x}_-) \) by:

\[
\dot{x}_\pm(t) = x^\circ_{\pm,0} - \int_0^t \frac{a(t')}{\ell_\pm} \frac{\partial U}{\partial z}(\pm1, t') \, dt' \quad \forall t \in [0, h]. \quad (6.3)
\]
Then \(\tilde{x}_\pm(0) = x^\varepsilon_{\pm,0} \), \(\pm \hat{x}_\pm > 0 \) and \(\hat{x}_\pm = -\frac{1}{t^2} u_x(x_\pm(t),t) \in C^{\frac{2+\alpha}{2}}([0,h]) \). In addition,
\[
\| \hat{x}_\pm - \hat{x}_\pm(0) \|_{C^{1+\alpha/2}([0,h])} \leq C h^{\frac{1-\alpha}{2}} \leq 1
\]
for sufficiently small \(h \). Thus, \(T \) maps \(X \) to itself. Since \(\| \hat{x}_\pm \|_{C^{2+\alpha/2}([0,h])} \leq C \varepsilon \) we see that \(T \) is a compact mapping. Thus, by Schauder’s Fixed Point Theorem, \(T \) has a fixed point, which gives a solution of (3.10) for \(t \in [0,h] \). By taking \(h \) smaller if necessary, one can show that \(T \) is a contraction. Thus this solution is unique. By a bootstrap argument, one can show that
\[
x^\varepsilon_+ \in C^\infty((0,h]) \cap C^{2+\alpha/2}([0,h]), \quad U_\varepsilon \in C^\infty([-1,1] \times (0,h]) \cap C^{2+\alpha,1+\alpha/2}([-1,1] \times [0,h]).
\]

In order to derive global existence from local existence, we require some a priori bounds.

Fix an arbitrary \(t_0 > 0 \) in the known time existence interval. Set \(L = x^\varepsilon_+(t_0) \). We extend \(u_0^\varepsilon \) to \(\mathbb{R} \) by setting \(u_0^\varepsilon(x) = 0 \) for \(x \in (-\infty,x^\varepsilon_{-0}] \times [x^\varepsilon_{+0},\infty) \). Now let \(K \) be the solution of:
\[
(\partial_t - L)K = 0 \quad \text{in} \quad (-\infty,L) \times (0,t_0],
\]
\[
K(L,t) = 0 \quad \forall t \in [0,t_0], \quad K(x,0) = u_0^\varepsilon(x) \quad \forall x \in (-\infty,L].
\]

Since \(u_0^\varepsilon \geq 0 \), we have \(K > 0 \) in \((-\infty,L) \times (0,t_0] \). Compare \(K \) with \(u^\varepsilon \) we find that \(u^\varepsilon \leq K \) on \((-\infty,L] \times [0,t_0] \). Since \(u^\varepsilon(L,t_0) - K(L,t_0) = 0 \) and \(u^\varepsilon(x,t_0) - K(x,t_0) < 0 \) for \(x < L \), we find that
\[
0 \leq |u^\varepsilon(L,t_0)| \leq |K_x(L,t_0)|.
\]

Using the fundamental solution we find that
\[
K(x,t) = \frac{e^{-\frac{L}{t}x - \frac{\beta+1}{4}t}}{\sqrt{4\pi t}} \int_{-\infty}^{L} e^{\frac{\beta-1}{2}y} u_0^\varepsilon(y) \left(e^{-(x-y)^2/(4t)} - e^{-(x+y-2L)^2/(4t)} \right) dy.
\]
\[
K_x(L,t) = \frac{e^{-\frac{L}{t}x - \frac{2+\alpha+1}{4}t}}{\sqrt{4\pi t}} \int_{-\infty}^{L} e^{\frac{\beta-1}{2}y} u_0^\varepsilon(y) \frac{y-L}{t} e^{-(L-y)^2/(4t)} dy.
\]

Since \(u_0 \) is supported on \([-x^\varepsilon_{-0},x^\varepsilon_{+0}] \), we thus obtain
\[
|K_x(L,t)| \leq \frac{L-x^\varepsilon_{-0}}{\sqrt{4\pi t^3}} e^{-|L-x^\varepsilon_{+0}|^2/(4t)} e^{-(\beta-1)\alpha/2} e^{-(\beta+1)\alpha/2} \sqrt{4\pi t^3}.
\]

Assume for simplicity that \(\int_\mathbb{R} e^{-\frac{\beta-1}{2}y} u_0^\varepsilon(y) dy \leq 1 \). Then
\[
0 \leq \frac{d}{dt} x^\varepsilon_+(t_0) = -\frac{\partial u(L,t_0)}{\partial x} \leq \frac{(L-x^\varepsilon_{-0}) e^{-(L-x^\varepsilon_{-0})^2/(4t_0) + \frac{\beta+1}{2}L - \frac{(\beta+1)^2}{4} t_0}}{\sqrt{4\pi t_0^3}}
\]
Replace \(L \) by \(x^\varepsilon_+(t_0) \), we then obtain the estimate for \(|\dot{x}^\varepsilon_+(t_0)| \). After a similar analysis for \(\dot{x}^\varepsilon_-(t_0) \) and replace \(t_0 \) by arbitrary \(t > 0 \) we hence obtain the following:
\[
\left| \frac{dx^\varepsilon_+(t)}{dt} \right| \leq \frac{x^\varepsilon_+(t) - x^\varepsilon_{-0}}{\frac{1}{\sqrt{4\pi t^3}}} \exp \left(-\frac{[x^\varepsilon_+(t) - x^\varepsilon_{-0}]^2}{4t} - \frac{[\beta-1]x^\varepsilon_+(t)}{2} - \frac{(\beta+1)^2 t}{4} \right) \quad \forall t > 0,
\]
23
which implies global existence.

Finally we use conservation of energy (integrating \(u^\varepsilon - \mathcal{L} u^\varepsilon = 0 \) and \(e^{\beta t}(u^\varepsilon_t - \mathcal{L} u^\varepsilon_t) = 0 \)) to derive

\[
\int_{x_-^\varepsilon}^{x_+^\varepsilon} u_0^\varepsilon(x) dx \geq \int_0^{x_+^\varepsilon} \varepsilon^2 [x^\varepsilon(t) - x_{-0}^\varepsilon] dt + \int_0^{x_-^\varepsilon} \varepsilon^2 [x^\varepsilon(t) - x_{+0}^\varepsilon],
\]

\[
e^{-\beta t} \int_{x_-^\varepsilon}^{x_+^\varepsilon} u_0^\varepsilon(x) dx \leq \int_0^{x_+^\varepsilon} u^\varepsilon(x, t) dt + \int_0^{x_-^\varepsilon} u^\varepsilon(x, t) dt + \varepsilon^2 [x^\varepsilon(t) - x_{-0}^\varepsilon] + \varepsilon^2 [x^\varepsilon(t) - x_{+0}^\varepsilon] \leq \left[\|u^\varepsilon(\cdot, t)\|_{L^\infty} + \varepsilon^2 \right] [x^\varepsilon(t) - x_{-0}^\varepsilon(t)].
\]

Note that \(\int_{\mathbb{R}} u_0^\varepsilon(x) dx = 1 \) and

\[
0 \leq u^\varepsilon(x, t) \leq \sup_{x \in \mathbb{R}} \frac{e^{-z^2/4(\beta t - (\beta - 1)z^2/2 - (\beta + 1)t^2/4)}}{\sqrt{4\pi t}} \int_{\mathbb{R}} u_0^\varepsilon(y) dy.
\]

Thus, there exists a positive constant \(C \) that does not depend on \(\varepsilon \) such that

\[
[x^\varepsilon_{+0} - x^\varepsilon_{-0}] + \frac{1}{\min\{\ell^\varepsilon_+, \ell^\varepsilon_-\}} \geq x^\varepsilon_{+}(t) - x^\varepsilon_{-}(t) \geq \frac{\sqrt t}{C[1 + \sqrt t]} \forall t > 0.
\]

We remark that for fixed \(\delta > 0 \), \(|x^\varepsilon_\pm| \) is uniformly (in \(\varepsilon \)) bounded on \((\delta, \infty)\). In view of (6.2), we find that \(a, 1/a, b, a_t, b_t \) are bounded uniformly in \(\varepsilon \) in \((\delta, \infty)\). After a bootstrapping argument, we can establish \(\varepsilon \)-independent bounds for derivatives of arbitrary higher order on \((\delta, \infty)\). Thus, by compactness, along a sequence of \(\varepsilon \searrow 0 \) we have \(x^\varepsilon_\pm \to x_\pm \) for some \(x_\pm \in C^\infty((0, \infty)) \). It is easy to see that \(x_\pm \in C([0, \infty)) \) and \(x_{\pm}(0) = 0 \). Finally, from analysis in Section 5, one sees that \(x_{-}(t) = \ln s_2(2t/\sigma^2) \) and \(x_{+}(t) = \ln s_1(2t/\sigma^2) \) are indeed the free boundaries for the original problem for \(v \), which are unique. Thus, as \(\varepsilon \searrow 0 \), the whole sequence \(\{x^\varepsilon_\pm\} \) approaches \(x_\pm \). This completes the proof of Lemma 4.1 and Theorem 3.

6.2 Proof of Lemma 4.4

Define:

\[
Q(y) = \frac{1}{\sqrt{2\pi}} e^{-y^2/2}, \quad y_\varepsilon^\pm = \sqrt{-2 \ln(\sqrt{2\pi} \varepsilon \ell^\varepsilon_\pm)} \implies Q(y_\varepsilon^\pm) = \varepsilon \ell^\varepsilon_\pm. \quad (6.4)
\]

Without loss of generality assume that \(\ell_+ \leq \ell_- \), so \(y_+^\varepsilon \geq |y_-^\varepsilon| \), and \(Q(y_+^\varepsilon) \leq Q(y_-^\varepsilon) \). Set

\[
A^\varepsilon(y) = \frac{1}{y_+^\varepsilon - y_-^\varepsilon} \left\{ (y - y_-^\varepsilon)Q(y_+^\varepsilon) + (y_+^\varepsilon - y)Q(y_-^\varepsilon) \right\} = O(\varepsilon) \text{ on } [y_-^\varepsilon, y_+^\varepsilon]. \quad (6.5)
\]

For some \(m_\varepsilon \approx 1 \) to be defined later, we define

\[
x^\varepsilon_{\pm,0} = \varepsilon y_\varepsilon^\pm, \quad u_0^\varepsilon(x) = \frac{1}{\varepsilon m_\varepsilon} \left(Q\left(\frac{x}{\varepsilon} \right) - A^\varepsilon\left(\frac{x}{\varepsilon} \right) \right), \quad \ell^\varepsilon_\pm = \frac{(u_0^\varepsilon)^2(x^\varepsilon_{\pm,0})}{Lu_0^\varepsilon(x^\varepsilon_{\pm,0})}. \quad (6.6)
\]

We now verify that such defined \((x^\varepsilon_{\pm,0}, u_0^\varepsilon, \ell^\varepsilon_\pm) \) serves our need.

1. It is immediate from the definition of \(A^\varepsilon \) that \(u_0^\varepsilon(x^\varepsilon_{\pm,0}) = 0 \).
Next we show that $u_0^\varepsilon > 0$ in $(x_{-0}^\varepsilon, x_{+0}^\varepsilon)$. Define G^ε by $G^\varepsilon(y) = Q(y) - A^\varepsilon(y)$. Then clearly $G^\varepsilon(y_{-0}^\varepsilon) = G^\varepsilon(y_{+0}^\varepsilon) = 0$, and

$$G_y^\varepsilon = -yQ(y) - \frac{Q(y_{+0}^\varepsilon) - Q(y_{-0}^\varepsilon)}{y_{+0}^\varepsilon - y_{-0}^\varepsilon}, \quad G_{yy}^\varepsilon(y) = (y^2 - 1)Q(y).$$

Thus, G^ε is concave on $(-1, 1)$ and convex on $(-\infty, -1] \cup [1, \infty)$. Now using $Q(y_{+0}^\varepsilon) = \varepsilon \ell_{+}$, we have

$$G_y^\varepsilon(y_{+0}^\varepsilon) = Q(y_{+0}^\varepsilon) \left(-y_{+0}^\varepsilon - \frac{1}{y_{+0}^\varepsilon - y_{-0}^\varepsilon} \left(\frac{\ell_{+}}{\ell_{-}} - 1 \right) \right),$$

$$G_y^\varepsilon(y_{-0}^\varepsilon) = Q(y_{-0}^\varepsilon) \left(-y_{-0}^\varepsilon - \frac{1}{y_{+0}^\varepsilon - y_{-0}^\varepsilon} \left(1 - \frac{\ell_{+}}{\ell_{-}} \right) \right),$$

since $\pm y_{+0}^\varepsilon \to \infty$ as $\varepsilon \searrow 0$, we see that $G_y^\varepsilon(y_{+0}^\varepsilon) < 0 < G_y^\varepsilon(y_{-0}^\varepsilon)$. Since $G_{yy}^\varepsilon > 0$ on $(-\infty, -1) \cup (1, \infty)$ we see that $G_{yy}^\varepsilon(y) > 0$ on $[y_{-0}^\varepsilon, -1]$ and $G_{yy}^\varepsilon(y) < 0$ on $[1, y_{+0}^\varepsilon]$. As $G_{yy}^\varepsilon(y) < 0$ in $(-1, 1)$, there exists a unique $y_0^\varepsilon = o(\varepsilon)$ such that $G_{yy}^\varepsilon(y_0^\varepsilon) = 0$. Setting $x_{-0}^\varepsilon = \varepsilon y_0^\varepsilon = o(\varepsilon^2)$ we have $u_{0x}^\varepsilon < 0$ in $(x_0^\varepsilon, x_{+0}^\varepsilon)$, $u_{0x}^\varepsilon > 0$ in $[x_{-0}^\varepsilon, x_0^\varepsilon)$, and $u_{0xx}(x_0^\varepsilon) < 0$. The first requirement for the assertion of Lemma 4.4 is proved.

2. Denoting $y = x/\varepsilon$. We now calculate

$$u_{0x}^\varepsilon = \frac{1}{m_\varepsilon \varepsilon^2} \left(Q_y(y) - A_y^\varepsilon(y) \right) = \frac{Q(y)}{m_\varepsilon \varepsilon^2} \left(-y - \frac{Q(y_{+0}^\varepsilon) - Q(y_{-0}^\varepsilon)}{y_{+0}^\varepsilon - y_{-0}^\varepsilon} \right),$$

$$= \frac{Q(y)}{m_\varepsilon \varepsilon^2} \left(-y + \frac{O(1)}{\sqrt{|\ln \varepsilon|}} \right).$$

Using $Q' = -yQ$, $Q'' = (-1 + y^2)Q$, and $Q''' = (3y - y^3)Q$, we derive that

$$\mathcal{L}u_0^\varepsilon = \frac{1}{m_\varepsilon \varepsilon^3} \left(Q'' + (\beta - 1)\varepsilon(Q' - A') - \beta \varepsilon^2 (Q - A) \right)$$

$$= \frac{Q}{m_\varepsilon \varepsilon^3} \left(y^2 - 1 - (\beta - 1)\varepsilon y - \beta \varepsilon^2 - \frac{(\beta - 1)\varepsilon A' - \beta \varepsilon^2 A}{Q} \right)$$

$$= \frac{Q}{m_\varepsilon \varepsilon^3} \left(y^2 - 1 - (\beta - 1)\varepsilon y + O(1)\varepsilon \right).$$

Hence,

$$\ell_{\pm}^\varepsilon := \frac{(u_0^\varepsilon)^2(x_{\pm0}^\varepsilon)}{\mathcal{L}u_0^\varepsilon(x_{\pm0}^\varepsilon)} = \frac{Q(y_{\pm0}^\varepsilon)}{m_\varepsilon \varepsilon} \left(1 + \frac{O(1)}{|y_{\pm0}^\varepsilon|^2} \right) = \frac{\ell_{\pm}}{m_\varepsilon} \left(1 + \frac{O(1)}{|\ln \varepsilon|} \right).$$

In addition,

$$\begin{cases}
\mathcal{L}u_{0y}^\varepsilon < 0 & \text{if } |y| \geq 1 + O(\varepsilon), \\
\mathcal{L}u_{0y}^\varepsilon > 0 & \text{if } |y| < 1 - O(\varepsilon).
\end{cases}$$

Finally,

$$\frac{d}{dx} \mathcal{L}u_{0y}^\varepsilon = \frac{Q}{m_\varepsilon \varepsilon^4} \left[y(3 - y^2) + O(\varepsilon + \varepsilon y) \right].$$
Thus, there exists unique \(z_{\pm}^\varepsilon = \varepsilon [\pm 1 + O(\varepsilon)] \) such that

\[
\mathcal{L} u_0 > 0 \quad \text{in} \quad [x_{-0}^\varepsilon, z_{-}^\varepsilon) \cup (z_{+}^\varepsilon, x_{+0}^\varepsilon), \quad \mathcal{L} u_0^\varepsilon (z_{\pm}^\varepsilon) = 0, \quad (\mathcal{L} u_0^\varepsilon)' (z_{\pm}^\varepsilon) \neq 0, \quad \mathcal{L} u_0 < 0 \quad \text{in} \quad (z_{-}^\varepsilon, z_{+}^\varepsilon).
\]

This establishes the second property.

3. For simplicity of notation, let \(q = u_0^\varepsilon \) for this calculation:

\[
u_0^\varepsilon \frac{d}{dx} \left(\frac{\mathcal{L} u_0^\varepsilon}{u_0^\varepsilon} \right) = q' \mathcal{L} q - q'' \mathcal{L} q
\]

\[
= q' \{ q''' + (\beta - 1)q'' - \beta q' \} - q'' \{ q''' + (\beta - 1)q' - \beta q \}
\]

\[
= q'q''' - q''^2 - \beta q^2 + \beta qq''
\]

\[
= \frac{Q^2}{\varepsilon^4 m^2_x} \bigg[(-y - \frac{A'}{Q})(3y - y^3) - (1 - y^2)^2 - \beta \varepsilon^2 (y + O(1))(y^2 - 1) \bigg]
\]

\[
= \frac{Q^2}{\varepsilon^4 m^2_x} \left(1 + y^2 + \frac{y A'}{Q}(3 - y^2) + O(\varepsilon^2 |\ln \varepsilon|^3) \right).
\]

Without loss of generality \(|y_+| > |y_-| \) so that \(Q(y_+) \leq Q(y_-) \). To analyze \(\Delta = \frac{\frac{A' y}{Q}}{3 - y^2} \), notice that

\[
A^\varepsilon = \frac{Q(y_+) - Q(y_-)}{y_+ - y_-} < 0.
\]

When \(y \in [\sqrt{3}, y_+^\varepsilon], \Delta > 0. \) When \(|y| < \sqrt{3}, \Delta = o(\varepsilon). \) When \(y \in [y_-^\varepsilon, -\sqrt{3}], \) using \(y_+^\varepsilon - y_-^\varepsilon > |y_-^\varepsilon|, \)
we can derive that

\[
\Delta = \frac{y |Q(y_+) - Q(y_-)|}{Q(y)(y_+ - y_-)} (3 - y^2) \geq \frac{(3 - y^2)|y|}{y_+ - y_-} \frac{Q(y_-)}{Q(y)} (1 - \frac{\ell_+}{\ell_-}) \geq \frac{3 - y_+^2}{2}.
\]

Thus, when \(\varepsilon \) is small, we have

\[
u_0^\varepsilon \frac{d}{dx} \left(\frac{\mathcal{L} u_0^\varepsilon}{u_0^\varepsilon} \right) < 0 \quad \text{on} \quad [x_{-0}^\varepsilon, x_{+0}^\varepsilon].
\]

Consequently, \(u_0^\varepsilon \) satisfies the third requirement.

4. Finally, we define

\[
m_\varepsilon = \int_{y_-^\varepsilon}^{y_+^\varepsilon} \{ Q(y) - A^\varepsilon (y) \} dy.
\]

Then \(\int_{\mathbb{R}} u_0^\varepsilon (x) dx = 1. \) Notice that \(|A^\varepsilon| \leq \max \{ Q(y_+^\varepsilon), Q(y_-^\varepsilon) \} = O(\varepsilon) \) and \(y_+^\varepsilon = O(\sqrt{|\ln \varepsilon|}). \) Hence, as \(\varepsilon \to 0, \)

\[
m_\varepsilon = \int_{y_-^\varepsilon}^{y_+^\varepsilon} \left(\frac{1}{\sqrt{2\pi}} e^{-y^2/2} + O(\varepsilon) \right) dy = \frac{1}{\sqrt{2\pi}} \int_{y_-^\varepsilon}^{y_+^\varepsilon} e^{-y^2/2} dy + O(\varepsilon |\ln \varepsilon|) \to 1.
\]

This completes the construction of approximating data, and the proof of Lemma 4.4.
References

