MME Standard Operating Procedure (SOP)

<table>
<thead>
<tr>
<th>Name</th>
<th>Diode Laser Welder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Nuvonyx Diode Laser</td>
</tr>
<tr>
<td>Location</td>
<td>Building: E3, Room: 2116</td>
</tr>
<tr>
<td>SOP Creation Date</td>
<td>22nd April 2013</td>
</tr>
<tr>
<td>SOP Created By</td>
<td>Dulal Chandra Saha (ID# 20497839)</td>
</tr>
<tr>
<td>SOP Revision Date</td>
<td>4th February 2016</td>
</tr>
<tr>
<td>SOP Revised By</td>
<td>Dulal Chandra Saha</td>
</tr>
<tr>
<td>SOP Online Location</td>
<td>https://sharepoint.uwaterloo.ca/sites/MME/Inventory</td>
</tr>
<tr>
<td>Equipment Owner</td>
<td>Professor Norman Zhou (x. 36095)</td>
</tr>
<tr>
<td>Authorized Trainers</td>
<td>Dulal Chandra Saha (X. 35625), Nathan Lun (X. 35266)</td>
</tr>
<tr>
<td>Support Technicians</td>
<td>James Merli (x. 38080)</td>
</tr>
<tr>
<td></td>
<td>ITW (Panasonic for Robot) and IPG (IPG Photonics for Laser) details contact information is in maintenance and repair section.</td>
</tr>
</tbody>
</table>
Significant Hazards

- **Laser radiation (wavelength 900 nm)**
- **Eyes and Skin hazards**
 - Thermal (heat build-up from absorbed laser light)
 - Photo-chemical (photon energy sufficient to cause bond breaking)
- **Laser hazards to the eye**
 - Visible and near IR (400 to 1400 nm)
 - Absorbed at retina
 - Blind spots
 - Optic disk > total blindness
 - Fovea > central vision
 - Macula > color vision
 - Degraded color vision
 - Degraded night vision
- **Laser hazards to the skin (Visible to near IR)**
 - Penetrates partially through skin
 - Deep burns
- **Non-beam hazards**
 - Fire and explosion (class 4 lasers able to ignite combustible materials >> keep production area clean)
 - Fumes (Regular maintenance and cleaning exhaust systems)
 - Electrical (high voltage power supplies, and large capacitors)
 - Automated laser welding (Robots >> crush hazards. Sheet Metals edges >> cut hazard)
 - Compressed gases
 - High pressure vessels
 - Valve failure
 - Fire/explosion (O₂)
 - Noise (Lasers, chillers, Gas jets, Air knives, parts handling, process interaction are all noise sources)

Administrative Controls

- The laser equipment can be used during: Monday to Friday 9.00 AM to 6.00 PM.
- Authorized personnel: Dulal Chandra Saha (x. 35625), Jin Yang.
- Only authorized personnel shall operate, maintain or service the laser.
- Alignment procedures shall ensure that the MPE for the eye is not exceeded.
- Eye protection shall be required.
- Spectators shall be prevented from the controlled area.
- Service personnel shall comply with control procedures.
- The laser safety officer shall take measures to reduce output if the output is considered to be excessive.
Engineering Controls
- Entryway (door) interlocks
- Emergency stop/panic button
- Master switch (operated by key)
- Warning signs
- Protective housing is provided.
- Interlocks are provided on removable parts of the housing.
- Service access panels are interlocked or require a tool for removal.
- A key-controlled master switch is provided.
- When the entire beam is not enclosed, a NHZ is established.
- A permanent beam stop or attenuator is provided.
- An alarm, warning light, or verbal countdown is used during use or start-up of the laser.
- The controlled areas are:
 - restricted to authorized personnel only
 - equipped with a device that allows for deactivation of the laser or reduction of output to below the MPE
 - designed to fulfill Class IV controlled area requirements
 - designed with entry safety controls
- The laser is monitored and fired from a remote location.

PPE Required
- **Eye Protection** → two eyewear goggles are available in the laser room cabinet.
- **Factors in selecting appropriate eyewear:**
 - Laser power and/or pulse energy
 - Wavelength(s) of laser output
 - Maximum permissible exposure
 - Optical density requirement of eyewear filters at laser output wavelength
 - Visible light transmission requirement and assessment of the effect of the eyewear on the ability to perform tasks while wearing the eyewear

<table>
<thead>
<tr>
<th>Wavelength (s) or wavelength range (nm)</th>
<th>Power (W)</th>
<th>Eyewear optical density required</th>
</tr>
</thead>
<tbody>
<tr>
<td>805 ± 10</td>
<td>4000</td>
<td>OD 7+</td>
</tr>
</tbody>
</table>

- **Skin Protection** → to protect from laser irradiation to skin, every authorized personnel are provided an apron to wear.
- **Gloves** are available in the laser room to wear during laser operation and materials handling.
 - **Robot/Laser Protective Barriers** → to protect from robot hit, Safety Mats are installed within the working envelope of the robot.
Relevant Standards and Codes

The guidance on best practice in the use of lasers is given in:

- ANSI Z136.1 “American National Standard for Safe Use of Lasers”
- IEC 60825-1 “Safety of laser products – Part 1: Equipment classification and requirements”.
- CAN/CSA E 60825-1
- U. S. O. S. H. A. regulations
- U. S. CDRH Laser product performance requirements
- Ontario Ministry of Labour follows ANSI Z136.1
- ANSI Z136.1 “American National Standard for Safe Use of Lasers”
 - Maintained and published by Laser Institute of America (www.laserinstitute.org)
 - Principle U. S. laser safety standard for laser users
 - Goal: to harmonize with international (IEC) standard
 - Changes for the 2007 version of the ANSI Z136 standard
 - Changes to classifications (harmonize with IEC specs.)
 - Increase duties of Laser Safety Officer
- U. S. O. S. H. A. regulations
 - Inspectors may cite ANSI Z136.1 under General duty clause
- General industry standards
 - 29 CFR 1910.132 – general requirement for PPE
 - 29 CFR 1910.133 – eye and face protection
 - 29 CFR 1910.147 – lock out/ tag out
 - www.osha0slc.gov/SLTC/laserhazards/
 - Scope: This standard applies to machine tools using laser radiation to process materials. It describes the hazards generated by such machines and states the protective measures to be incorporated into such machines. The standard also contains the description of information required to be provided by suppliers and users of such equipment.
 - Sponsored by: AMT – The Association for Manufacturing Technology
 - www.nssn.org, search standards for ANSI B11.21

Relevant MSDS

- Acetone
- Ethyl Alcohol
- Air, Compressed
- Argon, Compressed
- Helium, Compressed
- Oxygen, Compressed
- Deionized Water
- All MSDSs can be found at https://sharepoint.uwaterloo.ca/sites/MME/MSDS that was on the template.
Accident Procedure

- **Response/Reporting procedures**
- **All accidents/exposures are to be reported to supervisor as soon as possible.**

Serious Injury/ Illness: Eye injuries, skin injuries
- **Call 911** or proceed immediately to the UW Hospital Emergency Department.
- **Compressed air/argon/oxygen leakage from cylinder → Call UW Police 519-888-4911 or X. 22222.**
- **All Other Injuries**
- For treatment of all other injuries, proceed to:
 - Department/Residence → first aid kit / station location → E3 – 2108H
 - Health Services → first aid services available → 519-888-4096, X. 84096
 - UW Police → assists if the above services are not available → 519-888-4911, X. 22222.

Also see safety posters in the lab.

Emergency Shutdown Procedure

- **Personnel Injury:**
 - Turn off the laser system with the "Emergency Button" or power switch.
 - Call 911 and inform the dispatcher to advise medical personnel that the accident involved lasers.
 - Contact Health Services – first aid services available → 519-888-4096 or Ext. 84096.
 - UW Police – assists if the above services are not available → 519-888-4911 or Ext. 22222.
 - Complete incident report.

- **Fire:**
 - Turn off the laser system with the "Emergency Button" or power switch.
 - Evacuate area as stated in your Building Emergency Plan.
 - Active wall mounted fire alarm pull station located at exits.
 - Call 911 for medical assistance (Ambulance). If using a cell/mobile call UW Police at 519-888-4911.
 - Report any information about fire to UW Police and Fire Department.
Pre-start Checklist

The following items that needs to be inspect before working with lasers:
- ☐ Inspect whether other laser is in operation or not.
- ☐ Beware of Lasers working envelope
- ☐ Beware of Laser Enclosure Interlocks
- ☐ Laser Housing interlocks
- ☐ Remove any reflective material from beam path
- ☐ Beware of the location of fire extinguisher
- ☐ Be familiar about panic button/Emergency Stop
- ☐ Master Switch (operated by key)
- ☐ Main power switch
- ☐ Safety Mat conditions.
- ☐ Space conditions (Fumes / Vapors).
- ☐ Ensure proper ventilation.
- ☐ Safety gloves and apron.
- ☐ Correct Laser safety glasses.
- ☐ Details operating procedures
- ☐ Emergency contact information (UW Police, Health Services, Safety Officer)

Start-up Procedure

The following items need to be ensured before Laser operation:

- • Clean the workplaces (Tables and other parts)
- • Check whether chiller is working or not (check for DI water level).
- • If it indicates DI water fault, then wait couple of minutes to be settle down. If nothing happens then shut down the machine and start it again.
- • Check the compressed air and shielding gas pressure.
- • Observe any kind of abnormality associated with laser or chiller.
- • Position the work pieces into the weld jig and secured properly.
- • Operate Robot without Laser; and check for prefect movement of Robot arm as set-up in program.
- • If everything working well then go for next step → Operation
Operating Procedure

Stepwise Procedure for Diode Laser Welding

Machine Setup

1. Turn the power box ON by rotating counter clockwise.
2. Turn ON laser from "OFF" position to "Standby"
3. In the Touch Screen Panel >> Press "OK"
4. Place the sheets in the fixture and tight it properly.
5. Place Laser protected glass below the Laser P-N Junction.
6. Open program Program045.prg (MAKE SURE THE SIDE SWITCH PANEL SHOWS SAME PROGRAM NO. 45)

Machine Setup (Continued)

7. Change the Parameters and locate the Laser position as well as focus perfectly (make + sign)
 - P1: Home Position, P2: Point near start of the welding, P3: Start point
8. After focusing, Go to beginner program and TURN ON ROBOT (IV)
 - Then follow ROBOT (F1)
 - Open Shielding Gas: F2 >> III >> You can hear the purge of shielding gas sound.
 - Make sure IV is ON before welding
9. After locating points and selecting parameters. Go to begin program and SWITCH the Key into "AUTO MODE"

Wear Safety Glass

10. Make ROBOT form "Teach mode" to "Auto mode"
11. TURN the laser from "Standby" to "Operate" mode
12. Press "ARM" >> wait for interlock and To be on
13. Press "AUTO MODE"
14. Press "Servo ON"
15. Active Laser by pressing laser sign in touch panel
16. Open compress air and change pressure to 10 Psi
17. Cycle Start
 - Laser starts to weld
18. After completion of welding, Press "Disarm"
19. TURN the laser from "Operate" mode to "Standby" mode
20. Chiller OFF
21. Turn the ROBOT into "Teach" mode
22. Compress air off

Repeat same procedure for next weld
Shutdown Procedure

The Laser shut down procedures are as follows:
- TURN the laser from "Operate" mode to "Standby" mode
- Turn the chiller OFF
- Turn the Robot into "Teach" mode, and keep the operating controller into remote place.
- Close the valves of compressed air and shielding gas.
- Turn the Laser power OFF with power key.
- Turn the power box switch OFF by rotating into counter clockwise.
- Remove the welded parts from the weld fixture.

Clean-up

The clean-up procedures are as follows:
- Clean-up the working table after each weld; any kind of dirt, weld deposits.
- Use the log book located in the cabinet to document weekly/bi-weekly/monthly clean-up operation.
- All waste should be transferred to the Environmental Safety Facility (ESF) located at ESC Room. 150.
Lockout

Lockout / tagout procedures should include:

- Notification to all affected workers
- Shutter Mechanism should be lifted to the Lockout position. The vacuum systems and the outrigger area should be isolated from the laser beams.
- The lifting of the shutter mechanism will prevent entry of laser light into the outrigger table and vacuum windows. This will make downstream vacuum systems safe from laser exposure.
- Machine equipment shutdown and isolation (place locks and tags on the switches and valves to prevent their use).
- The tagger shall ensure that the lockout/tagout is effective. After the shutter is lifted and tagged, the outrigger cover can be removed. The initial verification of this lockout shall be performed while wearing laser goggles to verify complete closure of the shutter.
- When the work is completed, ensure that all employees are clear before removing the locks and tags, energizing equipment, or opening valves.

Release from lockout / tagout.

Maintenance and Repair

The following procedure must be followed during maintenance and repair:

- Check the laser working envelope regularly, and reposition the limit switch.
- Refer to the manual during maintenance/repair as listed in “Relevant Standards and Codes” section.
- Contact with suppliers and service companies for maintenance/repair:

 For Laser:

 Company: IPG Photonics Corporation
 Person: Alexei Boudenkov (Field Service Engineer)
 Address: #48-3265 South Millway Drive
 Mississauga, ON L5L 2R3, Canada
 Cellphone: (774) 200-7905
 E-mail: aboudenkov@ipgphotonics.com
 Website: www.ipgphotonics.com