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Abstract

It is generally accepted that the fatigue crack growth (FCG) depends mainly on the stress intensity factor range (DK)
and the maximum stress intensity factor (Kmax). The two parameters are usually combined into one expression called often
as the driving force and many various driving forces have been proposed up to date. The driving force can be successful as
long as the stress intensity factors are appropriately correlated with the actual elasto-plastic crack tip stress–strain field.
However, the correlation between the stress intensity factors and the crack tip stress–strain field is often influenced by
residual stresses induced in due course.

A two-parameter (DKtot, Kmax,tot) driving force based on the elasto-plastic crack tip stress–strain history has been pro-
posed. The applied stress intensity factors (DKappl, Kmax,appl) were modified to the total stress intensity factors (DKtot,
Kmax,tot) in order to account for the effect of the local crack tip stresses and strains on fatigue crack growth. The FCG
was predicted by simulating the stress–strain response in the material volume adjacent to the crack tip and estimating
the accumulated fatigue damage. The fatigue crack growth was regarded as a process of successive crack re-initiations
in the crack tip region. The model was developed to predict the effect of the mean and residual stresses induced by the
cyclic loading. The effect of variable amplitude loadings on FCG can be also quantified on the basis of the proposed model.
A two-parameter driving force in the form of: Dj ¼ Kp

max ;totDKð1�pÞ
tot was derived based on the local stresses and strains at

the crack tip and the Smith–Watson–Topper (SWT) fatigue damage parameter: D = rmaxDe/2. The effect of the internal
(residual) stress induced by the reversed cyclic plasticity manifested itself in the change of the resultant (total) stress inten-
sity factors controlling the fatigue crack growth.

The model was verified using experimental fatigue crack growth data for aluminum alloy 7075-T6 obtained under con-
stant amplitude loading and a single overload.
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Nomenclature

a crack length
b fatigue strength exponent
c fatigue ductility exponent
C fatigue crack growth constant
D fatigue damage
E modulus of elasticity
K 0 cyclic strength coefficient
M1, M2, M3 weight function parameters
m(x,a) weight function
m Paris’s equation exponent
Nf number of cycle to fail the first elementary material block
P the unit point force
n 0 cyclic strain hardening exponent
p driving force constant
R stress ratio
Rappl applied stress ratio
x distance from the crack tip
Y geometrical stress intensity correction factor
da/dN crack growth rate
FCG fatigue crack growth
SIF stress intensity factor
SWT Smith–Watson–Topper fatigue damage parameter
c fatigue crack growth equation exponent
q* notch tip radius or elementary material block size
m Poisson’s coefficient
r0f fatigue strength coefficient
e0f fatigue ductility coefficient
~ea

max maximum actual strain over the first elementary block
D~ea actual strain range over the first elementary block
De strain range ahead of the crack tip
K stress intensity factor
Kr residual stress intensity factor
Kop crack opening stress intensity factor
Kmax,appl maximum applied stress intensity factor
Kmin,appl minimum applied stress intensity factor
DKappl applied stress intensity range
DKeff effective stress intensity range
DKBL stress intensity factor range of base-line cycles
Kmax,net maximum net stress intensity factor
Kmin,net minimum net stress intensity factor
DKnet net stress intensity range
Kmax,tot total maximum stress intensity factor
Kmin,tot total minimum stress intensity factor
DKtot total stress intensity range
Dj two-parameter driving force
Kmax,th maximum threshold stress intensity factor
DKth threshold stress intensity range
Smax,appl maximum applied nominal (remote) stress
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Smin,appl minimum applied nominal (remote) stress
DSappl applied nominal (remote) stress range
~ee

max maximum pseudo-elastic strain over the first elementary block
D~ee pseudo-elastic strain range over the first elementary block
rr(x) residual stress distribution
rmax maximum stress ahead of the crack tip
~ra

max maximum actual stress over the first elementary block
D~ra actual stress range over the first elementary block
~re

max ;net maximum net pseudo-elastic stress over the first elementary block
~re

min ;net minimum net pseudo-elastic stress over the first elementary block
D~re

net net elastic pseudo-elastic stress range over the first elementary block
Drth threshold stress range
D~ra

th actual threshold stress range over the first elementary block
wy,i the averaging constant corresponding to the i-th elementary block

190 A.H. Noroozi et al. / Engineering Fracture Mechanics 75 (2008) 188–206
1. Introduction

A lot of research effort throughout the last four decades has focused on fatigue crack growth and predictive
models. The most often used model has been the Paris law [1] employing the stress intensity range as a single
governing parameter and also the only driving force for the fatigue crack growth analysis.
da
dN
¼ CðDKapplÞm: ð1Þ
The Paris equation initiated widespread research activities aiming at possible improvements of its original
form and at analytical modeling of FCG in general. It was found that the Paris expression was not capable
of accounting for the stress ratio effect and the variable amplitude loading. The first model explaining the
mean stress effect on the FCG was proposed by Elber [2]. He has postulated that only certain part of the load-
ing and unloading reversals in a loading cycle was effective as far as the fatigue crack growth was concerned.
Therefore, the applied stress intensity range, DKappl, could not be the resultant driving force and it had to be
modified to the effective stress intensity range, DKeff, which was less than the applied one. The Elber idea was
based on the observation of the crack tip closure phenomenon implicating that the maximum applied SIF did
not change while the minimum applied SIF became equal to the opening SIF level, Kop. Although the crack tip
closure model is very popular and widely used one, particularly in the aircraft industry, there are several lim-
itations and difficulties when trying to correlate the postulated crack tip closure measurements with the fatigue
crack growth behavior [3–7]. The measurements based on the crack tip displacements depend on the experi-
mental techniques and the location of the measurement [3]. It was shown that the mean stress effect on the
FCG at high stress ratios can not be explained by the closure model due to the absence of the crack closure
[4] at high loads. Moreover, the effective stress intensity range, DKeff, resulting from the closure model is not
sufficient to correlate FCG in the near threshold region especially for aluminum alloys [5,6]. In vacuum tests,
where the crack tip closure is insignificant, the FCG should be faster as compared to the air data, but exper-
imental results [7] show the opposite. The observations stated above indicate that other factors influencing the
FCG must be considered. Therefore, numerous research activities were devoted [5,6,8–10] to modify the ori-
ginal form of the Paris equation by introducing a two-parameter driving force combining the applied maxi-
mum SIF, Kmax,appl, and the applied stress intensity range, DKappl. The first form of the fatigue crack
growth equation formulated in terms of the two-parameter was proposed by Walker [8].
da
dN
¼ C1½ð1� RÞpKmax ;appl�m ¼ C1½Kð1�pÞ

max ;applDKp
appl�

m
: ð2Þ
However, the available two-parameter driving force models [6,8–10] tend to be suitable for predicting fatigue
crack growth only at relatively high stress ratios. In addition, they cannot model the effect of the compressive
part of the load history and the variable amplitude loading.
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One of the first models dealing with the FCG under variable amplitude loading was proposed by Wheeler
[11]. He modified the constant amplitude growth rate by an empirical retardation parameter. The model could
predict FCG retardations as long as the crack remained in the overload plastic zone. However, the retardation
parameter depended on the loading history to be analyzed and had to be determined experimentally. The Wil-
lenborg model [12] was developed using the assumption that crack growth retardation was caused by compres-
sive residual stresses induced by the overload. To calculate the resultant stress intensity factor, Willenborg
used an effective stress which was the applied stress reduced by the compressive residual stress. Neither of these
models could predict crack growth acceleration occurring just after the application of the overload. In addi-
tion, maximum retardation was predicted by theses models just after the application of the overload contrary
to the experimental evidence. Therefore, several plasticity-induced crack closure models [13,14] for predicting
fatigue crack growth under variable amplitude loading have been proposed. Among them, the most successful
is the finite element supported crack closure model developed by Newman [15]. The Newman model was based
on the strip yield plastic zone that was left in the wake of the advancing crack. According to that model, the
plastically deformed material can cause crack closure even at tensile load levels. The fatigue crack growth rate,
according to the model, needs to be calculated on a cycle by cycle basis. However, the calculation of the crack
opening stress intensity factor, Kop, in the case of a variable amplitude loading is difficult. Moreover, it
appears that the plasticity-induced closure in plane strain conditions [16] has relatively small effect on FCG
behavior.

Therefore, a two-parameter fatigue crack growth model based on the analysis of the elasto-plastic strain–
stress history at the crack tip has been developed to account for the mean stress and the variable amplitude
loading effects.

2. Formulation of the two-parameter fatigue crack growth model

2.1. Description of the proposed model

After the development of fracture mechanics in 1960, the stress intensity factor range was proposed to use
as a parameter characterizing the fatigue crack growth. However, it was later found out that FCG was con-
trolled not only by the stress intensity factor range but also by the maximum stress intensity factor. In spite of
the fact that the local stresses and strains near the crack tip are the dominant factors as far as the FCG is con-
cerned, there has been little effort to establish a quantitative link between them and the applied stress intensity
factors. Recently, Noroozi et al. [17] have formulated a two-parameter model to correlate the maximum stress
intensity factor and the stress intensity range with the elasto-plastic crack tip stress–strain field. It was also
necessary to address the fact that the actual correlation was significantly influenced by the residual stress
induced at the crack tip by cyclic plastic deformations.

During the first loading or the first nominal stress reversal from 0 to 1 (Fig. 1a), the material near the crack
tip is deformed plastically forming a monotonic plastic zone as shown in Fig. 1c. During the unloading part of
the cycle (path 1–4 in Fig. 1a) the crack tip deformations are smaller than those created during the previous
loading reversal. Thus, the plastic zone created during loading cannot disappear and a small portion of the
plastic zone is deformed again in the reversed direction. This re-deformed part of the plastic zone is called
the cyclic plastic zone (see Fig. 1d at load level 4). This plastically deformed material is left at the crack tip
like an obstacle for subsequent reversals. The plastically deformed material prevents the region behind the
crack tip from being closed. In other words, the fatigue crack surfaces do come into contact with each other
but not just behind the crack tip, even if compressive loads are applied. This phenomenon was found exper-
imentally [18,19] and also numerically [20,21] by the finite element method. The effect of the plastic zone pres-
ence resulting in the lack of contact behind the crack tip can be modeled by taking into account the crack tip
residual stress. The crack opening behind the tip is modeled by adding symmetrically a residual stress distri-
bution behind the crack tip analogous to that one existing ahead of the crack tip (Fig. 1e). The effect of the
residual crack tip stress–strain field can be quantified in terms of the residual stress intensity factor, Kr. In
order to calculate the residual stress intensity factor, Kr, it is necessary to determine the residual stress by tak-
ing into account the elasto-plastic material stress–strain response at the crack tip. The expected stress–strain
response at the crack tip is shown schematically in Fig. 1b. The residual stress at the crack tip is induced by the
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Fig. 1. Schematic crack tip geometry and qualitative crack tip stress–strain response: (a) applied load (stress intensity factor) history,
(b) qualitative stress–strain response at the crack tip, (c) crack opening displacements in the crack region at maximum load level 1,
(d) crack opening displacements in the crack region at minimum load level 4 and corresponding residual stresses, and (e) mathematical
modeling of the crack tip region in order to simulate the effect of the residual stress field.
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first two loading reversals (0–1 and 1–4, Fig. 1a). Because of the residual stress created by the first two loading
reversals, the maximum stress at the crack tip corresponding to the maximum load at the end of the third
reversal (at point 8 in Fig. 1a) cannot reach the same level as that one at the end of the first loading reversal
(at point 1, Fig. 1a). This effect can be modeled by using the resultant maximum stress intensity factor,
Kmax,tot, obtained by decreasing the applied maximum stress intensity factor, Kmax,appl, by the residual stress
intensity factor, Kr. It is assumed that the minimum stress intensity factor is not affected by the crack tip resid-
ual stress. As a result of such a correction, both the resultant maximum stress intensity factor and the resultant
stress intensity range are affected by the plasticity-induced crack tip residual stresses.

2.2. Basics of the proposed model

The proposed unified two-parameter FCG model is based on the following assumptions [17] and compu-
tational techniques:

• The material is composed of elementary particles of a finite dimension q*. It represents an elementary mate-
rial block size, below which the material cannot be regarded as a continuum (Fig. 2).

• The fatigue crack is regarded as a notch with the tip radius q*.
• The macroscopic material properties used in the model are the Ramberg–Osgood cyclic stress–strain curve

[22] and the Manson–Coffin strain–life fatigue curve [23].
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Fig. 2. The discrete material model made of elementary material blocks and the crack.
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• The fatigue crack growth is considered as successive crack increments due to crack re-initiations over the
distance q*.

• The number of cycles Nf necessary to fail the material over the distance q* can be obtained from the Man-
son–Coffin curve combined with the Smith–Watson–Topper (SWT) fatigue damage parameter [24].
D ¼ rmax

De
2
¼ ðr

0
fÞ

2

E
ð2N fÞ2b þ r0fe

0
fð2N fÞbþc

: ð3Þ
• The fatigue crack growth rate can be finally determined as
da
dN
¼ q�

N f

: ð4Þ
The mathematical formulation and stepwise computational procedure were outlined in Ref. [17] but it is also
summarized below.

(1) In the case of negative stress ratios (R < 0), the crack was considered as a notch with the tip radius q* at
the maximum load level (Fig. 3 at load level 1); however, at the minimum compressive load, the crack
was modeled as a circular hole (Fig. 3 at load level 2). This is due to the fact that the crack surfaces con-
tact each other under compressive load and the load is transferred through the crack surfaces except in
the region just behind the crack tip, where the crack may stay open. Therefore, the crack tip region under
compressive loading can be modeled as an elliptical or circular hole. As a result, the net SIF experienced
at the minimum load is not the same as it would be for a fully open crack. This way the model can
account for the effect of the compressive part of a loading cycle. By modeling the crack as a circular hole
under compression (Fig. 3), the minimum net SIF can be estimated from Eq. (5) discussed in detail in
Ref. [17].
Kmin ;net ¼ Kmin ;appl

3

2Y

ffiffiffiffiffi
q�

a

r
: ð5Þ
It can be concluded, based on the proposed model, that the compressive part of a loading cycle is not
very effective as far as the crack tip strain/stress concentration is concerned. Using the minimum net
SIF, the net elastic stresses can be obtained from Eqs. (6)–(8) using the Creager–Paris solution [25].
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Fig. 3. The crack model (the crack opening displacement field) under the tensile maximum and compressive minimum loads used for the
linear elastic stress analysis.
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~re
max ;net ¼

wy;1Kmax ;applffiffiffiffiffiffiffiffiffiffi
2pq�
p ¼

wy;1Smax ;applY
ffiffiffiffiffiffi
pa
pffiffiffiffiffiffiffiffiffiffi

2pq�
p ¼ Smax ;applY

ffiffiffiffiffiffiffi
a

2q�

r
wy;1; ð6Þ

re
min ;net ¼

wy;1Kmin ;netffiffiffiffiffiffiffiffiffiffi
2pq�
p ¼

3wy;1

2
ffiffiffi
2
p Kmin ;appl

Y
ffiffiffiffiffiffi
pa
p ¼ Smin ;appl

3wy;1

2
ffiffiffi
2
p ; ð7Þ

D~re
net ¼ ~re

max ;net � ~re
min ;net ¼

wy;1ffiffiffiffiffiffiffiffiffiffi
2pq�
p Kmax ;appl �

3

2Y

ffiffiffiffiffi
q�

a

r
Kmin ;appl

 !
: ð8Þ
According to Eqs. (6)–(8), the maximum net stress, ~re
max ;net, is the same as that one resulting from the

maximum applied SIF, Kmax,appl, but the minimum net stress, ~re
min ;net, can not be directly calculated

by using the Creager–Paris expression. The contribution of the compressive part of the applied stress
reversal (from 0 to Kmin,appl) to the local crack tip stress range is relatively small and it depends on
the crack tip radius q* and the crack size ‘‘a’’. It is possible that the modeling of the crack tip as a circular
hole (Fig. 3) is non-conservative. In other words, the modeling of the crack tip as an elliptical hole lead-
ing to a higher stress concentration factor might be necessary in order to determine the minimum net
crack tip stress, ~re

min ;net, and corresponding the minimum net SIF, Kmin,net.
(2) In the case of positive stress ratios (R P 0), the crack was modeled as a notch with the tip radius q*

under both maximum and minimum load levels. Therefore, the elastic stresses over the first elementary
material block can be calculated by using the Creager–Paris solution [25] for a crack with the tip
radius q*.
~re
max ;net ¼ ~re

max ;appl ¼
wy;1Kmax ;; applffiffiffiffiffiffiffiffiffiffi

2pq�
p ¼

wy;1Smax ;applY
ffiffiffiffiffiffi
pa
pffiffiffiffiffiffiffiffiffiffi

2pq�
p ¼ Smax ;applY

ffiffiffiffiffiffiffi
a

2q�

r
wy;1; ð9Þ

~re
min ;net ¼ ~re

min ;appl ¼
wy;1Kmin ;applffiffiffiffiffiffiffiffiffiffi

2pq�
p ¼

wy;1Smin ;applY
ffiffiffiffiffiffi
pa
pffiffiffiffiffiffiffiffiffiffi

2pq�
p ¼ Smin ;applY

ffiffiffiffiffiffiffi
a

2q�

r
wy;1; ð10Þ

D~re
net ¼ D~re

appl ¼
wy;1Kmax ;applffiffiffiffiffiffiffiffiffiffi

2pq�
p �

wy;1Kmin ;applffiffiffiffiffiffiffiffiffiffi
2pq�
p ¼

wy;1ffiffiffiffiffiffiffiffiffiffi
2pq�
p DKappl ¼ DSapplY

ffiffiffiffiffiffiffi
a

2q�

r
wy;1; ð11Þ
where Smin ;appl ¼
Kmin ;appl

Y
ffiffiffiffiffiffi
pa
p ; Smax ;appl ¼

Kmax ;appl

Y
ffiffiffiffiffiffi
pa
p ;DSappl ¼

DKappl

Y
ffiffiffiffiffiffi
pa
p ;wy;1 ¼ 1:633.
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It can be seen from Eqs. (9)–(11) that the net stresses are the same as those calculated directly from the
applied stress intensity factors, Kmax,appl and Kmin,appl.
Finally, these elastic stresses (Eqs. (6)–(11)) can be used as the input into Neuber’s rule [26] or the ESED
method [27] in order to estimate actual elasto-plastic stresses and strains not only at the notch tip but
also ahead of the crack (across the plastic zone), as explained in Refs. [28,29].

(3) The actual elasto-plastic stresses and strains are determined by using the above derived net stresses and
the Neuber rule [26] over a number of material blocks ahead of the crack tip. The stress state over the
first elementary material block is uni-axial if the body is in plane stress state. Therefore, the uni-axial
Neuber rule and the Ramberg–Osgood in the form of Eqs. (12) and (13) can be used for loading and
unloading reversal, respectively.
~re
max ;net � ~ee

max ¼
1

E

Kmax ;net � wy;1ffiffiffiffiffiffiffiffiffiffi
2pq�
p

� �2

¼
~ra

max

� �2

E
þ ~ra

max

~ra
max

K 0

� � 1
n0

;

~ea
max ¼

~ra
max

E
þ ~ra

max

K 0

� � 1
n0

;

8>>><
>>>:

ð12Þ

D~re
net � D~ee ¼ 1

E

DKnet � wy;1ffiffiffiffiffiffiffiffiffiffi
2pq�
p

� �2

¼ ðD~raÞ2

E
þ 2ðD~raÞ D~ra

2K 0

� � 1
n0

;

D~ea

2
¼ D~ra

2E
þ D~ra

2K 0

� � 1
n0

:

8>>><
>>>:

ð13Þ
The actual maximum stress (Eq. (12)) and the stress range (Eq. (13)) can subsequently be used to deter-
mine the residual stress over the ‘‘first’’ element ahead of the crack tip. However, for other elements
ahead of the crack tip, the stress state is bi-axial. Therefore, the multi-axial Neuber rule [30] and the Hen-
cky equations of the total deformation theory of plasticity [31] were used for calculating the elasto-plas-
tic stresses and strains over each elementary material block.

(4) The residual stress field induced by the loading and unloading stress reversals was found by subtracting
the stress range, D~ra, from the maximum stress, ~ra

max, at several locations ahead of the crack tip resulting
in a distribution of the residual stress vs. the distance from the crack tip. In order to subsequently sim-
ulate the character of the displacement field around the crack tip, the compressive residual stress field
was applied behind the crack tip, as shown in Fig. 1e. The stress field was determined by applying mirror
stress distribution to that one ahead of the crack tip.

(5) The residual stress effect was quantified by the residual stress intensity factor, Kr, determined by using
the weight function [32] method.
Kr ¼
Z a

0

rrðxÞmðx; aÞdx; ð14Þ
where rr(x) is the residual stress distribution shown in Fig. 1e and m(x,a) is the universal weight function
(15).
mðx; aÞ ¼ 2Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pða� xÞ

p 1þM1 1� x
a

� �1
2 þM2 1� x

a

� �1

þM3 1� x
a

� �3
2

	 

: ð15Þ
The factors M1, M2 and M3 are dependent on the specimen geometry and are given in Refs. [32,33].

3. Total stress intensity factors, Kmax,tot and DKtot

After calculating the residual stress intensity factor, Kr, it is necessary to modify the applied stress intensity
factors Kmax,appl and DKappl in order to account for the effect of the residual stress on the fatigue crack growth.
The interactions between the stress intensity factor, the plastic zone and the residual stress manifest themselves
through the change (decrease) of the resultant maximum stress intensity factor, Kmax,tot, without significant
changes in the resultant minimum stress intensity factor, Kmin,tot (Fig. 1a). It is assumed that the residual stress
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intensity factor, Kr, contributes mainly by changing (decrease) the resultant (total) maximum stress intensity
factor, Kmax,tot, and subsequently by the decrease of the resultant stress intensity range, DKtot. It should be
noted that the magnitude of the residual stress effect depends on the applied stress ratio and it has to be treated
differently for positive and negative stress ratios, R.

3.1. Calculation of total stress intensity factors at positive stress ratios, Rappl P 0

The reversed plastic deformations around the crack tip induced at relatively high stress ratios (Rappl > 0.5)
and relatively small stress intensity ranges (near threshold FCG), are usually not sufficient to produce com-
pressive residual stresses at the crack tip. Therefore, the residual stress intensity factor is close to zero
(Kr = 0) and the total SIFs are the same as the applied ones:
Kmax ;tot ¼ Kmax ;net ¼ Kmax ;appl; ð16Þ
Kmin;tot ¼ Kmin ;net ¼ Kmin ;appl; ð17Þ
DK tot ¼ DKnet ¼ DKappl: ð18Þ
However, at positive stress ratios 0 6 Rappl 6 0.5 (medium range FCG rates) or at relatively high stress ratios
(Rappl > 0.5) and high FCG rates the residual stresses at the crack tip can change the effectiveness of applied
SIFs. The maximum total stress intensity factor, Kmax,tot, is calculated in such a case by adding the negative
residual stress intensity factor, Kr, to the maximum applied stress intensity factor, Kmax,appl. The minimum
total SIF, Kmin,tot, is assumed to be unaffected by the residual stress and equals the applied minimum SIF,
Kmin,appl. In such a case, the total SIFs are calculated as:
Kmax ;tot ¼ Kmax ;net þ Kr ¼ Kmax ;appl þ Kr; ð19Þ
Kmin;tot ¼ Kmin ;net ¼ Kmin ;appl; ð20Þ
DK tot ¼ DKappl þ Kr: ð21Þ
3.2. Calculation of total stress intensity factors at negative stress ratios, Rappl < 0

In the case of negative applied stress ratios Rappl < 0, the maximum total (resultant) stress intensity factor,
Kmax,tot, is calculated analogously as in the case of R > 0, i.e. the Kmax,tot is the algebraic sum of the maximum
net, Kmax,net, and the negative Kr residual stress intensity factor. However, the compressive part of the loading
cycle is not entirely effective as far as FCG is concerned. Therefore, the minimum net stress intensity factor
Kmin,net, is not equal to the applied one and needs to be determined according to Eq. (5). Then, both the Kmax,net

and Kmin,net are used for the calculation of the residual stress, rr, and subsequently the residual SIF, i.e. the Kr.
All resultant (total) stress intensity quantities at negative stress ratios can be determined from Eqs. (22)–(24).
Kmax ;tot ¼ Kmax ;net þ Kr ¼ Kmax ;appl þ Kr; ð22Þ

Kmin ;tot ¼ Kmin ;net ¼ Kmin ;appl

3

2Y

ffiffiffiffiffiffi
q�
a

r
; ð23Þ

DK tot ¼ Kmax ;tot � Kmin;tot ¼ Kmax ;appl þ Kr � Kmin ;appl

3

2Y

ffiffiffiffiffi
q�

a

r
¼ DKnet þ Kr: ð24Þ
The total SIF range, DKtot, and the total maximum SIF, Kmax,tot, are the two main parameters used for sub-
sequent fatigue crack growth predictions. However, they need to be combined into one driving force.

4. Fatigue crack growth and the two-parameter driving force

Noroozi et al. [17] have derived a two-parameter fatigue driving force combining the total stress intensity
range, DKtot and the total maximum stress intensity factor, Kmax,tot, in the form of expression (25).
Dj ¼ Kp
max ;totDKð1�pÞ

tot : ð25Þ
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The fatigue crack growth expression derived in Ref. [17] and incorporating the two-parameter driving force
was finally presented as
da
dN
¼ C Kmax ;totð Þp DK totð Þ1�p

h ic
: ð26Þ
The parameter ‘‘p’’ in the driving force (25) is not constant but in some regions of the da/dN � DK curve its
variation is relatively small and it can be assumed constant in many practical applications. Two distinct re-
gions of the da/dN vs. DK with approximately constant exponent ‘‘p’’ were found. The first region covers
the fatigue crack growth regime, where plastic strains dominate the crack tip strain field. The second region
is concerned with the near threshold FCG, where elastic strains dominate deformations at the crack tip. It
should be noted that the constant ‘‘C’’ and the exponent ‘‘c’’ in Eq. (26) can also be derived analytically [17].

4.1. Predominantly plastic material behavior at the crack tip

In the case of the crack tip strain field dominated by plastic strains, the constants in Eq. (26) can be approxi-
mated by expressions (27).
C ¼ 2q�
wy;1

� �2

2
n0þ3
n0þ1r0fe

0
fpEq�

" #� 1
bþcð Þ

; p ¼ n0

n0 þ 1
; c ¼ � 2

bþ c
: ð27Þ
The plastic driving force, Kp
max ;totDKð1�pÞ

tot , can be used to predict FCG only in the high and medium FCG-rate
regime, where plastic strains dominate at the crack tip. In these regimes, the parameter ‘‘p’’ is almost constant
and depends mainly on the cyclic strain hardening exponent of the cyclic stress–strain material curve, n’. The
driving force (26) enables the analysis of FCG for various stress ratios ‘‘R’’ without the necessity of changing
any of the constants (Eq. (27)). In other words, Eq. (26) represents a master da/dN � DK curve valid for all
R-ratios.

4.2. Predominantly elastic material behavior at the crack tip

In the case of the crack tip strain field dominated by elastic strains, the constants in Eq. (26) can be approx-
imated by expressions (28).
C ¼ 2q�
wy;1

� �2

4pq�r02f

" #� 1
2b

; p ¼ 0:5; c ¼ � 1

b
: ð28Þ
The elastic driving force, K0:5
max ;totDK0:5

tot , can be subsequently used to predict FCG for the near threshold region
(at low FCG rates) where elastic strains dominate at the crack tip. In this region, the parameter ‘‘p’’ is almost
constant and equal to 0.5 (p = 0.5).

As mentioned earlier, the elastic (p = 0.5) and plastic p ¼ n0

n0þ1

� �
driving forces can be used only for one of the

two FCG regimes. In other words, these solutions (Eqs. (27) and (28)) become less accurate in the FCG regions,
where both elastic and plastic strains are equally important. To predict the fatigue crack growth at any FCG
rate, in the region spanning from the near threshold to the high fatigue crack growth rate regime, the concept of
approximate elasto-plastic driving force with one constant ‘‘p’’ has been introduced. It has been observed that
the maximum notch tip strains are predominantly plastic, but the subsequent strain ranges are often dominated
by elastic strains. Therefore, analogous expression such as those derived above can be used but with the ‘‘p’’
exponent valid over the entire range of fatigue crack growth rates, i.e. from threshold up to final fracture.

4.3. Elasto-plastic material behavior at the crack tip

Eqs. (12) and (13) provide a unique relationship between the applied stress intensity factor and the actual
strains and stresses at the crack tip providing, there are not any additional effects altering those equations.
Unfortunately, this is true only in the case of cracks subjected to cyclic loads applied at relatively high stress
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ratios, Rappl > 0.5. At low stress ratios, a compressive residual stress field is generated ahead of the crack tip and
Eqs. (12) and (13) can be used only when the net maximum stress intensity factor, Kmax,net, and the net stress
intensity range DKnet are corrected for the effect of the residual stress rr. In other words, the resultant maximum
SIF, Kmax,tot, and the resultant SIF range, DKtot, discussed in Section 3 must be used in those equations. Stresses
and strains over the first material volume q* at the crack tip induced by the total stress intensity factors, were in
this case also determined using the Neuber rule, and the Ramberg–Osgood material stress–strain curve.
Fig. 4.
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It was subsequently assumed that the crack tip strain, ~ea
max, induced by the maximum load was predominantly

plastic, while the strain range, D~ea, was predominantly elastic. After neglecting approximately the elastic and
plastic terms, Eqs. (29) and (30) take the following forms:
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The plastic term in the Manson–Coffin together with the SWT parameter (Eq. (3)) was also omitted.
~ra
max

D~ea

2
¼

r0f
� �2

E
ð2N fÞ2b

: ð33Þ
Using Eqs. (4), (31)–(33), the final FCG expression was derived in the form of Eq. (34).
da
dN
¼ C½ðKmax ;totÞpðDK totÞ0:5�c; ð34Þ
where
C ¼ 2q�
1

2ðr0fÞ
2
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wy;1ffiffiffiffiffiffiffiffiffiffi
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p
� �3n0þ1

� K 0

En0

" # 1
n0þ1

2
4

3
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�1
2b

; p ¼ n0

n0 þ 1
; c ¼ � 1

b
:

The FCG expression (34) indicate how the two SIF parameters, DKtot and Kmax,tot, characterizing the loading
cycle should be combined into one driving force in the form of
Dj ¼ Kp
max ;totDK0:5

tot : ð35Þ
It should also be noted that the driving force (35) is resulting from the application of the SWT fatigue damage
parameter. All constants in the FCG equations discussed above can be obtained from the material properties
given in the form of the Ramberg–Osgood stress–strain curve and the Manson–Coffin fatigue strain–life
expression. The elementary material block size, q*, must be determined separately.
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5. Estimation of the size of the elementary material block and the crack tip radius, q*

The method for estimating the parameter q* depends on the nature of available experimental data. If the
near threshold fatigue crack growth data at high stress ratios R > 0.5 is available, the determination of the
crack tip radius, q*, can be carried out by solving the set of simultaneous Eqs. (3), (4), (29), and (30). The total
stress intensity factors, Kmax,tot and DKtot, have the same magnitudes at high stress ratios as the applied ones.
Therefore, the applied SIFs can be used in Eqs. (29), and (30) in order to calculate the maximum stress, ~ra

max,
and the strain range, D~ea. Knowing the maximum stress, ~ra

max, and the strain range, D~ea, the elementary mate-
rial block size q* can be determined from Eq. (36).
~ra
max

D~ea

2
¼

r0f
� �2

E
2q�

da=dN

� �2b

þ r0fe
0
f

2q�

da=dN

� �bþc

: ð36Þ
However, because both sides of Eq. (36) depend on the q* parameter, the iteration technique must be used.
If the near threshold fatigue crack growth data at high stress ratios is not available, fatigue crack growth

data obtained experimentally at any stress ratio can be used for the determination of the elementary material
block size q*. First, the residual SIF, Kr, need to be determined for assumed q* followed by the determination
of the total stress intensity factors, Kmax,tot and DKtot, corresponding to given experimental FCG data. The
total stress intensity factors are subsequently combined into the two-parameter driving force,
Dj ¼ Kp

max ;totDKð1�pÞ
tot . Then, the experimental fatigue crack growth data can be plotted in terms of the two-

parameter driving force, da/dN vs. Dj. Finally, by using Eqs. (26), (27) and assumed q* parameter, the calcu-
lated da/dN vs. Dj can also be drawn (Fig. 4). If the calculated da/dN vs. Dj is in good agreement with the
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experimental da/dN vs. Dj curve, the initial assumption concerning the q* parameter was correct. The whole
process needs to be iterated until the correct value of the parameter q* is determined. It is recommended to use
in this case the high fatigue crack growth data as the reference because the high-rate FCG is governed predom-
inantly by plastic strains and the use of Eqs. (26) and (27) is justified.
6. Prediction of the fatigue crack growth after the application of a single overload

The interaction effects that occur under variable amplitude loading can manifest themselves in a change of
the total instantaneous driving force, Dj, and consequently the change of the fatigue crack growth rate. It can
be assumed that the plastic zone induced by the constant amplitude loading just before the overload is applied
remains in the wake of the advancing crack tip. After the overload is applied, the fatigue crack growth is influ-
enced by the stresses induced by the overload plastic zone. A typical residual stress distribution used to cal-
culate the residual stress intensity factors after the overload is shown in Fig. 5. The residual stress field consists
of two stress fields that are not symmetric: the first one created by the base constant amplitude loading remains
in the wake of the advancing crack tip; the second one was created by a single overload. As the crack is pene-
trating into the overload plastic zone, the magnitude of the residual stress intensity factor increases, due to the
increase of the compressive residual stress, and consequently the fatigue crack growth decreases. As soon as
the magnitude of the residual SIF induced by the overload stress field is the same as that one induced by
the subsequent constant amplitude base loading, the overload effect is assumed to cease. In other words,
beyond this point the fatigue crack growth needs to be calculated by using the residual SIF induced by the
post-overload or the current load fluctuations.
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7. Verification of the proposed model

The fatigue crack growth data of 7075-T6 aluminum alloy was used for the validation of the proposed
model. The cyclic and fatigue properties were borrowed from Ref. [34] and are listed below:

Monotonic material properties: E = 71700 MPa, rys = 468.85 MPa, m = 0.32.
Cyclic stress–strain curve (see Eq. (12)): K 0 = 737.81 MPa, n 0 = 0.056.
Strain–life curve (see Eq. (3)): b = �0.059, c = �0.802, e0f ¼ 0:2638, r0f ¼ 729:62 MPa.
7.1. Fatigue crack growth prediction under constant amplitude loading

The experimental FCG data for the 7075-T6 aluminum alloy was found in Refs. [35–37]. The data for var-
ious R-ratios is plotted as a function of the applied stress intensity range (Fig. 6). Due to the availability of the
near threshold FCG data obtained at high stress ratios, the q* parameter was determined by the first method
described in Section 5. The data used were: R = 0.5, da/dN = 1 · 10�8 (mm/cycle) and DKth = 1.4 (MPa

p
m).

The size of the elementary material block was found to be q* = 4 · 10�6 (m). All other parameters of the fati-
gue crack growth equations (Eqs. (26)–(28) and (34)) were as follows:

– for predominantly plastic material behavior at the crack tip – Eqs. (26), (27)
C = 6.1 · 10�9, p = 0.05, c = 2.32 (for da/dN in ‘‘mm/cycle’’ and K in ‘‘MPa

p
m’’),

– for predominantly elastic material behavior at the crack tip – Eqs. (26), (28)
C = 2.61 · 10�14, p = 0.5, c =16.95 (for da/dN in ‘‘mm/cycle’’ and K in ‘‘MPa

p
m’’),

– for mixed elastic–plastic material behavior at the crack tip – Eq. (34)
C = 1.63 · 10�12, p = 0.05, c =16.95 (for da/dN in ‘‘mm/cycle’’ and K in ‘‘MPa

p
m’’).
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Three two-parameter driving forces, Kp
max ;totDKð1�pÞ

tot , K0:5
max ;totDK0:5

tot and Kp
max ;totDK0:5

tot , were used to model the
effect of the stress ratio R on the fatigue crack growth under constant amplitude loading. The total stress inten-
sity factors corrected for the residual stress effect were used to determine the magnitude of each driving force.
It was found (Fig. 7) that in the high and medium FCG rate regimes, the ‘‘plastic’’ driving force,
Kp

max ;totDKð1�pÞ
tot , was successful in correlating the fatigue crack growth data obtained at various stress ratios.

The ‘‘elastic’’ driving force, K0:5
max ;totDK0:5

tot , was the least successful even in the near threshold region (Fig. 8).
It can be noted that the elastic driving force may be used only to consolidate FCG data at very low fatigue
crack growth rates; therefore, it is not recommended to be used for fatigue crack growth predictions away
from the threshold. It was also found (Fig. 9) that the combination of the elastic and plastic stress–strain mate-
rial behavior at the crack tip in the form of the driving force, Kp

max ;totDK0:5
tot , could be used to correlate FCG

data at various R-ratios for the FCG rates spanning from the near threshold to the high growth rate regime.
The closed form solutions of Eqs. (26)–(28) and (34) were attainable after neglecting the plastic or elastic

terms, respectively, in the Ramberg–Osgood and the Manson–Coffin equation. Unfortunately, such solutions
become inaccurate in the regions, where both terms are equally important. However, numerical solutions to
the complete set of Eqs. (3), (4), (29), and (30), i.e. without neglecting any terms, are possible to obtain. The
final solution cannot be derived in a closed form but it can be presented graphically. The numerical solution is
termed further on as the ‘‘exact solution’’. The ‘‘exact’’ FCG curves resulted from solving the complete set of
Eqs. (3), (4), (29), and (30) are shown as diagrams (Figs. 7–9), where the fatigue crack growth rates are plotted
as a function of the appropriate driving force Dj. The approximate closed form solutions (Eqs. (26)–(28) and
(34)), are also shown in the same figures with the dashed lines. The best results in correlating the FCG under
various stress ratios were obtained while using the mixed driving force in the form of Kp

max; totDK0:5
tot . As shown

in Fig. 9, the numerical exact solution presented in terms of the mixed driving force had good agreement with
Fatigue crack growth rate after 80% overload, Al 7075-T6
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the experimental data over the entire range of FCG data. However, the elasto-plastic approximate solution
(Eq. (34)) agreed well with only the low FCG data. Therefore, it is recommended that in practice two lines
da/dN vs. Dj should be fitted into the existing FCG data for the determination of constants ‘‘C’’ and ‘‘c’’
in Eq. (34), i.e. one line covering the near threshold FCG data and the other approximating so called Paris’
regime. The two power law curves characterized by two sets of constants (the exponent ‘‘c’’ and the constant
‘‘C’’) can be subsequently used for FCG analyses.

7.2. Fatigue crack growth prediction after the application of a single overload

The proposed model was also used to predict the fatigue crack growth rate after the application of a single
overload. The experimental fatigue crack growth data for the 7075-T6 aluminum alloy from Ref. [38] was used
for the validation. The predicted and experimental fatigue crack growth retardation following a single over-
load is shown in Figs. 10 and 11. The experimental post-overload FCG rate was measured [38] in load-con-
trolled fatigue tests on 7075-T6 aluminum alloy specimen at R = 0.1 with the overload ratios of 1.5 and 1.8
and the base stress intensity range DKBL = 11.4 MPa

p
m and DKBL = 8.955 MPa

p
m, respectively. The pre-

dicted fatigue crack growth rates based on the numerical ‘‘exact’’ solution are also shown in Figs. 10 and
11. The discrepancy between the theoretical and experimental curves was due to the inaccuracy of the q*

parameter. The q* parameter was estimated using one constant amplitude FCG data set from Refs. [35–37]
and the predictions were carried out for another set of data borrowed from Ref. [38]. It is not certain whether
the material properties of the two different sets of specimens tested at different laboratories and separated by at
least a few years time span were exactly the same.

8. Conclusions

A fatigue crack growth model based on the simulation of the elastic–plastic stress–strain response at the
crack tip has been proposed. The application of the model resulted in the derivation of a two-parameter driv-
ing force combining the effect of the maximum stress intensity factor and the stress intensity range. It was
shown that after correcting the applied stress intensity factors for the effect of the plasticity-induced residual
stresses near the crack tip it was possible to derive one master fatigue crack growth curve valid for all stress
ratios.

Three forms of the fatigue crack driving force, Kp
max ;totDKð1�pÞ

tot , K0:5
max ;totDK0:5

tot and Kp
max ;totDK0:5

tot , were derived
depending on the assumptions concerning the nature of the crack tip stress–strain field. It was shown that the
driving force in the form of Kp

max ;totDK0:5
tot could correlate FCG data for a wide range of stress ratios and FCG

rates. The driving force Kp
max ;totDKð1�pÞ

tot could only be used for predicting the high FCG rates. However, the
driving force of K0:5

max ;totDK0:5
tot was not good for FCG predictions, even in the near threshold region.

The model was also able to account for the detrimental effect of the compressive part of a loading cycle. It
was found that the contribution of the compressive part of the stress reversal was relatively small and
depended on the crack tip radius, q*, and the actual crack size, a. However, the modeling of the crack tip
as a circular hole might be non-conservative. The model could be used to predict the fatigue crack growth after
a single overload, and it can be potentially applied for analyses of FCG under spectrum loading.
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