
International
www.elsevier.com/locate/ijfatigue

International Journal of Fatigue 29 (2007) 1616–1633

Journalof
Fatigue
A study of the stress ratio effects on fatigue crack growth using
the unified two-parameter fatigue crack growth driving force

A.H. Noroozi, G. Glinka *, S. Lambert

University of Waterloo, Department of Mechanical Engineering, Waterloo, Ont., Canada N2L 3G1

Received 1 October 2006; received in revised form 11 December 2006; accepted 12 December 2006
Available online 9 January 2007
Abstract

A unified two-parameter fatigue crack growth driving force model was developed to account for the residual stress and subsequently
the stress ratio effect on fatigue crack growth. It was found that the driving force should be expressed as a combination of the maximum
stress intensity factor, Kmax, and the stress intensity range, DK, corrected for the presence of the residual stress. As a result, the effects of
residual stresses manifest themselves in changes of the applied maximum stress intensity factor and the applied stress intensity range. A
two-parameter function of the maximum total stress intensity factor, Kmax,tot, and the total stress intensity range, DKtot, was proposed to
model the fatigue crack growth rate data obtained at various R-ratios. Based on the analysis, the unified two-parameter driving force,
Dj ¼ Kp

max;totDKð1�pÞ
tot , was derived accounting for the mean stress or the stress ratio effect on fatigue crack propagation. It was shown that

the two-parameter driving force, Dj ¼ Kp
max;totDK0:5

tot , was capable of correlating fatigue crack growth data obtained under a wide range of
load ratios and fatigue crack growth rates spanning from the near threshold to the high growth rate regime.

The model was successfully verified using a wide range of fatigue crack growth data obtained for Al 2024-T351 aluminium alloy, St-
4340 steel alloy and Ti–6Al–4V titanium alloy with load ratios, R, ranging from �1 to 0.7.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Throughout their service life, machines, equipment,
vehicles, buildings and aircraft are subjected to loads, the
majority of which fluctuates with time. This kind of loading
causes small cracks to grow during the life of a component
and leads to fatigue failure. The cracks either pre-existed at
the time of manufacturing or were created by in-service
conditions. Therefore, the growth of the crack should be
predictable to provide guidelines for inspection programs,
which ensure that cracks will never propagate and fail prior
to detection. Therefore, fatigue crack growth prediction
models must be developed.
0142-1123/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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During the last four decades, a lot of research effort has
focused on fatigue crack growth and prediction models.
The most successful and popular model has been Paris’
law [1] based on the applied stress intensity range, DKappl,
as the only governing parameter for fatigue crack growth.
The Paris equation prompted widespread research aiming
at possible improvements of its original form and at the
analytical modeling of fatigue crack growth, in general.
One of the fundamental problems concerning the Paris
expression is the quantification of the mean stress effect.
In other words, the apparent effectiveness of the applied
stress intensity range, DKappl, is influenced by the load ratio
R (minimum load/maximum load).

In 1971, Elber [2] modified the applied stress intensity
factor range, DKappl, introducing a closure mechanism in
order to characterize the effect of load ratio, R, on fatigue
crack growth. The contemporary belief is that the crack
tip closure concept can explain mean stress effects on the
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Nomenclature

a crack length
b fatigue strength exponent
c fatigue ductility exponent
C fatigue crack growth constant
D fatigue damage
E modulus of elasticity
K 0 cyclic strength coefficient
M1, M2, M3 weight function parameters
m(x,a) weight function
N number of cycle
P the unit point force
n 0 cyclic strain hardening exponent
p driving force constant
R stress ratio
Rappl applied stress ratio
x distance from the crack tip
Y geometrical stress intensity correction

factor
da/dN crack growth rate
FCG fatigue crack growth
SIF stress intensity factor
SWT Smith-Watson-Topper fatigue damage

parameter
c fatigue crack growth equation expo-

nent
q* notch tip radius or elementary mate-

rial block size
v Poisson’s coefficient
r0f fatigue strength coefficient
e0f fatigue ductility coefficient
~ea

max maximum actual strain over the first
elementary block

D~ea actual strain range over the first ele-
mentary block

De strain range ahead of the crack tip
K stress intensity factor
Kr residual stress intensity factor

Kmax,appl maximum applied stress intensity factor
Kmin,appl minimum applied stress intensity factor
DKappl applied stress intensity range
Kmax,net maximum net stress intensity factor
Kmin,net minimum net stress intensity factor
DKnet net stress intensity range
Kmax,tot total maximum stress intensity factor
Kmin,tot total minimum stress intensity factor
DKtot total stress intensity range
Dj two parameter driving force
Kmax,th maximum threshold stress intensity

factor
DKth threshold stress intensity range
Smax,appl maximum applied nominal (remote)

stress
Smin,appl minimum applied nominal (remote)

stress
DSappl applied nominal (remote) stress range
rr(x) residual stress distribution
rmax maximum stress ahead of the crack tip
~ra

max maximum actual stress over the first
elementary block

D~ra actual stress range over the first ele-
mentary block

~re
max;net maximum net pseudo-elastic stress

over the first elementary block
~re

min;net minimum net pseudo-elastic stress
over the first elementary block

D~re
net net elastic stress range over the first

elementary block
Drth threshold stress range
D~ra

th actual threshold stress range over the
first elementary block

Wy,i the averaging constant corresponding
to the i-th elementary block, Wy,1 =
1.633, Wy,2 = 0.8967, Wy,3 = 0.6773,
Wy,4 = 0.5641
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fatigue crack growth. However, mounting evidence suggests
that this may not be true; the model was difficult to use,
required experimental calibrations and was not systematic
[3–7]. Experimental results indicate that the crack-opening
load, Pop, depends on the measurement location relative
to the crack tip and the technique employed [3,4]. Gener-
ally, measurements taken at points far away from the crack
tip give lower opening loads compared to measurements
taken close to the crack tip. In a vacuum test, where closure
is absent, the fatigue crack growth (FCG) should be faster
than in the air test, but experimental results contradict such
a belief [5]. Recently, Kujawski, [6] Donald and Paris [7]
observed that by using the crack closure model fatigue
crack growth curves cannot be correlated in the near thres-
hold regime for aluminum alloys.
Therefore, fatigue researches have attempted [6–10] to
use alternative methods, for example by assuming a two-
parameter driving force combining the applied maximum
stress intensity factor, Kmax,appl, and the applied stress
intensity range, DKappl, in order to analyze the fatigue
crack growth behavior. The two-parameter driving forces
are capable of explaining the R-ratio effect on fatigue crack
growth behavior. However, the available two-parameter
driving force models [6–9] tend to be suitable for only high
stress ratios. In general, they cannot explain the influence
of the compressive part of the load history on fatigue crack
growth. In addition, the primary two-parameter models
were strictly empirical.

It is generally accepted that fatigue crack growth
depends on local stresses and strains at the crack tip.
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So far, none of the prediction models can account for the
effect of local stresses and strains on fatigue crack growth.
Therefore, the unified two-parameter model has been pro-
posed to account for the effect of crack tip local stresses
and strains on fatigue crack growth. The model also
accounts for the mean stress effect based on the analysis
of the elastic–plastic strain–stress history at the crack tip.

2. Formulation of the unified two-parameter fatigue crack

growth model

2.1. Description of the proposed model

After the development of fracture mechanics in 1960,
the stress intensity factor range was proposed to use as a
parameter characterizing the fatigue crack growth. How-
ever, it was later found out that FCG was controlled not
only by the stress intensity factor range but also by the
maximum stress intensity factor. In spite of the fact that
the local stresses and strains near the crack tip are domi-
nant factors as far as the FCG is concerned, there has been
little effort to establish a quantitative link between them
and the applied stress intensity factors. Recently, Noroozi
et al. [11] have formulated a unified two-parameter model
to correlate the maximum stress intensity factor and the
stress intensity range with the actual elasto-plastic crack
tip stress–strain field. It was also necessary to address the
fact that the actual correlation was significantly influenced
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Fig. 1. Schematic crack tip geometry and displacement field, cyclic plastic zon
applied load (stress intensity factor) history, (b) qualitative stress–strain respon
crack tip region.
by the residual stress induced at the crack tip by the cyclic
plastic deformation.

During the first loading reversal or the first nominal
stress reversal from 0 to 1 (Fig. 1a), the material near the
crack tip is deformed plastically forming a monotonic plas-
tic zone as shown in Fig. 1c. During the un-loading part of
the cycle (paths 1–5 in Fig. 1a) the crack tip deformations
are smaller than those created during the previous loading
reversal. Thus, the plastic zone created during loading can-
not disappear and a small portion of the plastic zone is
deformed again in the reversed direction. This re-deformed
part of the plastic zone is called the cyclic plastic zone (see
Fig. 1c and load level 5). This plastically deformed material
is left at the crack tip like an obstacle for subsequent rever-
sals. The plastically deformed material prevents the region
behind the crack tip from being closed. In other words, the
fatigue crack surfaces do come into contact with each other
but not just behind the crack tip, even if compressive loads
are applied. This phenomenon was found experimentally
and numerically by Bowels [12], Zhang [13], Sander and
Richard [14], and also by the finite element analyses carried
out by Pommier [15]. The effect of the plastic zone presence
resulting in the lack of contact behind the crack tip can be
modeled by taking into account the crack tip residual
stress. The crack opening behind the tip is modeled by add-
ing the hypothetical symmetrical residual stress distribu-
tion behind the crack tip analogous to that one existing
ahead of the crack tip (Fig. 2). By representing the residual
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e, crack tip stress–strain response and the residual stress distribution: (a)
se at crack tip, and (c) evolution of the crack opening displacements in the
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ρ* ρ*
(a)
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Fig. 2. Approximate crack tip displacement field and corresponding
residual stress distribution: (a) illustration of the displacement field around
the plastic zone, and (b) residual stress distribution required for generating
the displacement field.
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stress in terms of the residual stress intensity factor, Kr, the
effect of the residual crack tip stress–strain field can be
quantified in terms of the residual stress intensity factor,
Kr. In order to calculate the residual stress intensity factor,
Kr, it is necessary to determine the elasto-plastic material
stress–strain response at the crack tip. The expected
stress–strain response at the crack tip is shown schemati-
cally in Fig. 1b. The residual stress at the crack tip is
induced by the first two reversals (0–1 and 1–5 in
Fig. 1a). Because of the residual stress created by the first
ρ*

ρ*

(a)

Fig. 3. The discrete material model and the crack tip geometry at the maximum
(b) The crack model at the tensile maximum and compressive minimum loads
two reversals, the maximum stress at the crack tip corre-
sponding to the maximum load at the end of the third
reversal (at point 9 in Fig. 1a) cannot reach the same level
as that one at the end of the first loading reversal (at point
1 in Fig. 1a). This effect can be modeled by using the resul-
tant maximum stress intensity factor, Kmax,tot, obtained by
decreasing the applied maximum stress intensity factor,
Kmax,appl, by the residual stress intensity factor, Kr. It is
assumed that the minimum stress intensity factor is not
affected by the crack tip residual stress. As a result of such
a correction, both the resultant maximum stress intensity
factor, Kmax,tot, and the resultant stress intensity range,
DKtot, are affected by the plasticity-induced crack tip resid-
ual stresses.
2.2. Basics of the proposed model

The proposed unified two-parameter FCG model is
based on the following assumptions [11] and computa-
tional techniques:

� The material is composed of elementary particles of a
finite dimension q*. It represents an elementary material
block size, below which material cannot be regarded as a
continuum, Fig. 3a.
� The fatigue crack is regarded as a notch with the tip

radius q*.
� The macroscopic material properties used in the model

are the Ramberg–Osgood cyclic stress–strain curve [16]
and the Manson–Coffin strain–life fatigue curve [17].
� The fatigue crack growth is considered as successive

crack increments due to crack re-initiations over the dis-
tance q*.
S
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(b)

and minimum load: (a) crack and the discrete elementary material blocks.
used for the linear elastic stress analysis.
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� The number of cycles ‘‘N’’ necessary to fail the material
over the distance q* can be obtained from the Manson–
Coffin curve and the Smith–Watson–Topper (SWT) fati-
gue damage parameter [18]

D ¼ rmax

De
2
¼ ðr

0
fÞ

2

E
ð2NÞ2b þ r0fe

0
fð2NÞbþc

: ð1Þ

� The fatigue crack growth rate can be finally determined
as:

da
dN
¼ q�

N
: ð2Þ

The mathematical formulation and computational pro-
cedure can be outlined as follows:

(1) For applied positive stress ratios (Rappl P 0), the
average elastic stresses over the first elementary material
can be calculated by using the Creager–Paris solution [19]
for a crack with the tip radius q*

~re
max;net ¼

wy;1Kmax;applffiffiffiffiffiffiffiffiffiffi
2pq�
p ¼

wy;1Smax;applY
ffiffiffiffiffiffi
pa
pffiffiffiffiffiffiffiffiffiffi

2pq�
p

¼ Smax;applY
ffiffiffiffiffiffiffi
a

2q�

r
wy;1; ð3Þ

~re
min;net ¼

wy;1Kmin;applffiffiffiffiffiffiffiffiffiffi
2pq�
p ¼

wy;1Smin;applY
ffiffiffiffiffiffi
pa
pffiffiffiffiffiffiffiffiffiffi

2pq�
p

¼ Smin;applY
ffiffiffiffiffiffiffi
a

2q�

r
wy;1; ð4Þ
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R = 0.7 Eq. (12)
R = 0.5 Eq. (12)

R = 0.3 Eq. (12)

R = 0.1 Eq. (12)

Fig. 4. Linear interpolation of the residual stress i
D~re
net ¼

wy;1Kmax;applffiffiffiffiffiffiffiffiffiffi
2pq�
p �

wy;1Kmin;applffiffiffiffiffiffiffiffiffiffi
2pq�
p ¼

wy;1ffiffiffiffiffiffiffiffiffiffi
2pq�
p DKappl

¼ DSapplY
ffiffiffiffiffiffiffi
a

2q�

r
wy;1; ð5Þ

where Smin;appl ¼
Kmin;appl

Y
ffiffiffiffiffiffi
pa
p , Smax;appl ¼

Kmax;appl

Y
ffiffiffiffiffiffi
pa
p , DSappl ¼

DKappl

Y
ffiffiffiffi
pa
p , wy;1 ¼ 1:633.

(2) For applied negative stress ratios (Rappl < 0), the
crack surfaces contact with each other and the load is
transferred through the crack surfaces except the region
just behind the crack tip where the crack may stay open.
Therefore, the crack tip region under compressive loading
can be modeled as an elliptical or circular hole, as shown
in Fig. 3b and load level 2. As a result, the net stress inten-
sity factor (SIF) experienced at the minimum load is not
the same as it would be for a fully active crack. The circular
hole model of the crack under compression (Fig. 3b and
load level 2) results [11] in the following SIF.

Kmin;net ¼ Kmin;appl

3

2Y

ffiffiffiffiffi
q�

a

r
: ð6Þ

It can be concluded, based on the proposed model, that the
compressive part of a loading cycle is not very effective as
far as the FCG is concerned. Therefore, by using the net
SIF, the net elastic stresses can be obtained from the fol-
lowing equations:
8 10 12 14 16

actor Range, ΔKnet (MPa√m)

2024-T351 Aluminum Alloy

ntensity factor for 2024-T351 aluminum alloy.
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~re
max;net ¼

wy;1Kmax;applffiffiffiffiffiffiffiffiffiffi
2pq�
p ¼

wy;1Smax;applY
ffiffiffiffiffiffi
pa
pffiffiffiffiffiffiffiffiffiffi

2pq�
p

¼ Smax;applY
ffiffiffiffiffiffiffi
a

2q�

r
wy;1; ð7Þ

re
min;net ¼

wy;1Kmin;netffiffiffiffiffiffiffiffiffiffi
2pq�
p ¼

3wy;1

2
ffiffiffi
2
p Kmin;appl

Y
ffiffiffiffiffiffi
pa
p ¼ Smin;appl

3wy;1

2
ffiffiffi
2
p ; ð8Þ

D~re
net ¼ ~re

max;net � ~re
min;net

¼
wy;1ffiffiffiffiffiffiffiffiffiffi
2pq�
p Kmax;appl �

3

2Y

ffiffiffiffiffi
q�

a

r
Kmin;appl

 !
: ð9Þ

(3) The actual elasto-plastic stresses and strains are
determined by using the above derived net stresses and
the Neuber rule [20] over each material block ahead of
the crack tip. The stress state over the first elementary
material block is uni-axial if the body is in plane stress
state; however, for other elements ahead of the crack
tip, the stress state is bi-axial. Therefore, the multi-axial
Neuber rule [21] and the Hencky equations of the total
deformation theory of plasticity [22] were used for calcu-
lating elasto-plastic stresses and strains over each elemen-
tary material block. For the first elementary material
block, the uni-axial Neuber rule and the Ramberg–
Osgood take the form of Eqs. (10) and (11), respectively,
for loading and unloading reversals
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Fig. 5. Linear interpolation of the residua
1

E

Kmax;net � wy;1ffiffiffiffiffiffiffiffiffiffi
2pq�
p

� �2

¼ ð~r
a
maxÞ

2

E
þ ~ra

max

~ra
max

K 0

� � 1
n0

;

~ea
max ¼

~ra
max

E
þ ~ra

max

K 0

� � 1
n0

;

8>>>><
>>>>:

ð10Þ

1

E

DKnet � wy;1ffiffiffiffiffiffiffiffiffiffi
2pq�
p

� �2

¼ ðD~raÞ2

E
þ 2ðD~raÞ D~ra

2K 0

� � 1
n0

;

D~ea

2
¼ D~ra

2E
þ D~ra

2K 0

� � 1
n0

:

8>>>><
>>>>:

ð11Þ

The actual maximum stress and strain induced by the first
reversal, and subsequent actual stress and strain ranges can
be calculated from Eqs. (10) and (11), respectively.

(4) The residual stress field induced by the loading and
unloading stress reversals was found by subtracting the stress
range, D~ra, from the maximum stress, ~ra

max, at several loca-
tions ahead of the crack tip resulting in a distribution of
the residual stress versus the distance from the crack tip. In
order to simulate the character of the displacement field
around the crack tip, the compressive part of the residual
stress field ahead of the crack tip was symmetrically applied
over the region behind the crack tip as shown in Fig. 2b.

(5) The residual stress effect can be quantified in terms of
the residual stress intensity factor, Kr, which can be deter-
mined by using the weight function [23] method
50 60 70 80 90 100

tor Range, ΔKnet (MPa√m)

4340 Steel

l stress intensity factor for 4340 steel.
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Kr ¼
Z a

0

rrðxÞmðx; aÞdx; ð12Þ

where rr(x) is the residual stress distribution shown in
Fig. 2b and m(x,a) is the universal weight function [24]

mðx; aÞ ¼ 2Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pða� xÞ

p 1þM1 1� x
a

� �1
2 þM2 1� x

a

� �1
�

þM3 1� x
a

� �3
2

�
: ð13Þ

The factors M1, M2 and M3 are dependent on the specimen
geometry and are given in Refs. [25,26].

The residual stress intensity factor can be calculated
from Eq. (12) for any stress ratio and any load magnitude.
It was found that when the calculated residual stress inten-
sity factors for any constant stress ratio are plotted against
the net stress intensity range, a linear relationship of the Kr

versus DKnet can be obtained. The linear Kr � DKnet rela-
tionships for the Al 2024-T351 and St-4340 materials are
shown in Figs. 4 and 5, respectively. Moreover, the slope
of the Kr versus DKnet line decreases with the increasing
stress ratio, R. Knowing the linear relationship of the Kr

versus DKnet, the residual stress intensity factor, Kr, can
be obtained for any load magnitude without using Eq.
(12). Application of the linear relation between the residual
stress intensity factor and the net stress intensity range can
significantly decrease the computational time required for
the fatigue crack growth analysis.

3. Total stress intensity factors, Kmax,tot and DKtot

After calculating the residual stress intensity factor, Kr,
it is necessary to modify the applied Kmax,appl and DKappl

in order to account for the effect of the residual stress on
the fatigue crack growth. The interactions of the stress
intensity factor, the plastic zone and the residual stress
manifest themselves through the change (decrease) of the
resultant maximum stress intensity factor, Kmax,tot, without
significant changes in the resultant minimum stress inten-
sity factor, Kmin,tot (Fig. 1a). It is assumed that the residual
stress intensity factor, Kr, contributes mainly to the change
(decrease) of the resultant maximum stress intensity factor,
Kmax,tot, and subsequently to the resultant stress intensity
range, DKtot. However, the magnitude of the residual stress
effect depends on the applied stress ratio and it has to be
treated differently for positive and negative applied stress
ratios, Rappl.

3.1. Calculation of total stress intensity factors at positive

stress ratios, Rappl P 0

The reversed plastic deformations around the crack tip
induced at relatively high stress ratios (Rappl > 0.5) and rel-
atively small stress intensity ranges (near threshold FCG),
are usually not sufficient to produce compressive residual
stresses. Therefore, the residual stress intensity factor is
close to zero (Kr = 0) and the total SIFs are the same as
the applied ones:

Kmax;tot ¼ Kmax;net ¼ Kmax;appl; ð14Þ
Kmin;tot ¼ Kmin;net ¼ Kmin;appl; ð15Þ
DK tot ¼ DKnet ¼ DKappl: ð16Þ

However, either for other positive stress ratios
(0 6 Rappl 6 0.5) or for relatively high stress ratios
(Rappl > 0.5) and high stress intensity ranges (medium
range FCG rates), the residual stresses at the crack tip
can change the effectiveness of applied SIFs. The maximum
total stress intensity factor, Kmax,tot, is calculated in such a
case by adding the negative residual stress intensity factor,
Kr, to the maximum applied stress intensity factor,
Kmax,appl. However, the minimum total SIF is assumed to
be unaffected by the residual stress and equals the applied
minimum SIF, Kmin,appl. In such a case, the total SIFs
are calculated as:

Kmax;tot ¼ Kmax;net þ Kr ¼ Kmax;appl þ Kr; ð17Þ
Kmin;tot ¼ Kmin;net ¼ Kmin;appl; ð18Þ
DK tot ¼ DKappl þ Kr: ð19Þ
3.2. Calculation of total stress intensity factors at negative

stress ratios, Rappl < 0

In the case of negative stress ratios Rappl < 0, the maxi-
mum total (resultant) stress intensity factor, Kmax,tot, is cal-
culated analogously as in the case of Rappl P 0, i.e. the
Kmax,tot is the algebraic sum of the maximum net, Kmax,net,
and the negative Kr residual stress intensity factor. How-
ever, the compressive part of the loading cycle is not
entirely effective as far as FCG is concerned. Therefore,
the minimum net stress intensity factor Kmin,net, is not
equal to the applied one and needs to be determined
according to Eq. (6). Thus, all the stress intensity quantities
at negative stress ratios can be determined from the follow-
ing equations:

Kmax;tot ¼ Kmax;net þ Kr ¼ Kmax;appl þ Kr; ð20Þ

Kmin;tot ¼ Kmin;net ¼ Kmin;appl
3

2Y

ffiffiffiffiffi
q�

a

r
; ð21Þ

DK tot ¼ Kmax;tot � Kmin;tot

¼ Kmax;appl þ Kr � Kmin;appl

3

2Y

ffiffiffiffiffi
q�

a

r
¼ DKnet þ Kr: ð22Þ

The resultant (total) SIF range, DKtot, and the resultant
(total) maximum SIF, Kmax,tot, are the two main parame-
ters used for fatigue crack growth predictions. However,
they need to be combined into one driving force similar
to the fatigue damage parameter used in the classical fati-
gue theories.
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4. Analytical derivation of the unified two-parameter fatigue

crack driving force Dj and the fatigue crack growth

expression da/dN � Dj

Noroozi et al. [11] derived the FCG equation in terms of
a unified two-parameter driving force assuming predomi-
nately plastic material deformation at the crack tip while
modeling the high fatigue crack growth rate, and the elastic
behavior for the near threshold fatigue crack growth. Fati-
gue crack growth expressions derived for the two different
material behaviors [11] are given below.

4.1. Predominantly plastic material behavior at the crack tip

da
dN
¼ C Kmax;totð Þp DK totð Þ1�p

h ic
; ð23Þ

where

C ¼ 2q�
ðwy;1Þ

2

2
n0þ3
n0þ1r0fe

0
fpEq�

" #� 1
bþcð Þ

; p ¼ n0

n0 þ 1
; c ¼ � 2

bþ c
:

4.2. Predominantly elastic material behavior at the crack tip

da
dN
¼ C Kmax;totð Þp DK totð Þ1�p

h ic
; ð24Þ

where

C ¼ 2q�
ðwy;1Þ

2

4pq�r02f

" #� 1
2b

; p ¼ 0:5; c ¼ � 1

b
:

However, it is often observed in practice that in notched
machine components subjected to service cyclic loading
the maximum notch tip strains are predominantly plastic
but the subsequent strain ranges are predominantly elastic.
Therefore, analogous expressions as those above were de-
rived assuming the mixed elasto-plastic behavior of the
crack tip material subjected to cyclic loading.

4.3. Elasto-plastic material behavior at the crack tip

The average stress over the first crack tip material vol-
ume q* induced by the applied stress intensity factor, was
determined as previously using the Neuber rule, and the
Ramberg–Osgood material stress–strain curve

1

E

Kmax;tot � wy;1ffiffiffiffiffiffiffiffiffiffi
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K 0

� � 1
n0

;

8>>>><
>>>>:

ð25Þ

1

E

DK tot � wy;1ffiffiffiffiffiffiffiffiffiffi
2pq�
p

� �2

¼ ðD~raÞ2

E
þ 2ðD~raÞ D~ra

2K 0

� � 1
n0

;

D~ea

2
¼ D~ra

2E þ D~ra

2K 0
	 
 1

n0 :

8>><
>>: ð26Þ
It was assumed that the crack tip strains induced by the
maximum load were predominantly plastic, while the strain
ranges were predominantly elastic. Therefore, Eqs. (25)
and (26) take the following forms:

1

E

Kmax;tot � wy;1ffiffiffiffiffiffiffiffiffiffi
2pq�
p
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¼ ra
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max

K 0
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1

E

DK tot � wy;1ffiffiffiffiffiffiffiffiffiffi
2pq�
p

� �2
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E
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2
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The plastic term in the Manson-Coffin (SWT) equation (1)
was also omitted

~ra
max

D~ea

2
¼ ðr

0
fÞ

2

E
ð2NÞ2b

: ð29Þ

Using Eqs. (2) and (27)–(29), the final FCG expression was
derived in the form of the following equation:

da
dN
¼ C Kmax;totð Þp DK totð Þ0:5

h ic
; ð30Þ

where

C ¼ 2q�
1

2ðr0fÞ
2
�

wy;1ffiffiffiffiffiffiffiffiffiffi
2pq�
p
� �3n0þ1

� K 0

En0

" # 1
n0þ1

2
4

3
5
�1
2b

;

p ¼ n0

n0 þ 1
; c ¼ � 1

b
:

The three sets of expressions (Eqs. (23), (24), and (30)) de-
rived above indicate how the two SIF parameters, DKtot

and Kmax,tot, characterizing the loading cycle should be
combined into one driving force. It appears that the fatigue
crack growth driving force should be of the form:

Dj ¼ Kp
max;totDKð1�pÞ

tot : ð31Þ

It should also be noted that the derived driving force
directly results from the mean stress correction model used
in the analysis, i.e. the SWT fatigue damage parameter. All
constants in the FCG equations above can be calculated
based on the material properties given in the form of the
Ramberg–Osgood stress–strain curve and the Manson–
Coffin fatigue strain–life expression. The elementary mate-
rial block size, q*, must be determined separately.
5. Estimation of the elementary material block size, q*

In order to determine the elementary material block size,
q*, some fatigue crack growth data are necessary. The obvi-
ous material properties are the threshold stress intensity
factor DKth and the fatigue limit Drth. For the fatigue crack
not to grow at the threshold stress intensity range, DKth,
the local stress at the crack tip must be equal to the fatigue
limit, Drth. Due to the fact that the fatigue limit is less than
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the material yield limit, the elastic stress–strain analysis can
be carried out. Thus, according to the Creager–Paris solu-
tion, the two material properties can be related using:

D~ra
th ¼

DK th � wy;1ffiffiffiffiffiffiffiffiffiffi
2pq�
p : ð32Þ

Eq. (33) may subsequently be used for the determination of
the elementary material block size, q*

q� ¼
ðwy;1Þ

2

2p
DK th

D~ra
th

� �2

: ð33Þ

The elementary material block size equation (33) is in such
a case close to the well-known parameter resulting from the
Kitagawa diagram [27]. However, care must be taken in or-
der to make sure that the fatigue limit D~ra

th was obtained at
the same stress ratio R as the stress ratio at the crack tip
induced by the threshold stress intensity range DKth. Fur-
ther, some care needs to be taken while determining the
threshold stress intensity factors. Namely, the fatigue crack
may not grow due to one of the followings [10]: the applied
maximum stress intensity factor is less than the maximum
threshold stress intensity factor (Kmax,appl < Kmax,th), or
the applied stress intensity range is less than the threshold
stress intensity range (DKappl < DKth). If the crack ceases to
grow at the stress ratio R = 0 it is not certain whether the
maximum stress intensity or the stress intensity range has
reached the threshold level. Therefore, the optimum stress
ratio at which the threshold stress range DKth can be deter-
mined, without producing significant plasticity at maxi-
mum stress intensity factor, is 0.2 < R < 0.3 and in such a
case the ‘‘elastic’’ solution, Eq. (33), can be used.

Because of the difficulties discussed above, when using
Eq. (33), the estimation of the crack tip radius, q*, can be
carried out by using the experimental fatigue crack growth
data and solving simultaneously the complete set of Eqs.
(25), (26), and (34) which is obtained by substituting Eq.
(2) into the Manson-Coffin together with the SWT param-
eter Eq. (1)
Δκ

da
/d

N

KΔ appl
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Fig. 6. Schematic iterative determination of q* pa
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2
¼ ðr

0
fÞ

2
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2q�

da=dN

� �2b

þ r0fe
0
f

2q�

da=dN

� �bþc

: ð34Þ

Depending on the nature of available experimental fatigue
crack growth data, different methods for estimating the q*

parameter can be suggested.
If the near threshold fatigue crack growth data at high

stress ratios Rappl > 0.5 is available, the estimation of the
crack tip radius, q*, can be found by using the applied stress
intensity factors. At high stress ratios and close to the
threshold, the total stress intensity factors, Kmax,tot and
DKtot, have the same magnitudes as the applied ones. There-
fore, the applied SIFs can be used in Eqs. (25) and (26) con-
sequently the q* parameter can be estimated from Eqs. (25),
(26), and (34) by using the iteration technique. Due to scat-
ter of fatigue crack growth data, it is recommended that sev-
eral near threshold FCG data points are selected. The q*

parameter can then be calculated for each FCG data point.
The average of the calculated q* parameters is considered as
the q* parameter for a particular material.

In order to determine the elementary material block size
q* in the absence of the near threshold fatigue crack growth
data, one set of fatigue crack growth data obtained at any
stress ratio is sufficient. The q* parameter can be obtained
by using the iteration technique. First, the residual SIF, Kr,
can be determined for the assumed q* magnitude followed
by the determination of the total stress intensity factors,
Kmax,tot and DKtot, corresponding to given experimental
FCG reference data points. The total stress intensity fac-
tors are used to calculate the magnitude of the two-param-
eter driving force, Dj ¼ Kp

max;totDKð1�pÞ
tot . Second, the

experimental fatigue crack growth data points can be plot-
ted in terms of the two-parameter driving force, da/dN ver-
sus Kp

max;totDKð1�pÞ
tot . Finally, using Eqs. (25), (26), (34) and

the assumed q* parameter, the numerically derived FCG
curve (exact solution) can be drawn (Fig. 6) in the same
system of coordinates, da/dN versus Kp

max;totDKð1�pÞ
tot . If the

numerically derived FCG curve is in a good agreement
= K
p

max, tot KΔ tot 
(1-p)

Approximate Solution

*1

da
/d

N

*ρ
ρ
ρ

3

*2

K
p
max,tot KΔ tot 

(1-p)

Exact Solution

rameter using high FCG data at any R-ratio.



Table 1
Material properties and the elementary material block size (crack tip
radius) q*

Material Al 2024-T351 St-4340 Ti–6Al–4V

Monotonic material properties
E (MPa) 70,000 200,000 117,000
m 0.32 0.3 0.3
rys (MPa) 403.46 889.32 1185

Cyclic stress–strain
K 0 (MPa) 751.5 1910 1772
n0 0.1 0.123 0.106

Strain–life curve
r0f ðMPaÞ 909.48 1879 2030
b �0.1 �0.0859 �0.104
e0f 0.36 0.64 0.841
c �0.65 �0.636 �0.688

Crack tip radius
q* (m) 8 · 10�6 2 · 10�6 8 · 10�6
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with the experimental FCG data points, the initial assump-
tion for the magnitude of the q* parameter was correct.
Otherwise, the entire process needs to be iterated until
the correct q* is determined. In this method, the estimation
of the q* parameter needs several iterations which are time
consuming. Therefore, instead of using the exact solution,
the approximate solution resulting from Eq. (23) can be
used for the comparison with the experimental FCG refer-
ence data points. However, it is recommended to use the
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Fig. 7. Fatigue crack growth data for 2024-T351 aluminum
high-rate fatigue crack growth data as the reference
because the high-rate FCG is governed predominantly by
plastic strains and the use of Eq. (23) is justified. Moreover,
at high fatigue crack growth rates, the approximate solu-
tion is almost the same as the exact solution.

6. Verification of the proposed model

Three forms of the fatigue crack driving force,
Kp

max;totDKð1�pÞ
tot ; K0:5

max;totDK0:5
tot and Kp

max;totDK0:5
tot , have been

derived from Eqs. (23), (24), and (30) for the plastic, elastic,
and elasto-plastic material behavior at the crack tip,
respectively. The two-parameter fatigue crack growth driv-
ing forces were used to model the effect of the stress ratio R
on the fatigue crack growth under constant amplitude
loading. The total stress intensity factors corrected for
the residual stress effect were used to determine the magni-
tude of each driving force.

The ‘‘approximate’’ closed solutions, in the form of Eqs.
(23), (24), and (30), were attainable after neglecting the
plastic or elastic terms in the Ramberg–Osgood and the
Manson–Coffin equations. Unfortunately, such solutions
become inaccurate in the regions where both terms are
equally important. However, numerical solutions to the
complete set of Eqs. (25), (26), and (34), i.e. without
neglecting any terms, are possible to obtain. The final solu-
tion cannot be derived in a closed form but it can be pre-
sented graphically. The numerical solution is termed
further on as the ‘‘exact solution’’.
10010

or Range, ΔKappl [MPa(m)1/2]

R=0.7 Liu Data
R=0.5 Liu Data
R=0.1 Liu Data
R= -0.5 Liu Data
R= - 1 Liu Data
R= -2 Liu Data
R=0.1 Wanhill Data
R=0.5 Pang Data
R=0.3 Pang Data
R=0.1 Pang Data
R= -0.5 Pang Data
R= -1 Pang Data
R=0 Pang Data

alloy obtained at stress ratios �2 6 R 6 0.7 [28–30].



Table 2
Parameters and constants of the two-parameter fatigue crack growth
model

Material Al 2024-351 St-4340 Ti–6Al–4V

Plastic
c 2.67 2.77 2.53
p 0.09 0.11 0.096
C 9.13 · 10�10 4.25 · 10�11 1 · 10�10

Elastic
c 10 11.64 9.62
p 0.5 0.5 0.5
C 5.43 · 10�13 5.25 · 10�15 4.67 · 10�16

Elastic–plastic
c 10 11.64 9.62
p 0.09 0.11 0.096
C 8.72 · 10�12 1.83 · 10�13 1.88 · 10�13
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Fatigue crack growth data for three materials were used
to show the stress ratio effect on fatigue crack growth, i.e.,
aluminum alloy A1 2024-T351, steel alloy St-4340, and
titanium alloy Ti–6Al–4V. The cyclic and fatigue proper-
ties for all materials are given in Table 1.

6.1. Modeling of fatigue crack growth in the Al 2024-T351

alloy

The fatigue crack growth data for the Al 2024-T351 alu-
minum alloy was found in Refs. [28–30]. The fatigue crack
growth data sets were obtained at various stress ratios,
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Fig. 8. Fatigue crack growth as a function of the ‘‘plastic’’ two-pa
Rappl, and are shown in Fig. 7 as a function of the applied
stress intensity factor range, DKappl.

The cyclic and fatigue properties for the Al 2024-T351
aluminum alloy were obtained from Ref. [31], as listed in
Table 1, but the same data can also be found on the
Society of Automotive Engineers (SAE) web site
(fde.uwaterloo.ca) maintained by the Fatigue Design
and Evaluation Committee. Due to the availability of
the near threshold data obtained at high stress ratios,
the q* parameter was determined from Eqs. (25), (26),
and (34), as described in Section 5, and is listed in Table
1. Based on the material data listed in Table 1 and the
determined q* parameter, the constants of Eqs. (23),
(24), and (30) were calculated (Table 2). It is seen
(Fig. 8) that in the high and medium FCG rate regimes,
the ‘‘plastic’’ driving force, Kp

max;totDKð1�pÞ
tot , was successful

in correlating the fatigue crack growth data obtained at
various stress ratios. The ‘‘elastic’’ driving force,
K0:5

max;totDK0:5
tot , was the least successful one even in the

near threshold region (Fig. 9). It can be noted that the
elastic driving force may be used only to consolidate
FCG data at very low fatigue crack growth rates; there-
fore, it should not be used for fatigue crack growth pre-
dictions away from the threshold. However, it was found
(Fig. 10) that the combination of the elastic and plastic
stress–strain material behavior at the crack tip in the
form of the ‘‘mixed’’ driving force, Kp

max;totDK0:5
tot , could

be used to correlate FCG data at various R-ratios for
the FCG rates spanning from the near threshold to the
10010

t
(1-p), [MPa(m)1/2]

R=0.7 Liu

R=0.5 Liu

R=0.1 Liu

R= -0.5 Liu

R= -1 Liu

R= -2 Liu

R=0.1 Wanhill

R=0.5 Pang

R=0.3 Pang

R=0.1 Pang

R=0 Pang

R= -0.5 Pang

R= -1 Pang

Approx Sol'n

Exact Sol'n

rameter driving force, Kp
max;totDKð1�pÞ

tot , for 2024-T351 Al alloy.

http://fde.uwaterloo.ca
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Fig. 9. Fatigue crack growth as a function of the ‘‘elastic’’ two-parameter driving force, K0:5
max;totDK0:5

tot , for 2024-T351 Al alloy.
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high growth rate regime. Both the ‘‘exact’’ FCG curves
and the approximate closed form solutions (Eqs. (23),
(24), and (30)) are shown as diagrams (Figs. 8–10) where
the fatigue crack growth rate is shown as a function of
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Fig. 10. Fatigue crack growth as a function of the ‘‘mixed’’ two-p
the appropriate driving force Dj. The best results in cor-
relating the FCG under various stress ratios were
obtained while using the mixed driving force in the form
of Kp

max;totDK0:5
tot .
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arameter driving force, Kp
max;totDK0:5

tot , for 2024-T351 Al alloy.
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6.2. Modeling of fatigue crack growth in the 4340 steel

material

The fatigue crack growth data for the 4340 steel alloy
was found in Refs. [32–35]. The fatigue crack growth data
sets were obtained at various stress ratios, Rappl, and are
shown in Fig. 11 as a function of the applied stress intensity
factor range, DKappl.

The cyclic and fatigue properties for the 4340 steel alloy
were obtained from Ref. [32] and are listed in Table 1. Due
to the availability of the near threshold data obtained at
high stress ratios, the q* parameter was determined from
Eqs. (25), (26), and (34), as described in Section 5, and is
listed in Table 1. Based on the material data listed in Table
1 and the determined q* parameter, the constants of Eqs.
(23), (24), and (30) can be calculated and found in Table
2. It is seen (Fig. 12) that in the high and medium FCG rate
regimes, the ‘‘plastic’’ driving force, Kp

max;totDKð1�pÞ
tot , was

successful in correlating the fatigue crack growth data
obtained at various stress ratios. The ‘‘elastic’’ driving
force, K0:5

max;totDK0:5
tot , was the least successful one even in

the near threshold region (Fig. 13). It can be noted that
the elastic driving force may be used only to consolidate
FCG data at very low fatigue crack growth rates; therefore,
similarly to the previous material it should not be used for
fatigue crack growth predictions away from the threshold.
It was also found (Fig. 14) that the combination of the
elastic and plastic stress–strain material behavior at the
crack tip in the form of the ‘‘mixed’’ driving force,
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Fig. 11. Fatigue crack growth data for 4340 steel
Kp
max;totDK0:5

tot , could be used to correlate FCG data at vari-
ous R-ratios for the FCG rates spanning from the near
threshold to the high growth rate regime.

Both the ‘‘exact’’ FCG curves and the approximate
closed form solutions (Eqs. (23), (24), and (30)) are shown
as diagrams (Figs. 12–14) where the fatigue crack growth
rates are plotted as a function of the appropriate driving
force Dj. The best results in correlating the FCG under
various stress ratios were obtained while using the mixed
driving force in the form of Kp

max;totDK0:5
tot .

6.3. Modeling of fatigue crack growth in the Ti–6Al–4V

material

The fatigue crack growth data for the Ti–6Al–4V alloy
was found in Refs. [36,37]. The fatigue crack growth data
sets were obtained at various stress ratios, Rappl, and are
shown in Fig. 15 as a function of the applied stress intensity
factor range, DKappl.

The cyclic and fatigue properties for the Ti–6Al–4V
alloy were obtained from Ref. [32] and are listed in Table
1. Due to the availability of the near threshold data
obtained at high stress ratios, the q* parameter was deter-
mined from Eqs. (25), (26), and (34), as described in Sec-
tion 5, and is listed in Table 1. Based on the material
data listed in Table 1 and the determined q* parameter,
the constants of Eqs. (23), (24), and (30) can be calculated
and found in Table 2. It is seen (Fig. 16) that in the high
and medium FCG rate regimes, the ‘‘plastic’’ driving force,
1000100

r Range, ΔKappl  [MPa(m)1/2]

R=0.5 NASA(L)
R=0.5 NASA(R)
R=0 NASA(L)
R=0 NASA(R)
R= -1 NASA(L)
R= -1 NASA(R)
R=0.7 Dowling
R=0.5 Dowling
R=0.1 Dowling
R=0 Dowling
R= -0.5 Dowling
R= -1 Dowling
R=0.5 Wanhill
R=0 Wanhill
R= -1 Wanhill
R=0.7 Taylor
R=0.05 Taylor

obtained at stress ratios �1 6 R 6 0.7 [32–35].
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Fig. 13. Fatigue crack growth as a function of the ‘‘elastic’’ two-parameter driving force, K0:5
max;totDK0:5

tot , for 4340 steel.
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Fig. 12. Fatigue crack growth as a function of the ‘‘plastic’’ two-parameter driving force, Kp
max;totDKð1�pÞ

tot , for 4340 steel.
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Kp
max;totDKð1�pÞ

tot , was successful in correlating the fatigue
crack growth data obtained at various stress ratios. The
‘‘elastic’’ driving force, K0:5

max;totDK0:5
tot , was the least success-

ful one even in the near threshold region (Fig. 17). It can be
noted that the elastic driving force may be used only to
consolidate FCG data at very low fatigue crack growth
rates; therefore, it should not be used for fatigue crack
growth predictions away from the threshold. However, it
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Fig. 14. Fatigue crack growth as a function of the ‘‘mixed’’ two-parameter driving force, Kp
max;totDK0:5

tot , for 4340 steel.
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Fig. 15. Fatigue crack growth data for Ti–6Al–4V alloy obtained at stress ratios �5 6 R 6 0.8 [36,37].
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was found (Fig. 18) that the combination of the elastic and
plastic stress–strain material behavior at the crack tip in the
form of the ‘‘mixed’’ driving force, Kp

max;totDK0:5
tot , could be
used to correlate FCG data at various R-ratios for the
FCG rates spanning from the near threshold to the high
growth rate regime.
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Fig. 16. Fatigue crack growth as a function of the ‘‘plastic’’ two-parameter driving force, Kp
max;totDKð1�pÞ

tot , for Ti–6Al–4V alloy.
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Fig. 17. Fatigue crack growth as a function of the ‘‘elastic’’ two-parameter driving force, K0:5
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tot , for Ti–6Al–4V alloy.
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Both the ‘‘exact’’ FCG curves and the approximate
closed form solutions (Eqs. (23), (24), and (30)) are shown
as diagrams (Figs. 16–18) where the fatigue crack growth
rate is plotted as a function of the appropriate driving force
Dj. The best results in correlating the FCG under various
stress ratios were obtained while using the ‘‘mixed’’ driving
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Fig. 18. Fatigue crack growth as a function of the ‘‘mixed’’ two-parameter driving force, Kp
max;totDK0:5

tot , for Ti–6Al–4V alloy.
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force in the form of Kp
max;totDK0:5

tot . However, for fatigue
crack growth rates more than 2 · 10�5 mm/cycle, there
are some discrepancies between the predicted and experi-
mental curves, as shown in Figs. 16 and 18. Although
two different set of fatigue crack growth data were used
for the comparisons, the ‘‘exact’’ FCG curves and the
approximate closed form solutions were plotted using one
set of cyclic and fatigue properties of the material. Proba-
bly, the Ti–6Al–4V specimen used to create the fatigue
crack growth data, da/dN > 2 · 10�5 mm/cycle, has differ-
ent cyclic and fatigue properties than the other one.

As shown in Fig. 10 (for 2024-T351 Al alloy), Fig. 14
(for 4340 steel) and Fig. 18 (for Ti–6Al–4V), the numerical
exact solution presented in terms of the mixed driving force
had a good agreement with the entire range of experimental
FCG data. However, the elasto-plastic approximate solu-
tion agreed well with only the low FCG data. Therefore,
it is recommended that in practice two lines da/dN vs. Dk

should be fitted into the existing FCG data plotted in terms
of the mixed driving force, i.e., one line covering the near
threshold FCG data and the other approximating so called
Paris’ regime. The two power law curves characterized by
two sets of constants (the exponent c and the constant C)
can be subsequently used for FCG analyses.

7. Conclusions

A fatigue crack growth model based on the simulation
of the elastic–plastic stress–strain response at the crack
tip has been proposed. The application of the model
resulted in the derivation of a two-parameter driving force
combining the effect of the maximum stress intensity factor
and the stress intensity range. It was shown that after cor-
recting the applied stress intensity factors for the effect of
the plasticity induced residual stresses near the crack tip,
it was possible to derive one master fatigue crack growth
curve valid for all stress ratios. The entire analysis was car-
ried out as for classical notch without the necessity of intro-
ducing the concept of the crack closure behind the crack
tip. It was also shown that the residual stress effect can
be represented in terms of the residual stress intensity fac-
tor, Kr, which can subsequently be used to modify the
applied intensity factors. The residual stress intensity factor
changes linearly with respect to the net stress intensity fac-
tor range, DKnet, for any given stress ratio. It was also
assumed that the residual stress effect can change only
the maximum applied stress intensity factor, Kmax,appl,
without changing the minimum applied stress intensity fac-
tor, Kmin,appl. This idea is contrary to the closure concept
which is based on the observation of the crack tip closure
phenomenon implicating that the maximum applied SIF
remains constant while the resultant minimum applied
SIF changes.

Three forms of the fatigue crack driving force,
Kp

max;totDKð1�pÞ
tot ; K0:5

max;totDK0:5
tot and Kp

max;totDK0:5
tot , were

derived depending on the assumptions concerning the nat-
ure of the crack tip stress–strain field. It was shown that the
driving force in the form of Kp

max;totDK0:5
tot could correlate

FCG data for a wide range of stress ratios and FCG rates.
The driving force Kp

max;totDKð1�pÞ
tot could only be used for
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predicting the high FCG rates. However, the driving force
of K0:5

max;totDK0:5
tot was not good for FCG predictions, even in

the near threshold region.
The model was also able to account for the detrimental

effect of the compressive part of a loading cycle. It was
found that the contribution of the compressive part of
the stress reversal was relatively small and depended on
the crack tip radius, q*, and the actual crack size, a. It is
possible that the modeling of the crack tip as a circular hole
might be non-conservative, which requires further study.
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