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Abstract

A model for fatigue crack growth (FCG) analysis based on the elastic–plastic crack tip stress–strain history was proposed. The

fatigue crack growth was predicted by simulating the stress–strain response in the material volume adjacent to the crack tip and

estimating the accumulated fatigue damage. The fatigue crack growth was regarded as a process of successive crack re-initiation in the

crack tip region. The model was developed to predict the effect of the mean stress including the influence of the applied compressive

stress. A fatigue crack growth expression was derived using both the plane strain and plane stress state assumption. It was found that

the FCG was controlled by a two parameter driving force in the form of: DkZK
p
max;totDK

ð1KpÞ
tot . The driving force was derived on the

basis of the local stresses and strains at the crack tip using the Smith–Watson–Topper (SWT) fatigue damage parameter:

DZsmaxD3/2.The effect of the internal (residual) stress induced by the reversed cyclic plasticity was accounted for the subsequent

analysis. Experimental fatigue crack growth data sets for two aluminum alloys (7075-T6 and 2024-T351) and one steel alloy (4340)

were used for the verification of the model.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The first fatigue crack propagation expression (1)

formulated in terms of the stress intensity factor was

proposed by Paris and Erdogan [1]:

da

dN
Z CðDKapplÞ

m (1)

The Paris fatigue Eq. (1) prompted widely spread

research activities aiming at possible improvements of its

original form and at analytical modeling of FCG in general.

One of the first problems concerning expression (1) and all

other fatigue damage accumulation models is the quantifi-

cation of the mean stress effect represented by the mean

stress intensity factor in the case of fatigue crack growth

analyses.

Elber [2] was the first one who suggested quantifying the

mean stress effect on fatigue crack growth by using the

concept of the crack tip closure. Numerous fatigue crack
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propagation models [3,4] based on that concept were

proposed following Elber’s ideas. The most popular

among them is the semi-empirical fatigue crack propagation

model developed by Newman [5]. Unfortunately, the crack

tip closure model, in spite of the fact that it has been applied

in the aircraft industry, is not easy to use and requires some

experimental calibration. The contemporary belief is that

the crack tip closure concept can explain both the mean

stress and the variable amplitude effect on the fatigue crack

growth.

An early empirical and relatively successful fatigue

crack growth model accounting for the mean stress effect

was proposed by Walker [6].

da

dN
Z C½ð1KRÞPKmax;appl�

g Z C½DK
ð1KpÞ
appl K

p
max;appl�

g (2)

A similar expression was proposed later by Donald

and Paris [7]. In both cases, expression (2) was capable

to correlate fatigue crack growth rates obtained at a

variety of relatively high stress ratios RO0.4. Unfortu-

nately, it was not clearly indicated how the fatigue crack

growth data for stress ratios R!0 should be correlated by

expression (2).

Kujawski [8] proposed an analogous formula to

expression (2) but including only the tensile part of
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Nomenclature

a crack length

b fatigue strength exponent

c fatigue ductility exponent

C fatigue crack growth constant

C* fatigue crack growth equation constant for plane

strain

da/dN crack growth rate

D fatigue damage

E modulus of elasticity

FCG fatigue crack growth

f ðsa
eqÞ plastic strain expression (function)

K stress intensity factor

K 0 cyclic strength coefficient

Kmax,appl maximum applied stress intensity factor

Kmax,th maximum threshold stress intensity factor

Kmax,tot total maximum stress intensity factor

Kmin,appl minimum applied stress intensity factor

Kmax,net maximum net stress intensity factor

Kmin,net minimum net stress intensity factor

Knet net stress intensity factor

Kmin,tot total minimum stress intensity factor

Kr residual stress intensity factor

DKappl applied stress intensity range

DKC tensile part of the stress intensity range

DKnet net stress intensity range

DKth threshold stress intensity range

DKtot total stress intensity range

Dk two parameter driving force

m Paris’ equation exponent

m(x,a) weight function

M1, M2, M3 weight function parameters

N number of cycle

Nf number of cycle to fail the first element

n 0 cyclic strain hardening exponent

p driving force constant

r radial polar coordinate

rp plastic zone size

R stress ratio

Rappl applied stress ratio

SIF stress intensity factor

Smax,appl maximum applied nominal (remote) stress

Smin,appl minimum applied nominal (remote) stress

SWT Smith–Watson–Topper fatigue damage

parameter

x distance from the crack tip

Y geometrical stress intensity correction factor

3 strain

3 0f fatigue ductility coefficient

~3a
m maximum actual strain over the first elementary

block

~3e
i average elastic strain over the ith elementary

material block

~3a
i average actual strain over the ith elementary

material block

D3 strain range ahead of the crack tip

D~3a actual strain range over the first elementary

block

g fatigue crack growth equation exponent

r* notch tip radius or elementary material block

size

n Poisson’s coefficient

s stress

s0
f fatigue strength coefficient

smax maximum stress ahead of the crack tip

~sa
max;th actual maximum threshold stress over the first

elementary block

sx, sy, txy stress components

~sa
i average actual stress over the ith elementary

block

~sa
eq equivalent actual stress

~sa
m mean actual stress over the first elementary

block

~se
i average pseudo-elastic stress over the ith

elementary block

~se
max;net maximum net pseudo-elastic stress over the first

elementary block

~se
min;net minimum net pseudo-elastic stress over the first

elementary block

se
min;net minimum net pseudo-elastic stress at the crack

tip

sr residual stress

D ~sa actual stress range over the first elementary

block

D ~se
net net elastic stress range over the first elementary

block

Dsth threshold stress range

D ~sa
th actual threshold stress range over the first

elementary block

pZ3.14 constant

ji the averaging constant corresponding to the ith

elementary block
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the load cycle, i.e. the tensile part of the stress intensity

range DKC.

da

dN
Z C½ðDKCÞð1KpÞK

p
max;appl�

g (3)
It was shown [8] that by empirical fitting of parameters p

and g it was possible to correlate fatigue crack growth data

for stress ratios in the range of 1%R!K1. However, the

correlation of experimental data for positive stress ratios

1%R%0 was better than for negative ones K1!R!0.
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A two parameter driving force involving the maximum

stress intensity factor, Kmax and the stress intensity range, DK

was also suggested by Sadananda and Vasudevan [9]. In

addition, they postulated the existence of two thresholds, i.e.

the maximum threshold stress intensity factor Kmax,th and the

threshold stress intensity range DKth. Both should simul-

taneously be exceeded to make the fatigue crack grow.

In order to account for the mean stress effect, a fatigue

crack growth model based on the analysis of the elastic–

plastic strain–stress history at the crack tip is proposed below.

The purpose of the model is to derive a fatigue crack model

accounting for the mean stress and for the variable amplitude

loading history effects by simulating the elastic–plastic

response of the material in the crack tip region.
2. The fatigue crack propagation model

It is generally accepted that the local stresses and strains

near the crack tip control the fatigue crack growth process.

Unfortunately, the determination of the crack tip stress and

strain in the case of elastic–plastic behavior is difficult and

strongly dependent on the theoretical and numerical

method used for the analysis. Therefore, fracture mech-

anics principles are often used in order to defocus the

attention from the local crack tip stress–strain field and to

express all necessary quantities in terms of global

parameters such as the nominal stress, crack size, and

geometry, etc. combined into one parameter called the

stress intensity factor (SIF). Such approaches are success-

ful as long as the SIF is uniquely correlated with the actual

elastic–plastic crack tip stress–strain field. Unfortunately,
Fig. 1. A crack model for linear-elastic analysis of stresses and strains near the cra

solution; (b) stress concentration for a circular notch simulating the crack under
the correlation between the SIF and the crack tip stress–

strain filed is often altered by residual stresses induced by

reversed plastic deformations.

There are several difficulties in defining the crack tip

geometry on the basis of the mechanics of continuum. The

classical fracture mechanics solutions [10,11] concerning

stresses and strains at the crack tip were derived for a sharp

crack having the tip radius r*Z0. Such crack tip geometry

leads to a singular solution resulting in unrealistically high

strains and stresses in the vicinity of the crack tip. In spite of

the importance of these fundamental fracture mechanics

solutions, they cannot be used for the determination of the

actual stresses and strains in the vicinity of the crack tip.

Therefore, several attempts were made in the past [12–14] to

model the crack as a notch with a small but finite tip radius

r*O0. The advantage of using the blunt crack model lies in

the fact that the notch theories can be applied and the

calculated crack tip stresses and strains become more

realistic. There are two important implications resulting

from such a model, i.e. the crack tip radius is assumed to be

finite (r*O0) and the crack region just behind the tip

(Fig. 1) remains open.

In the case of pure elastic behavior, the crack subjected to

tensile loading behaves like a notch of length/depth 2a with

the tip radius equal to r*. However, under compressive

loading, the opposite crack surfaces come in to contact with

each other except the region just behind the crack tip. In the

latest configuration (Fig. 1(b)), the crack induces the same

local stress field as two circular notches under compressive

loading. The argument for assuming such a crack model

comes from the Neuber micro-support concept [15] used for

calculating the fatigue notch factor. Neuber suggested that
ck tip: (a) stress concentration near the crack tip according to Creager–Paris

compressive loading.



Fig. 2. Approximate crack tip geometry, the cyclic plastic zone and the crack tip stress–strain response: (a)–(d) evolution of the crack opening displacements in

the crack region; (e) applied load (stress intensity factor) history; (f) qualitative stress–strain response at the crack tip.
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there is a limit concerning the smallest notch tip radius

material can ‘feel’ as a notch. The minimum effective notch

tip radius r* was considered to be a material property

determining the maximum stress concentration which can

be generated in the material.

In the case of plastic yielding around the crack tip due to

the Bauschinger effect, the plastic deformations induced by

the first reversal of cyclic loading are greater than those

generated during subsequent unloading reversal even if both

reversals have the same magnitude. The plastically

deformed material volume near the crack tip resists to be

deformed during subsequent reversals of cyclic loading.

Therefore, the cyclic deformations near a tip of propagating

fatigue crack may be smaller than the deformations induced

during the first reversal of loading. For this reason, the

region just behind the crack tip may stay open even under

the compressive minimum load. In other words, the cyclic

plastic zone ahead of the crack tip, created by the first two

reversals, can be considered as an obstacle (Fig. 2(a)–(d))

resisting to be deformed during subsequent stress/load

reversals. The plastic zone at the crack tip created by first

two reversals may also be considered as a small ‘ball’ which

resists being deformed during the following load reversals.

Schematically this effect is illustrated in Fig. 2(e) and (f)

showing the applied load history and qualitative variations

of the stress and strain at the crack tip. The plastic

deformations are induced during the first nominal stress/

load reversal from 0 to A (Fig. 2(a)). During the unloading

reversal, due to the increase of the yield limit (Bauschinger

effect) and the subsequent increase of the deformational

stiffness of the plastic zone (Fig. 2(e) and (f)) the reversed
plastic deformations begin at the load level C and the

effectiveness of the remaining part of the unloading reversal

decreases. Therefore, the crack tip stress and strain path

ends at point E (Fig. 2(f)) instead of point E 0, which would

be attained if the plastic zone did not resist deformation. A

very small or non-existent change of the opening

displacement behind the crack tip during the load excursion

from level C to E can be interpreted, based on global macro-

measurements such as the crack tip closure even if there is

no physical contact between crack surfaces. The con-

sequences are that small cyclic fluctuations of the crack

opening displacement behind the crack tip result in small

strain fluctuations in the material ahead of the crack tip. The

possibility of the existence of the ‘empty’ or the stress free

space behind the crack tip was found experimentally by

Jones [16]. The ‘empty’ stress free region appearing just

behind the crack tip was also found by carrying out very

thorough Finite Element analyses [17,18]. The plastic zone

effect on the displacements behind the crack tip can be

modeled by assuming the displacements field around the

crack tip in the form of an opening shown in Fig. 3(a). From

the superposition point of view, the plastic zone defor-

mations and the displacement field behind the crack tip,

shown in Fig. 3(a), can be replaced by the equivalent stress

field as shown in Fig. 3(b). Such a stress field is qualitatively

similar to the stress field generated by a pile of dislocations

activated in the crack tip region. It is assumed that the

residual stress sr(x) in the plastic zone is generated by

reversed plastic deformations ahead of the crack tip and can

be determined by solving the elastic–plastic notched body

boundary problem. A symmetric compressive residual stress



Fig. 3. Approximate crack tip displacement field and corresponding residual stress distributions: (a) illustration of the displacement field around the plastic

zone; (b) the residual stress distribution required for generating the displacement field.
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field is added in order to simulate the effect of the opening

behind the physical crack tip. The resultant model of the

crack tip region, accounting for the plastic zone deforma-

tional resistance and the opening behind the crack tip, is

shown in Fig. 3(b). Thus, the effect of the plastic zone and

the crack tip opening behind the crack tip can be

subsequently quantified by estimating the residual stress

contribution to the magnitude of the applied stress intensity

range. Two effects need to be considered, i.e. the difference

in the stress/strain concentration at the crack tip associated

with the tensile and compressive part of the loading cycle
Fig. 4. The idealized crack tip geometry and the discrete structure of a material: (

material blocks; (b) a crack and the discrete elementary material blocks.
(Fig. 1), and secondly the effect of the plasticity induced

residual stresses around the crack tip.

A real engineering material according to the Neuber

micro-support concept [15] can be modeled (Fig. 4) as a

medium made of elementary blocks of dimension r*. The

elementary material block can be considered as the smallest

material volume to which the mechanics of continuum and

bulk material properties such as modulus of elasticity E,

Poisson’s ratio n, the strength coefficient K 0 and the strain

hardening exponent n 0 can be applied. The same idea, but

from the material science point of view was also discussed by
a) the crack tip geometry and averaged stresses over individual elementary
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Forsyth [19]. Forsyth [19] stated that “the micro-structural

features in metals cause the break up of the crack front into

segments that relate to elementary blocks operating with

some degree of independence from their neighbors but under

the general influence of the macroscopic crack of which they

are part”. Therefore, it is anticipated that the dimension r*

can be indirectly dependent on the micro-structural features

of the analyzed material, but it cannot be uniquely associated

with any specific micro-structural particle size. The

elementary material block size r* can be understood rather

as an average dimension of inhomogeneous material blocks

which still behave like the bulk material of a larger volume.

The resolution of the mechanics of continuum is not

sufficient to determine the meaningful stress and strain

field within the elementary blocks of size r*. Therefore, only

the average continuum mechanics stresses and strains can be

assigned to the elementary blocks of a material.

Based on the observations discussed above, the following

fatigue crack model is proposed.

† The material is assumed to be composed of identical

elementary material blocks of a finite linear dimension

r* (Fig. 4).

† The fatigue crack can be analyzed as a notch with the tip

radius r*.

† The fatigue crack growth is regarded as successive crack

re-initiations over the distance r*.

† The material properties used in the proposed

model are the Ramberg–Osgood cyclic stress
Fig. 5. Schematic of the stress distributions ahead of the crack tip induced by a tens

the Creager–Paris notch tip stress expressions; (b) stress concentration and stress
strain curve [20]

3 Z
s

E
C

s

K 0

� �1=n0

(4)

and the strain–life (Manson–Coffin) fatigue curve [21].

D3

2
Z

s0
f

E
ð2NÞb C30fð2NÞc (5)

† The number of cycles N to failure of the first elementary

block of the material at the crack tip can be determined

from the strain–life (Manson–Coffin) fatigue curve (5) by

accounting for the stress–strain history and using the

Smith–Watson–Topper (SWT) fatigue damage par-

ameter [22].

D Z smax

D3

2
(6)

† The fatigue crack growth rate can be determined as the

average fatigue crack propagation rate over the elemen-

tary material block of the size r*.

da

dN
Z

r�

N
(7)

The simulation of the crack tip stress–strain history

includes the effect of the cyclic elastic–plastic stress–strain

material behavior and the effect of the local residual stresses

induced by the reversed cyclic plastic deformations in the

crack tip region.
ile and a compressive load: (a) stress concentration and the nomenclature for

distribution induced by compressive loading.
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3. Analysis of strains and stresses at the crack tip

The calculation of elastic–plastic strains and stresses at

the crack tip requires the solving of the elastic–plastic

boundary problem of a cracked body. Analytical solutions

of such complex problems are seldom attainable. Numerical

solutions using the Finite Element method are feasible but

not very convenient in practice due to the complexity of FE

models and lengthy in the case of cyclic loading

calculations. Therefore, a simplified method based on the

Neuber rule [23] was applied. The method requires a two-

step approach, i.e. first the linear-elastic stress–strain

analysis needs to be carried out and in the second step the

actual elastic–plastic crack tip strains and stresses are

determined from the Neuber rule, for which the linear-

elastic stress data is the input.
3.1. Linear-elastic analysis of stresses and strains near

the blunt crack tip

The fatigue crack growth expressions are frequently

formulated in terms of the stress intensity factor, K.

Therefore, the analysis below is also carried out using the

stress intensity factor and fracture mechanics principles,

wherever possible. The linear-elastic stress–strain analysis

must also be carried out using a two-step approach because

the stress response at the crack tip to the tensile load, no

contact between crack surfaces, is different from the

compressive one.
3.1.1. Crack tip stresses induced by tensile loading

(Kmin,applO0)

The calculations of linear-elastic stresses and strains

induced by tensile loading are in essence reduced to the

analysis of a notch of depth ‘a’ having a tip radius r*

(Fig. 5(a)).

The Creager–Paris solution [24] was used assuming the

crack tip radius r* would be small in comparison with the

crack depth ‘a’

sx ZK
Kffiffiffiffiffiffiffiffi
2pr

p
r�

2r
cos

3q

2

C
Kffiffiffiffiffiffiffiffi
2pr

p cos
q

2
1Ksin

q

2
sin

3q

2

� �
C/ (8a)

sy Z
Kffiffiffiffiffiffiffiffi
2pr

p
r�

2r
cos

3q

2

C
Kffiffiffiffiffiffiffiffi
2pr

p cos
q

2
1 Csin

q

2
sin

3q

2

� �
C/ (8b)

txy ZK
Kffiffiffiffiffiffiffiffi
2pr

p
r�

2r
sin

3q

2
C

Kffiffiffiffiffiffiffiffi
2pr

p sin
q

2
cos

q

2
cos

3q

2

C/ (8c)
The linear-elastic stress components along the crack

plane (qZ0, rZx) are:

sx Z
Kffiffiffiffiffiffiffiffi
2px

p 1K
r�

2x

� �
C/ (9a)

sy Z
Kffiffiffiffiffiffiffiffi
2px

p 1 C
r�

2x

� �
C/ (9b)

txy Z 0 (9c)

The maximum stress at the crack tip can be determined

from the applied stress intensity factor, assuming xZr*/2.

sy Z
2Kffiffiffiffiffiffiffiffiffi
pr�

p (10)

However, the calculations need to be carried out for

elementary material blocks with the size r*. Therefore,

the average stress over each elementary block was used in

the analysis.

~se
y;i Z

1

xiC1 Kxi

ðxiC1

xi

Kffiffiffiffiffiffiffiffi
2px

p
r�

2x
C1

� �
dx (11)

After integrating expression (11), the average stress over

the elementary block i can be written in the form:

~se
y;i Z

K !jy;iffiffiffiffiffiffiffiffiffiffiffi
2pr�

p (12)

where jy,1Z1.633, jy,2Z0.8967, jy,3Z0.6773, jy,4Z
0.5641.

A similar expression can be derived for the stress

component sx.

~se
x;i Z

K !jx;iffiffiffiffiffiffiffiffiffiffiffi
2pr�

p (13)

where jx,1Z0.4376, jx,2Z0.5287, jx,3Z0.4814, jx,4Z
0.4378.

Based on Eq. (12), the maximum and minimum linear-

elastic stresses and the stress range over the first elementary

material block induced by the applied maximum nominal

tensile stress Smax,applO0 (or the maximum stress intensity

factor Kmax,appl) and the applied minimum tensile stress

Smin,applO0 can be calculated as:

~se
max;net Z

jy;1Kmax;applffiffiffiffiffiffiffiffiffiffiffi
2pr�

p Z
jy;1Smax;applY

ffiffiffiffiffiffi
pa

pffiffiffiffiffiffiffiffiffiffiffi
2pr�

p

Z Smax;applY

ffiffiffiffiffiffiffiffi
a

2r�

r
jy;1 (14)

~se
min;net Z

jy;1Kmin;applffiffiffiffiffiffiffiffiffiffiffi
2pr�

p Z
jy;1Smin;applY

ffiffiffiffiffiffi
pa

pffiffiffiffiffiffiffiffiffiffiffi
2pr�

p

Z Smin;applY

ffiffiffiffiffiffiffiffi
a

2r�

r
jy;1 (15)
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D ~se
net Z

jy;1Kmax;applffiffiffiffiffiffiffiffiffiffiffi
2pr�

p K
jy;1Kmin;applffiffiffiffiffiffiffiffiffiffiffi

2pr�
p

Z
jy;1ffiffiffiffiffiffiffiffiffiffiffi
2pr�

p DKappl Z DSapplY

ffiffiffiffiffiffiffiffi
a

2r�

r
jy;1 (16)

where

Smin;appl Z
Kmin;appl

Y
ffiffiffiffiffiffi
pa

p ; Smax;appl Z
Kmax;appl

Y
ffiffiffiffiffiffi
pa

p ;

DSappl Z
DKappl

Y
ffiffiffiffiffiffi
pa

p

The nominal or reference stress (Smax,appl or Smin,appl) in

the stress intensity factor expression is easy to identify in the

case of simple loading configuration such as uniform

tension or bending. However, any stress magnitude can be

chosen as a reference in the case of complex stress fields

such as residual stress distributions or thermally induced

stress fields. As long as the stress intensity factor is used as a

load parameter, the choice of the reference stress is not

important. Therefore, for consistency reasons the nominal

stresses were defined as shown above.

Expressions (14)–(16) are valid only for tensile loading,

i.e. for KO0 and the net stress components are needed as

inputs into the Neuber equations.
3.1.2. Crack tip stresses induced by compressive loading

(Kmin,appl!0)

The crack tip stress concentration under compressive

loading is much less than in tension. This is due to the

fact that under the compressive minimum nominal stress,

Smin,appl!0, the contact pressure is transferred through the

contacting crack surfaces. In such a case, the crack should

be treated, according to the model (Fig. 5(b)), as a single

hole or two identical circular holes. The stress at the edge of

a circular hole (qZ0 and xZr*) of diameter 2r* in a wide

plate can be estimated from the well-known classical

solution [15] concerning the circular notch problem in an

infinite plate (qZ0 and xZr*).

sx Z S 1K2:5
r�

x

� �2

C1:5
r�

x

� �4� �
(17)

sy Z S 1 C0:5
r�

x

� �2

C1:5
r�

x

� �4� �
(18)

The stress concentration factor, according to Eq. (18), is

3 and the minimum compressive stress at the edge of the

hole can be calculated as:

se
min;net Z 3Smin;appl (19)

The applied nominal minimum stress, Smin,appl can also

be related to the minimum applied stress intensity factor:

Smin;appl Z
Kmin;appl

Y
ffiffiffiffiffiffi
pa

p (20)
Thus, the minimum local stress at the edge of a notch can

finally be related to the minimum applied stress intensity

factor, Kmin,appl.

se
min;net Z

3Kmin;appl

Y
ffiffiffiffiffiffi
pa

p (21)

However, the Creager–Paris solution (10) would suggest

that if the problem is treated as a blunt crack, a certain net

minimum stress intensity factor Kmin,net needs to be applied

in order to generate the same stress at the crack tip as that

one determined from Eq. (21).

se
min;net Z

2Kmin;netffiffiffiffiffiffiffiffiffi
pr�

p (22)

Combination of Eqs. (21) and (22) makes it possible to

determine the net stress intensity factor Kmin,net resulting in

the same crack tip stress as that one calculated from Eq. (21)

when substituted into the Creager–Paris expression (22).

Kmin;net Z Kmin;appl

3

2Y

ffiffiffiffiffiffi
r�

a

r
or

Kmin;net

Kmin;appl

Z
3

2Y

ffiffiffiffiffiffi
r�

a

r (23)

In order to determine fluctuations of the linear-elastic

stress near the crack tip, it is necessary to account for

the differences in the tensile and compressive part of the

cycle, i.e.

~se
max;net Z

jy;1Kmax;applffiffiffiffiffiffiffiffiffiffiffi
2pr�

p Z
jy;1Smax;applY

ffiffiffiffiffiffi
pa

pffiffiffiffiffiffiffiffiffiffiffi
2pr�

p

Z Smax;applY

ffiffiffiffiffiffiffiffi
a

2r�

r
jy;1 (24)
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jy;1Kmax;applffiffiffiffiffiffiffiffiffiffiffi
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p K
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p
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r�

a

r
Kmin;appl

 !
(26)

It can be seen from Eq. (26) that the contribution of the

compressive part of the applied stress reversal (from 0 to

Kmin,appl) to the local crack tip stress range is relatively small

and it depends on the crack tip radius r* and the crack size

‘a’. It is possible that the circular whole approximation

(Fig. 5(b)) might be non-conservative but this will be found

later. The maximum crack tip stress ~se
max;net and the stress

range D ~se
net over the first elementary material block obtained
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from the linear-elastic analysis are inputs for calculating the

elastic–plastic stress–strain response.
3.2. Elastic–plastic analysis of stresses and strains near

the crack tip

The purpose of the elastic–plastic stress–strain analysis is

to determine the actual stress–strain history over the first

(iZ1) elementary material block and the residual stress

induced by the reversed plastic yielding in the crack tip region.

To avoid solving the complete but unfortunately a very

complex elastic–plastic cracked body boundary problem for

each load/stress reversal, the well-known Neuber rule [23]

was used. The Neuber rule was originally derived for a uni-

axial stress state (i.e. pure shear) but it has been recently

expanded for multi-axial proportional and non-proportional

loading conditions [25,26]. The Neuber rule states the

equivalence of the strain energy density at the notch tip

between the linear-elastic and elastic–plastic behavior of

geometrically identical notched bodies subjected to identical

external loads. In the case of uni-axial stress state at the notch

tip the Neuber rule provides the relationship between the

hypothetical linear-elastic notch tip stress–strain input data

and the actual elastic–plastic response.

~se
y;i ~3

e
y;i Z ~sa

y;i ~3
a
y;i (27)

For cracked bodies in plane stress the stress state near the

crack tip is bi-axial. In the case of bodies in plane strain, the

near tip stress state is tri-axial but the third principal stress is a

function of the other two and in both situations the modified

bi-axial Neuber rule [25] can be used. In addition, the elastic

stress tensor used as the input does not rotate during loading

and all stress components change proportionally. Therefore,

the Hencky equations [27] of the total deformation theory of

plasticity can be applied.

In the case of bi-axial stress state, the Hencky stress–

strain relationships, the Ramberg–Osgood stress–strain

constitutive Eq. (4) and the multi-axial Neuber rule [25]

can be combined into the set of five equations. Using this set

of equations, all elastic–plastic crack tip strains and stresses

can be determined over each element ahead of the crack tip.
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(28)
where

sa
eq Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~sa
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2K ~sa

x;i ~s
a
y;i C ð ~sa

y;iÞ
2

q
and

f ðsa
eqÞ Z

sa
eq

K 0

� �1=n0

In the case of cracked bodies in plane stress, the stress

state over the first elementary material block reduces to one

normal stress component. Therefore, the equation set (28)

reduces to the classical uni-axial Neuber rule associated

with the Ramberg–Osgood equation.
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(29)

The Neuber Eq. (27) can also be written in terms of the

nominal stress or the stress intensity factor.
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The maximum stress at the crack tip induced by the first

reversal can be determined from the Neuber rule (30) and

the Ramberg–Osgood strain–stress curve (4).
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(31)

The crack tip strain and stress ranges can be determined

from the Neuber equation when written in terms of ranges

and associated with the expanded by factor of two stress–

strain curve.
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(32)

The equations above enable the determination of elastic–

plastic strains and stresses at the crack tip induced by one
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Fig. 6. Approximate elastic–plastic crack tip stress distribution induced by cyclic loading: (a) at high stress ratios RO0.5; (b) at low stress ratios R%0.5.
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reversal of the load history represented by the fluctuations of

the stress intensity factor, DKnet. After calculating the actual

elastic–plastic strains and stresses at various locations, the

residual stress distribution sr(x) induced by the application of

the loading and unloading stress reversal can be determined.

Schematic diagrams in Fig. 6 show stress distributions

ahead of the crack tip corresponding to the maximum and

minimum load level at two different stress ratios R. Both

stress distributions, i.e. those corresponding to the maximum

and minimum load are most often tensile at high applied

stress ratios (RapplO0.5). In such a case, the crack tip

displacement field and the crack tip stress field are

dependent on the applied stress intensity factors only.

However, compressive residual stresses might be generated

at the minimum load level in the case of low stress ratios

(Rappl!0.5). The residual stresses remain present in the crack

tip region even at the zero applied load level. Therefore, the

residual stresses have to be included into the relationship

correlating the applied load, the crack tip stress–strain

response and the displacement field. It is assumed that the

compressive stress ahead of the crack tip is acting as a clamp

over the crack tip region and its action has to be overcome

before the increments of the applied (or the net) stress

intensity range can be fully effective as stated in Eqs. (31) and

(32). Again, the residual compressive stress effect needs to be

expressed in terms of the stress intensity factor before it can

be included in any fatigue crack growth expression.

The Neuber rule makes it possible to determine the

residual stress distribution through the plastic zone but not

behind the crack tip. However, in order to simulate
the character of the displacement field around the crack

tip, shown in Fig. 3(a), the compressive part of the residual

stress field ahead of the crack tip was symmetrically added

over the region behind the crack tip as shown in Fig. 3(b).

The residual stress field shown in Fig. 3(b) was subsequently

used for calculating the residual stress intensity factor, Kr.
3.3. Calculation of the residual stress intensity factor Kr

The compressive residual stress ahead of the crack tip

prevents free deformation and opening displacement behind

the crack tip. Therefore, it was assumed analogously to the

well-known Dugdale [28] model, that the effect of residual

stress sr(x) could be expressed in terms of the stress

intensity factor calculated for a crack (Fig. 3) tip surrounded

by the compressive stress applied to the crack surface. The

calculation of the residual stress intensity factor was carried

out using the weight function method [29,30]. The universal

weight function expression (33) was used in the analysis.

mðx; aÞ Z
2Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pðaKxÞ
p 1 CM1 1K

x

a

� �1=2
�

CM2 1K
x

a

� �1

CM3 1K
x

a

� �3=2
�

(33)

The geometry dependent factors M1, M2, and M3 for an

edge and through crack in a finite width plate could be

found in the appendix. Additional M1, M2, and M3 factors

for various geometrical configurations were given in

Refs. [31,32].
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The stress intensity factor was calculated by integrating

the product of the residual stress sr(x) and the weight

function m(x,a) over the crack surface area.

Kr Z

ða
0

srðxÞmðx; aÞdx (34)

The physical crack tip location at ‘xZa’ was chosen as

the upper limit of the integration in the expression (34). It

was also found that region rp was close to the cyclic plastic

zone size. A special numerical procedure [33] was

developed for calculating the integral (34).
3.4. Calculation of the resultant (total) maximum

and minimum stress intensity factors

The residual stress effect cannot be assessed by simple

superposition of stress intensity factors because the

character of the crack opening displacement field needs to

be accounted for. It is shown qualitatively in Fig. 2(f) that

the compressive residual stresses might be induced at tensile

levels of the minimum load. Further decrease of the applied

load below point C (Fig. 2(e) and (f)) reverses the crack tip

plastic deformation induced during the preceding reversal.

The plastic zone on the other hand resists to be deformed in

reverse direction during the unloading process and therefore

the crack tip stress–strain path ends at point E (Fig. 2(f))

instead of point E 0 what would be the case if the plastic zone

did not resist to deformation. In other words, the strain and

stress at the crack tip change very little when the load

decrease from point D to E. In terms of the stress intensity

factor, the plastic zone and the residual stress manifest

themselves mainly in a change (increase) of the resultant

minimum stress intensity factor Kmin,tot without significant

changes in the resultant maximum stress intensity factor

Kmax,tot. It is assumed that the residual stress intensity factor

Kr contributes mainly to changes (increases) of the

minimum resultant stress intensity factor Kmin,tot and

subsequently the resultant stress range DKtot.

Two distinct cases need to be considered while

determining the resultant stress intensity factor parameters.
3.4.1. Case 1. ~sa
minR0

At relatively high applied stress ratios (RapplO0.5) the

reversed plastic deformations around the crack tip are not

sufficient to produce compressive stresses (see Fig. 6(a)).

Therefore, the resultant stress intensity factor quantities are

determined as follows:

Kmin;tot Z Kmin;net Z Kmin;appl (35)

Kmax;tot Z Kmax;net Z Kmax;appl (36)

DKtot Z Kmax;totKKmin;tot Z DKnet Z DKappl (37)
3.4.2. Case 2. ~sa
min!0

It is known that compressive residual stresses at the

notch/crack tip can be generated even at the minimum tensile

load if the applied stress ratio is relatively low Rappl!0.5.

However, the procedure for calculating the resultant stress

intensity factor accounting for the effect of residual stresses is

different for tensile applied minimum stress intensity factor

Kmin,applO0 and the compressive minimum stress intensity

factor Kmin,appl!0. The negative stress intensity factor has no

physical meaning but is mathematically useful while

characterizing the load reversals. The difference between

these two cases lies in the calculation procedure concerning

the input of the pseudo-elastic net crack tip stresses described

in Section 3.1.

The negative residual stress intensity factor Kr has no

physical meaning but it reflects the contribution of the

residual stress to the resultant minimum stress intensity

factor Kmin,tot.

The resultant minimum stress intensity factor Kmin,tot

‘felt’ by the material at the crack tip is in such a case equal to

the algebraic sum of the minimum net stress intensity factor

Kmin,net and the negative residual SIF, Kr.

Kmin;tot Z Kmin;net KKr

Z Kmin;applKKr for Kmin;appl R0

Kmin;tot Z Kmin;net KKr

Z Kmin;appl

3

2Y

ffiffiffiffiffiffi
r�

a

s
KKr for Kmin;appl !0

(38)

The resultant maximum stress intensity factor Kmax,tot, as

discussed above, is not affected by the compressive residual

stress.

Kmax;tot Z Kmax;net Z Kmax;appl (39)

The two equations above enable the resultant stress

intensity range DKtot to be determined in terms of the

applied and the residual stress intensity factor.

for Kmin;appl R0

DKtot Z Kmax;tot KKmin;tot Z Kmax;appl KKmin;appl CKr

Z DKappl CKr

for Kmin;appl !0

DKtot Z Kmax;tot KKmin;tot

Z Kmax;appl KKmin;appl

3

2Y

ffiffiffiffiffiffi
r�

a

vuut CKr Z DKnet CKr

(40)

The resultant maximum SIF, Kmax,tot and the resultant

stress intensity range are two main parameters governing the

fatigue crack growth rate. However, they need to be

combined into one driving force expression analogously to



A.H. Noroozi et al. / International Journal of Fatigue 27 (2005) 1277–12961288
the fatigue damage parameter used in the classical fatigue

theories.
4. Analytical derivation of the fatigue crack driving

force Dk and the fatigue crack growth expression

da/dNKDk

Expressions (14)–(16) and (24–(26) and the Neuber rule

provide the link between the stress–strain response at the

crack tip and the applied stress intensity factor history.

Therefore, the fatigue crack expression can be derived based

on selected fatigue damage accumulation parameter and the

crack tip stress–strain history.

The Smith–Watson–Topper (SWT) damage parameter

[22] was chosen to determine the fatigue damage

accumulation at the crack tip.

D Z ~sa
max

D~3a

2
(41)

After including the SWT damage parameter into the

Manson–Coffin strain–life fatigue curve, the following

expression is obtained relating the SWT damage parameter

with the number of cycles to failure.

~sa
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D~3a

2
Z

ðs0
fÞ

2

E
ð2NfÞ

2b Cs0
f3

0
fð2NfÞ

bCc (42)

Eqs. (31) and (32) provide unique relationship between

the applied SIF and the actual strains and stresses.

Unfortunately, these equations only hold true in the case

of cracks subjected to cyclic loads applied at relatively high

stress ratios RO0.5. In the case of low stress ratios, a

compressive residual stress field is generated ahead of the

crack tip and Eqs. (31) and (32) can be used providing that

the net maximum SIF, Kmax,net, and the net SIF range, DKnet,

are corrected for the effect of the residual stress, sr. In other

words, the resultant maximum SIF, Kmax,tot and the resultant

SIF range, DKtot discussed above must be used in these

equations.

The actual maximum stress can be obtained from the set

of two equations involving the resultant stress intensity

factor Kmax,tot and the cyclic stress–strain material curve.
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(43)

The actual crack tip strain range can be determined from

the set of two equations involving the resultant stress

intensity range DKtot and the cyclic stress–strain material
curve expanded by factor of two.
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(44)

Unfortunately, closed form solutions for ~sa
max and D~3a

are not feasible. However, approximate closed form

solutions are feasible if some terms in Eqs. (43) and (44)

are neglected. At high applied loads, i.e. at high

maximum stress intensity factors and high stress intensity

ranges, the strains at the crack tip are predominantly

plastic. Therefore, the elastic terms in Eqs. (43) and (44)

can be neglected. In the near threshold fatigue crack

growth region, the strains at the crack tip are

predominantly elastic and therefore the plastic terms in

Eqs. (43) and (44) can be neglected.

—Predominantly plastic behavior of material at the

crack tip.

Eqs. (43) and (44) take simpler form after neglecting the

elastic terms.
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The maximum stress and the strain range at the crack tip

can be subsequently determined in a closed form.
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For consistency reason, the elastic term in the strain–life

expression (42) should be neglected as well.
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After substituting for the maximum stress and the strain

range in Eq. (48), one can write the expression relating

the number of cycles to failure to the two stress intensity

factor parameters.

ðjy;1Þ
2

2ðn0C3Þ=ðn0C1ÞpEr�

� �
ðK2

max;totÞ
n0=ðn0C1ÞðDK2
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Z s0
f3

0
fð2NfÞ

bCc (49)

The number of cycles Nf needed to fail the elementary

material block at the crack tip is:

Nf Z
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The fatigue crack growth rate (7) can be subsequently

calculated as:

da

dN
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Because the only variables in Eq. (51) are the maximum

stress intensity factor and the stress intensity range the

fatigue crack growth expression can be written in a short

form.

da

dN
Z C½ðKmax;totÞ

pðDKtotÞ
1Kp�g (52)

where

C Z 2r� ðjy;1Þ
2

2ðn0C3Þ=ðn0C1Þs0
f3

0
fpEr�

" #Kð1=ðbCcÞÞ

; p Z
n0

n0 C1
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g ZK
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Eq. (52) indicates how the two stress intensity factor

parameters should be combined into one fatigue crack

driving force.

—Predominantly elastic behavior of the material at the

crack tip

Similar analysis can be carried out for neglected

plastic terms in Eqs. (43) and (44) what is believed to be

a good approximation of the crack tip material stress–

strain behavior in the near threshold fatigue crack growth

region. The final fatigue crack growth expression derived

for the near threshold fatigue crack growth regime is as

follows

da

dN
Z C½ðKmax;totÞ

pðDKtotÞ
1Kp�g (53)
where

C Z 2r� ðjy;1Þ
2

4pr*s02
f

� �K1=2b

; p Z 0:5; g ZK
1

b

The crack growth expressions (52) and (53) are

formally the same as those proposed by Walker [6],

Donald and Paris [7] and Kujawski [8] except that the

resultant maximum stress intensity factor Kmax,tot and the

resultant stress intensity range DKtot accounting for the

compressive residual stress effect should be applied. The

derived crack growth expressions suggest that the fatigue

crack driving force accounting for the mean stress effect

should be of the form:

Dk Z K
p
max;totDK

1Kp
tot (54)

The magnitudes of parameter p indicate that the effect

of the maximum stress intensity factor is more significant

in the near threshold regime than in the Paris regime of

relatively high fatigue crack growth rates.

A similar analysis was also carried out assuming the

plane strain state at the crack tip and modifying the stress–

strain relationship as proposed in Refs. [34,35]. The form of

the fatigue crack driving force (54) derived for the plane

strain state at the crack tip was the same as in the case of the

uni-axial stress state. The only difference found was the

constant C* in the fatigue crack growth expression.

da

dN
Z C�½ðKmax;totÞ

pðDKtotÞ
1Kp�g (55)

The constants C* for the crack tip in plane strain state

are:

– for predominantly plastic plane strain behavior of the

material at the crack tip
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C

ð1Kn2Þ1=ðbCcÞ

Z
2r�

ð1Kn2Þ1=ðbCcÞ

ðjy;1Þ
2

2ðn0C3Þ=ðn0C1Þs0
f3

0
fpEr�

" #Kð1=ðbCcÞÞ

(56)

– for predominantly elastic plane strain behavior of the

material at the crack tip

C� Z
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Z
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2

4prs02
f
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(57)

All constants in the fatigue crack growth expressions

derived above are known if the material properties in the

form of the cyclic stress–strain curve (4) and the fatigue

strain–life expression (5) are available. The only unknown

parameter needed to be determined is the size of the

elementary material block, r*.
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4.1. Determination of the elementary material block size r*

In order to determine the elementary material block size

r* some fatigue crack growth data are necessary. The

obvious properties are the threshold stress intensity factor

DKth and the fatigue limit Dsth. For the fatigue crack not to

grow at the threshold stress intensity range DKth, the local

stress at the crack tip must be equal to the fatigue limit Dsth.

Due to the fact that the fatigue limit is less than the material

yield limit the elastic stress–strain analysis can be carried

out. Thus, according to the Creager–Paris solution the two

material properties can be related as:

D ~sa
th Z

DKth !jy;1ffiffiffiffiffiffiffiffiffiffiffi
2pr�

p (58)

Eq. (59) may be subsequently used for the determination

of the elementary material block size r*.

r� Z
ðjy;1Þ

2

2p

DKth

D ~sa
th

� �2

(59)

The elementary material block size (59) is in such a case

close to the well-known parameter resulting from the

Kitagawa diagram [36]. However, care must be taken in

order to use the fatigue limit D ~sa
th obtained at the same stress

ratio R as the stress ratio at the crack tip induced by the

threshold stress intensity range DKth. However, some care

needs to be taken while determining the threshold stress

intensity factors. Namely, the fatigue crack may not grow

because of one of the two reasons [9], i.e. either the applied

maximum stress intensity factor is less than the maximum

threshold stress intensity factor (Kmax,appl!Kmax,th) or the

applied stress intensity range is less than the threshold stress

intensity range (DKappl!DKth). If the crack cease to grow at

the stress ratio RZ0 it is not certain whether the maximum

stress intensity or the stress intensity range was reached the

threshold level. Therefore, the optimum stress ratio at which

the threshold stress range DKth can be determined without
Table 1

Material properties

Al 7075-T6

Monotonic material properties E (MPa) 71,000

n 0

sys (MPa) 468

Cyclic stress–strain curve K 0 (MPa) 780

n 0 0

Strain–life curve s0
f (MPa) 780

b K0

30f 0

c K0

Near threshold FCG data da/dN (mm/cycle) 5!10K8 at

Dk (MPaOm) 1.98 at RZ0

Crack tip radius r* (m) 4.03!10K6

a The fatigue strain–life curve (5) was approximated by two linear segments in th

amplitude D3/2Z0.008).
producing significant plasticity at the maximum stress

intensity factor is 0.2!R!0.3 and in such a case the

‘elastic’ solution Eq. (59), can be used.

An alternative method of estimating parameter r* can be

used if experimental fatigue crack growth data from near the

threshold region is available. If the near threshold fatigue

crack growth rate generated at Kmax,appl and DKappl is known

the constant C can be determined from Eq. (53).

C Z
da

dN
½ðKmax;totÞ

pðDKtotÞ
1Kp�Kg (60)

The unknown elementary material block size r* can be

subsequently determined from the expression for the C

constant (see Eq. (53))

r� Z
C

2

ðjy;1Þ
2

4pðs0
fÞ

2

� �1=2b
( )2b=ð2bC1Þ

(61)

In order to avoid producing plastic strains and

compressive residual stresses near the crack tip it is

recommended to use the near threshold fatigue crack

growth data obtained at stress ratios RO0.5.
5. Experimental verification

Fatigue crack growth data of three materials were used

for the validation of the model. There were one steel 4340

material and two aluminum alloys Al 7075-T6 and Al 2024-

T351. The cyclic (4) and fatigue properties (5) for each

material are given in Table 1.

5.1. Modeling of fatigue crack growth 4340 steel material

The fatigue crack growth data for the 4340 steel material

was found in Refs. [37,38]. The fatigue crack growth data

sets obtained at various stress ratios Rappl are shown in Fig. 7

as a function of the applied stress intensity range DKappl.
Material

Al 2024-351 St-4340

70,000 200,000

.32 0.32 0.3

.85 403.46 889.32

.64 751.1 1910

.088 0.1 0.123

.64 737.7 1879

.045 K0.081 K0.0895

.19 0.3/0.066a 0.64

.52 K0.6/K0.35a K0.636

RZ0.5 6!10K7 at RZ0.3 1!10K7 at RZ0.7

.5 2.68 at RZ0.3 4.56 at RZ0.7

1.6!10K5 1.1!10K5

e log–log co-ordinates. The two lines intersect at 2NfZ420 cycles (or strain



Fig. 7. Fatigue crack growth data for 4340 steel obtained at stress ratios K1%R%0.7.
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The cyclic (4) and fatigue properties (5) for the 4340

steel were borrowed from Refs. [37,39] and they are listed in

Table 1. The near threshold fatigue crack growth rate da/dN

data obtained at the stress ratio RZ0.7, shown in Table 1,

was selected for the determination of the r* parameter from

Eq. (61). Based on the material data listed in Table 1 and

the r* parameter, the following constants were obtained for

Eqs. (52) and (53):
Fig. 8. Fatigue crack growth data for 4340 steel as a f
–for predominantly plastic strain–stress behavior at the

crack tip, Eq. (52).

CZ2.36!10K11, pZ0.11, gZ2.76 (for da/dN in

‘mm/cycle’ and K in ‘MPaOm’)

–for predominantly elastic strain–stress behavior at the

crack tip, Eq. (53).

CZ5.05!10K18, pZ0.5, gZ11.17 (for da/dN in

‘mm/cycle’ and K in ‘MPaOm’).
unction of the two parameter driving force, Dk.
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The fatigue crack growth Eqs. (52) and (53) are shown as

lines in the log–log coordinates in Fig. 8. In addition, the

fatigue crack growth expressions derived for the plane strain

state (Eqs. (55)–(57)) have been plotted. All experimental

fatigue crack growth data sets are also shown in the same

figure as a function of the driving force Dk, Eq. (54). The

resultant stress intensity factors corrected for the residual

stress effect were used to determine the magnitude of the

driving force Dk. It is seen that both fatigue crack expressions

(52) and (53) consolidate well the entire set of fatigue crack

growth data obtained at various stress ratios in the range of

K1!Rappl!0.7.
5.2. Modeling of fatigue crack growth in Al 7075-T6 alloy

The fatigue crack growth data for Al 7075-T6 alloy was

found in Ref. [40] and used for the comparisons. The fatigue

crack growth data sets obtained at various stress ratios Rappl

are shown in Fig. 9 as a function of the applied stress

intensity range DKappl.

The cyclic (4) and fatigue properties (5) of the Al 7075-

T6 alloy were borrowed from Ref. [13]. Similar data

concerning the Al 7075-T6 alloy can also be found on the

Society of Automotive Engineers (SAE) web site (fde.u-

waterloo.ca) maintained by the Fatigue Design and

Evaluation Committee. All necessary parameters of the

cyclic stress–strain and the fatigue strain–life curves are

listed in Table 1. The fatigue crack growth rate, da/dN

obtained at the stress ratio RZ0.5 and Eq. (61) were

selected for the determination of parameter r* and shown in

Table 1. Based on the material data listed in Table 1, the
Fig. 9. Fatigue crack growth data for Al 7075-T6 alumi
following parameters for the crack growth Eqs. (52) and

(53) were determined:

–for predominantly plastic material behavior at the crack

tip, Eq. (52).

CZ2.45!10K10, pZ0.081, gZ3.54 (for da/dN in

‘mm/cycle’ and K in ‘MPaOm’)

–for predominantly elastic material behavior at the crack

tip—Eq. (53)

CZ1.32!10K17, pZ0.5, gZ22.7 (for da/dN in

‘mm/cycle’ and K in ‘MPaOm’)

The fatigue crack growth, Eqs. (52) and (53) are shown

in Fig. 10 as solid lines in the log–log coordinates. In

addition, the fatigue crack growth expressions derived for

the plane strain state (Eqs. (55)–(57)) have been plotted. All

experimental fatigue crack growth data sets are also shown

in the same figure as a function of the same driving force Dk,

Eq. (54). The resultant stress intensity factors corrected for

the compressive residual stress effect were used to

determine the magnitude of the driving force Dk. It is

seen that both fatigue crack expressions (52) and (53)

consolidate well all fatigue crack growth data obtained at

various stress ratios in the range of K1!Rappl!0.5.
5.3. Modeling of fatigue crack growth in Al 2024-T351 alloy

The fatigue crack growth data for Al 2024-T351 alloy

obtained at stress ratios K1!R!0.5 were borrowed from

Ref. [41]. The fatigue crack growth data set obtained at

stress ratio RZK2 was found in Ref. [42]. All fatigue crack

growth data sets are shown in Fig. 11 as a function of the

applied stress intensity range DKappl.
nium alloy obtained at stress ratios K1%R%0.5.



Fig. 10. Fatigue crack growth data for Al 7075-T6 aluminium alloy as a function of the two parameter driving force, Dk.
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The cyclic (4) and fatigue properties (5) of the Al

2024-T351 alloy were borrowed from Ref. [43] but the

same data can also be found on the Society of Automotive

Engineers (SAE) web site (fde.uwaterloo.ca) maintained

by the Fatigue Design and Evaluation Committee.

Because the experimental data points concerning the

fatigue strain–life data could not be sufficiently well fitted

into one Manson–Coffin strain–life curve, two curves were

fitted and two sets of parameters were used as shown in

Table 1. The fatigue crack growth rate, da/dN obtained at
Fig. 11. Fatigue crack growth data for Al 2024 T351 alum
the stress ratio RZ0.3 and Eq. (61) were selected for the

determination of parameter r* and shown in Table 1.

Based on the material data listed in Table 1, the following

parameters for the crack growth Eqs. (52) and (53) were

determined:

–for predominantly plastic material behavior at the crack

tip, Eq. (52)

CZ2.74!10K10, pZ0.091, gZ3.09 and CZ7.79!
10K12, pZ0.091, gZ5.19 (for da/dN in ‘mm/cycle’ and K

in ‘MPaOm’)
inium alloy obtained at stress ratios K2%R%0.5.



Fig. 12. Fatigue crack growth data for Al 2024 T351 aluminium alloy as a function of the two parameter driving force, Dk.
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–for predominantly elastic material behavior at the crack

tip, Eq. (53)

CZ3.56!10K15, pZ0.5, gZ12.35 (for da/dN in

‘mm/cycle’ and K in ‘MPaOm’).

The fatigue crack growth Eqs. (52) and (53) are

shown as solid lines in the log–log coordinates in

Fig. 12. The fatigue crack growth expressions derived for

the plane strain state (Eqs. (55)–(57)) are plotted as

dashed lines. It was found that only the expression (52)

obtained on the basis of the Manson–Coffin strain–life

curve fitted into the high strain (short lives) fatigue data

points coincided well with the experimental fatigue crack

growth data. The Manson–Coffin expression fitted into

the low strain (high life) experimental data points did not

provide good data for the fatigue crack growth modeling.

The resultant stress intensity factors corrected for the

residual stress effect were used to determine the

magnitude of the driving force Dk. It is seen that both

fatigue crack expressions (52) and (53) consolidate well

fatigue crack growth data obtained at various stress ratios

from the stress ratio range of K2!Rappl!0.5. It has

been also found that in the case of aluminum alloys

fitting one Manson–Coffin curve into the low and high

cycle fatigue data is inaccurate and two Manson–Coffin

curves having two different slopes are recommended.
6. Conclusions

A fatigue crack growth model based on the analysis of

elastic–plastic stress–strain history at the crack tip was
proposed. It was assumed that the crack can be modeled as

a long notch with the tip radius r*. The entire analysis was

carried out as for classical notch without the necessity of

introducing the concept of the crack closure behind the

crack tip. It was found that the simulated crack tip stress–

strain history and the Smith–Watson–Topper fatigue

damage parameter made it possible to derive fatigue

crack growth expressions analogous to previously proposed

fatigue crack growth equations accounting for the mean

stress effect. The inclusion of the residual stress effect into

the fatigue crack growth driving force made it possible to

derive one fatigue crack growth expression valid for a wide

variety of loading conditions with stress ratios in the range

of –2!R!0.7. It is also possible to predict the fatigue

crack growth rate based on the Ramberg–Osgood stress–

strain material curve and the fatigue strain–life Manson–

Coffin equation obtained from smooth material specimens

tested under constant amplitude strain control loading. It

has been noticed that in the case of aluminum alloy Al

2024-T351, the two regions of the high fatigue crack

growth data (Paris regime) showing distinctly two different

slopes on the da/dNKDk plot coincide with different

slopes of the two segment Manson–Coffin curve corre-

sponding to the low and high cycle fatigue data.

The Creager–Paris solution used in the analysis is only

valid for long cracks (a[r*); therefore it would be

inaccurate for short cracks whose lengths are comparable

with the elementary material block size r*. In the latest case

the standard notch stress–strain analysis should be used

making the model potentially capable of addressing the

short crack problems as well.
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Fig. 13. The system of coordinates and nomenclature for the universal weight function: (a) edge crack in a finite width plate; (b) through central crack in a finite

width plate.
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Appendix

Parameters M1, M2, and M3 for an edge crack in a finite

width plate. See Fig. 13(a) for the nomenclature.

M1 Z
K0:029207 C a

w
0:213074 C a

w
K3:029553 C a

w

"""
1:0 C a

w
K1:259723 C a

w
K0:048475 C a

w
0:481250 C
"""

M2 Z
0:451116 C a

w
3:462425 C a

w
K1:078459 C a

t
3
"""

1:0 C a
w

K1:496612 C a
w

0:764586 C a
w

K0:659316 C
"""

M3 Z
0:427195 C a

w
K3:730114 C a

w
16:276333 C a

w
K
"""

1:0 C a
w

K1:129189 C a
w

0:033758 C a
w

0:192114 C
"""

Parameters M1, M2, and M3 for a central through crack in

a finite width plate subjected to symmetric loading. See

Fig. 13(b) for the nomenclature.

M1 Z 0:06987 C0:40117
a

W

� �
K5:5407

a

W

� �2

C50:0886
a

W

� �3

K200:699
a

W

� �4

C395:552
a

W

� �5

K377:939
a

W

� �6

C140:218
a

W

� �7

M2 ZK0:09049K2:14886
a

W

� �
C22:5325

a

W

� �2

K89:6553
a

W

� �3

C210:599
a

W

� �4

K239:445
a

W

� �5

C111:128
a

W

� �6
M3 Z 0:427216 C2:56001
a

W

� �
K29:6349

a

W

� �2

C138:40
a

W

� �3

K347:255
a

W

� �4

C457:128
a

W

� �5

K295:882
a

W

� �6

C68:1575
a

W

� �7

References

[1] Paris PC, Erdogan F. A critical analysis of crack propagation laws.

Trans ASME, J Basic Eng 1963;D85:528–34.

[2] Elber W. The significance of fatigue crack closure. In: Damage

tolerance in aircraft structure. ASTM STP 486, Philadelphia:

American Society for Testing and Materials; 1971; p. 230–42.

[3] Aliaga D, Davy A, Schaff H. A simple crack closure model for

predicting fatigue crack growth under flight simulation loading. In:

Newman JC, Elber W, editors. Mechanics of fatigue crack closure,

ASTM STP 982. Philadelphia: American Society for Testing and

Materials; 1988. p. 491–504.



A.H. Noroozi et al. / International Journal of Fatigue 27 (2005) 1277–12961296
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