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Dislocation processes that affect kinetics
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Fatigue damage involves an irreversible plastic flow, and requires two load
parameters for its unique description. We have examined the dislocation
processes at the crack tip due to cyclic loads and showed that the two-
parameter requirement naturally follows from the analysis. Hence, there are
two fatigue thresholds, Kmax,th and �Kth, instead of just �Kth, as is normally
assumed. Examination of dislocation behaviour reveals that the Kmax threshold
can be related to the stress necessary to nucleate additional slip needed for crack
growth. Similarly, �Kth can be related to the stress to overcome reversible slip.
The value of Kmax,th is always greater than or equal to �Kth. The two-parameter
requirement can be related to the presence of monotonic and cyclic plastic zones
characteristic of a fatigue crack. The size of monotonic plastic zone is always
larger than that of the cyclic plastic zone. The former moves the crack tip forward
while the latter re-sharpens it. The analysis also shows that the effect of crack
wake plasticity on the crack tip driving force is limited and becomes increasingly
negligible with increasing crack length. Dislocation concepts and continuum
concepts are brought together to analyse the two-parameter requirement of
fatigue crack growth.

1. Introduction

Fatigue is a plasticity-induced damage, and in crystalline materials it occurs by
nucleation and motion of dislocations. Irreversibility associated with plastic flow
governs the accumulation of the damage during cyclic loads. Cyclic loads require
two load parameters to define them unambiguously: maximum or mean stress
and stress amplitude. Goodman [1] more than a century ago established that both
mean stress and stress amplitude affect fatigue life of a component subjected to
cyclic loads. But for fatigue crack growth, only one driving force, the stress intensity
factor range, �K, has been used for the quantification of crack growth rates [2]. The
load ratio, R (R¼minimum load/maximum load), is normally taken as the second
parameter. However, unlike the mean stress in the Goodman diagram for fatigue
life, the load ratio is not a driving force. Load ratio effects, therefore, have been
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accounted for in fatigue crack growth analysis by bringing in an extrinsic factor
called ‘crack closure’ [3].

Crack closure is the premature contact of crack surfaces that occurs at low
R-ratios before the minimum load is reached. Such contact is assumed to reduce
the applied stress intensity amplitude at the crack tip to an effective value. Plasticity
in the wake of a growing crack is recognized as the major cause for the contact [3].
The explanation involves consideration of a zone of plasticity around the crack,
which is further enclosed by an elastic material. The material in the plastic zone
is considered as ‘‘stretched’’, while the rest of the material is elastically strained.
When elastic unloading occurs, the plastic material is constrained and undergoes
compression. Additional (over and above the elastic) crack-surface displacements
due to these constraining forces are considered to be responsible for the premature
contact. With larger unloading or decreasing minimum load, the contact effects
will increase. Hence, at low R-ratios the crack closure effects predominate, reducing
the applied �K to an effective amplitude �Keff. Closure-free crack growth can
only be obtained at high R-ratios (R>0.7). Otherwise, a crack-closure correction
is required to determine the effective stress intensity range �Keff. Hence, in terms
of �Keff, there are no load-ratio effects, and there is only one load-parameter
characterizing fatigue crack growth.

The experimentally measured values of crack closure, however, vary by more
than 300% depending on the measurement location, technique employed [4–10],
specimen geometry and crack length [11, 12], and environmental factors [13, 14].
We have shown that fatigue phenomena can be explained self-consistently using the
fundamental concepts from dislocation theory, without invoking crack closure. In
this paper we present the basis of our approach and its consistency with fracture
mechanics concepts.

2. Dislocation concepts

We establish the following concepts based on dislocation theory:

(a) The crack-tip material undergoes shear rather than ‘‘stretch’’ during slip-
induced plastic deformation. The plastic zone, by definition, involves a
boundary between sheared and unsheared material, and therefore the
presence of dislocations [15]. Distributed dislocations result due to the gra-
dient in shear. Dislocations are internal-stress sources and a crack experi-
ences the internal stresses from these dislocation fields. This implies that
compressive stresses from plasticity do not arise only during unloading.
They become operative as soon as dislocations are formed or when a plastic
zone is formed. Under steady-state conditions, if the internal structure of a
plastic zone is not altered significantly during each cycle, the internal stresses
affect the crack-tip driving force during a complete cycle. That is, they
affect Kmax and Kmin, while �K remains the same. In addition, these com-
pressive forces operate whether crack-surface contact occurs or not, i.e. at
all R-ratios.

(b) The resulting displacements of crack surfaces due to these stresses, the
subsequent possibility of mating-surface contact, that in turn induces stresses
that affect the crack tip driving force, is a circular argument. The stress
field due to dislocations can directly affect the crack tip driving force.
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Displacement-induced contact stresses could cause second-order effects,
which should be considered if they are important. Experimental [16] and
theoretical [17] analyses indicate that the effects of such contact stresses
are negligible.

(c) Even the possibility of such crack–surface contact due to residual plasticity
requires further examination. The analysis is simple. Plasticity at the crack tip
opens up the crack. The monotonic plastic zone should be greater than the
cyclic plastic zone. Therefore, the displacements in the forward direction
should be more than displacements in the reverse direction. In addition,
dislocation has to be a loop where a positive segment moves forward to
form the plastic zone, while the negative segment is absorbed by a crack to
form a ledge. The displacement due to positive dislocations can never be
greater than the concentrated displacements due to ledges. This can also be
stated in another way. Dislocation plasticity occurs at a constant volume. In
forming a plastic zone, matter is removed from the crack and re-deposited in
the plastic zone as dislocations. The displacements due to compressive stres-
ses from these dislocations that are further away from the crack tip can never
be greater than the displacements at the crack tip generated due to the
removal of the matter.

(d) Finite element (FEM) analysis indicates that crack closure is observed not
for a stationary crack but for a crack that moves into the plastic zone (move-
ment is induced in the model by cutting the FEM nodes at the crack tip) [18].
It is interpreted as the needed plasticity in the crack wake to cause crack
closure. However, under steady-state conditions, closure should occur even
for a stationary crack during unloading. An alternative interpretation of the
FEM result is that when the crack tip nodes are cut the crack is allowed to
grow elastically (by cutting bonds) into the plastic zone where compressive
stresses exist; and these compressive stresses ahead of the crack tip will now
try to close the crack. Hence, it is the effect of internal stresses ahead of the
crack tip that retards the growth rather than crack closure per se. The effect
of these compressive stresses should be considered in calculating the stress
necessary for the incremental plasticity, and should be considered in calcu-
lating the stresses necessary for the nucleation of new dislocations at the
growing crack-tip. As has been noted, these stresses exist from the moment
the plastic zone is formed and not necessarily only during unloading.

3. Two-threshold requirement

Consistent with Goodman’s diagram [1] and the nature of the fatigue problem, we
start with the assumption that fatigue involves two load parameters, each affecting
the crack tip driving force. Correspondingly, there are two thresholds, one in terms
of each parameter, which must be exceeded simultaneously for a fatigue crack to
grow. Analysis of all the literature data of many metals, alloys, composites, and
plastics indicates that the most appropriate parameters for crack growth are Kmax

and �K [19]. Thus, there exist two thresholds, Kmax,th and �Kth, that must be
exceeded to have crack growth. Crack-growth data can be represented schematically
in terms of these two parameters as shown in figure 1. Figure 1a shows a standard
representation of fatigue threshold data in terms of R, while figure 1b shows a plot of
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�K vs. Kmax. The data for almost all materials follow an L-shaped curve defining
two thresholds and a non-propagating regime. It has been shown for almost
all materials that Kmax,th is larger than �Kth and, hence, a more dominant parameter
in controlling fatigue crack growth. Figure 2 shows typical experimental
results for several low carbon steels [20]. In spite of variations in chemistry,
microstructure, or processing conditions for various low carbon steels, �K�

th

remains the same while large changes in K�
max ,th are noted. Similar results are

observed in Al alloys [21].

4. Mechanisms governing the two fatigue thresholds

We examine at this stage the factors that determine the two fatigue thresholds by
using the dislocation concepts. Understanding of the fundamentals of the fatigue
crack growth process is still in the embryonic stage. The most familiar mechanisms in
the literature are the plastic blunting process due to Laird [22] and alternate shear
proposed by Neumann [23]. The first one gives an explanation of the formation of
striations and the second provides the process in detail for a planar slip material. In
both cases, the crack tip moves forward by dislocation generation at the crack tip.
The crack growth increment in each cycle is related to the net Burgers vector that
drives the crack tip forward. Cycle-by-cycle growth is ensured by incremental
forward plasticity at the crack tip. An alternative mechanism is the cumulated
damage process, wherein crack increment occurs intermittently by accumulated
damage ahead of the crack tip. The details of these processes are again not clear.
In either of the two mechanisms, the basic unit process is (a) forward slip involving
the generation of a new dislocation for incremental plasticity, and (b) the reverse slip
needed to re-sharpen the crack tip. In the language of mechanics, we can loosely
relate these two requirements to monotonic plasticity and cyclic plasticity, respec-
tively. These in turn can be related to the requirement of Kmax and �K thresholds.
On that basis, the two-parameter requirement and existence of two thresholds
become intrinsic to fatigue. In this paper, we use this as the basis for determining
the two thresholds.

∆

∆

∆

∆

∆

∆

∆

K
, K

m
ax

da/dN1

da/dN2

 Kth
*

K*

Kmax,th
*

Kmax
*

 Kth
*

K*
da/dN2

R-const

Kmax-const

K-const

K

Kmax
R

(a) (b)

Figure 1. (a) Conventional representation of �K and Kmax at threshold as a function of load
ratio, R. (b) �K�Kmax plot for a given da/dN defining an L-shaped curve with two limiting
thresholds and non-propagating regime.
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5. Dislocation model for fatigue thresholds

5.1. Dislocation process during loading

A first dislocation model for fatigue crack growth threshold was developed earlier
considering the stress necessary for dislocation generation [24] at the crack tip using
Rice–Thomson’s analysis [25]. We incorporate that analysis here considering now
that the crack is surrounded by a steady-state plastic zone both at the crack tip and
behind the crack tip.

Figure 3 provides a schematic description of sequence of dislocation process at
the crack tip during loading and unloading. Figure 3a shows the loading and unload-
ing during cycling, defining a peak load and an amplitude with load ratio R¼ 0. The
stress intensity factor, Ka, at the crack tip provides a measure of the stresses at the
crack tip due to a remote applied load, �a. Shear stresses are the maximum on a slip
plane that is inclined around 70� to the crack plane. Figure 3b shows the first
dislocation generation during loading when the shear stress on the slip plane near
the crack tip exceeds the critical stress needed for dislocation generation and its glide.
An associated ledge is formed and opens the crack. A detailed analysis of dislocation
nucleation process at the crack tip has been given by Rice and Thomson [25].
Without losing the generality, we can approximately express the critical stress for
dislocation generation [24] as

�cr ¼ �b=ð2prÞ þ �f þ gs ð1Þ

where r is the critical distance for dislocation nucleation, � is the shear modulus,
b is the dislocation Burgers vector, �f is the lattice frictional force opposing disloca-
tion motion, which is normally taken to be equal to the yield stress, and gs is the
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Figure 2. Experimental results for low-carbon steels showing large variation in Kmax,th but
not in �Kth.
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surface energy in creating the ledge. The stresses due to crack tip must exceed this
critical stress on the slip plane. Hence,

Ka � �cr
ffiffiffiffiffiffiffiffiffiffiffi
ð2prÞ

p
=Y ¼ KN1, ð2Þ

where

Y ¼ cosða=2Þ sinða=2Þ cosð3a=2Þ, ð3Þ

and where a is the angle of slip plane to the crack plane, and Y is, thus, a measure
of the trigonometric terms involved in the resolution of crack tip stresses on the
slip plane, and Ka is the applied Kmax. This critical Kmax is designated as KN1, i.e.
the stress needed for nucleation of the first dislocation. After nucleation, this
dislocation moves to a position where the force pushing the dislocation is balanced
by the opposing friction. Frictional forces can increase with dislocation length as
it gets jogged or cross slips during its glide. The nucleated dislocation now exerts
opposing force on the crack tip, reducing the applied K at the crack tip by the
term KD, where KD is the K due to the dislocation stress field. Lin and Thomson
[26] have evaluated the KD term for a semi-infinite crack. The stress needed for
the nucleation of the second dislocation, figure 3c, is now KN1þKD (algebraic
sum is implied). Similarly, the third dislocation has to encounter the opposing forces
from both the first and the second for its nucleation and glide. When the applied
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Figure 3. Schematic illustration showing the sequence of dislocation processes at the crack
tip: (a) cyclic loads with peak load and amplitude, (b) nucleation of the first dislocation at the
crack tip and the associated ledge, (c) nucleation of the second dislocation against the repulsive
force from the first, (d) inverted dislocation pile-up formation and generation of dislocations
of opposite sign forming dislocation dipoles, (e) formation of cyclic and monotonic plastic
zones under steady-state conditions, and (f) passing stress needed to break a unit dipole which
can control the threshold stress needed for to-and-fro dislocation motion.
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stress reaches maximum load, a full monotonic plastic zone is formed and the size of
the zone, ry, can be given by continuum mechanics as [27]

ry ¼ fKmax=�yg
2=ðbpÞ ð4Þ

which is the same as the length of a dislocation-source pile-up emitted from the crack
tip, (see figure 3d and 3e). Here b is 2 for plane stress and 6 for plane strain. The
nthþ 1 dislocation that has to be nucleated has to overcome this critical stress for
nucleation, which now includes, in addition to KN1, the combined opposing forces
from all the n dislocations that have been nucleated earlier. The combined opposing
force from the dislocations in the monotonic plastic zone can be represented as
KDT, and the critical K for nucleation of nascent dislocation in the presence of a
steady-state plastic zone is

Kcr ¼ KN1 þ KDT: ð5Þ

For simplicity, KDT can be estimated by replacing the dislocation pile-up by a super-
dislocation of equivalent strength [28]. From this it follows that the threshold for
fatigue crack growth in terms of Kmax is represented by equation (5) as

Kmax ,th ¼ Kcr; ð6Þ

and is related to the incremental plasticity needed for fatigue crack growth. Since
close-form solutions for inclined edge-dislocation pile-up at the crack tip are not
available, discrete dislocation models can be used to estimate Kcr. Discrete disloca-
tion models will be analysed later.

5.2. Dislocation processes during unloading

The applied stress (Ka contribution) pushing all the dislocations forward decreases
continuously with unloading. When the applied stress reaches zero, all the dis-
locations should, in principle, glide back into the crack tip. However the lattice
frictional forces (treated as compressive yield stress in the continuum) oppose
their reverse motion. Therefore, not all of the dislocations will glide back into the
crack. This leaves residual plastic strain at the crack tip. This is the source of
hysteresis energy.

The total reverse force on any dislocation i in the pile-up can be simply
expressed as

�ri ¼ �b=ð2pÞf�1=ðri � rjÞg þ �f � KaðrÞ, ð7Þ

where summation is done with respect to all dislocations present on the slip
plane with j 6¼ i. The dislocation force term is negative (compressive) from all the
dislocations ahead of the ith dislocation (dislocations 1 to i� 1 ) and positive or
tensile from all the dislocations behind (dislocations iþ 1 to nþ 1), as in figure 3d.
Thus dislocation 1 has only tensile force while dislocation nþ 1 has only compressive
force due to all other dislocations in the plastic zone. (We are using terms ‘‘tensile’’
and ‘‘compressive’’ somewhat loosely, from the point of remote stress. The direction
of the shear and dislocation movement changes correspondingly during loading vs.
unloading).

Dislocations reverse back to the crack until the force on the dislocation falls
below the resisting frictional force. The reverse movement of dislocations can also be
thought of as forward movement of dislocations of opposite Burgers vector as shown
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in figure 3d. The two opposite sets of dislocations essentially form dislocation
dipoles near the crack tip. Thus near the crack tip we have a cyclic plastic zone,
which differs from a monotonic plastic zone, where the dislocations are of one
sign. A cyclic plastic zone is much smaller than monotonic plastic zone, as shown
in figure 3e. The total amplitude necessary to overcome the lattice friction represents
the minimum threshold �Kth required. For example, the Peierls–Nabarro force,
which is a measure of lattice frictional force, can define the required amplitude. It
is significantly small compared to the Kmax required for crack growth. In reality,
friction can also include all other processes that can resist a dislocation’s to-and-fro
motion, which include dislocation–dislocation intersections, formation of jogs, etc.
In any case, threshold �K is much smaller than threshold Kmax, as most of the
experiments indicate. In addition, �Kth is less sensitive to most of the material
variables. Many aluminium alloys, in spite of large variations in microstructure,
essentially have the same fundamental �K threshold on the order of 1MPam�2

[21]. The Kmax,th values, however, differ significantly among the alloys. These results
imply that perhaps the intrinsic lattice resistance is the governing factor for the �Kth.

5.3. Controlling parameter for fatigue crack growth

Although there are two crack-tip driving forces and two critical values, one in
terms of each, only one of the two will be the controlling parameter in a given
range of R. For example, at high R-ratios, the Kmax threshold requirement is easily
met because of high mean stresses. In such cases, the fatigue will be governed by
the �K threshold requirement. It is this threshold that experimentalists measure
using high constant Kmax tests (see figure 1). On the other hand, at low R-ratios
(i.e when Kmin is low and Kmax is high), it is the Kmax threshold that governs
crack growth rather than the �K threshold, because of its relatively high magnitude.
Thus the two-threshold stress requirement comes from the nature of the fatigue
process; forward slip is required for crack growth and reverse slip is required to
re-sharpen the crack.

5.4. Dislocation dipole formation

At high stresses, with the increase in dislocation density, the movement of disloca-
tions can be governed by dipole formation and its break-up, as shown in figure 3f.
The dipoles can be of interstitial or of vacancy type. Both types of dipoles have been
observed under cyclic damage [29]. As the dislocation density increases, the spacing
between the dipoles decreases and ultimately the fatigue damage is governed by
the stress necessary to break up a unit dipole. The threshold �K can be related to
the dipole strength, which is primarily a function of Burgers vector and dipole
separation (height). Hence, �Kth is given by

�Kth � A�B=h, ð8Þ

where B is the Burgers vector of the dislocations involved in the dipole, and A is
related to elastic constants discussed above. To evaluate the magnitude, we use a
simple approximation based on the monotonic and reverse plastic zones as can be
computed by continuum mechanics. Similarly the height, h, of the dipole should
decrease with increase in crack growth rate (similar to the decrease of dislocation
cell size with increased strain). As dipole separation h decreases, �Kth can be greater
than the Kmax,th. In that case, Kmax has to equal �K. Under these conditions, a plot
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of �Kth vs. Kmax would give a 45� line. This relation, which is generally observed in
the Paris regime, particularly in materials tested in vacuum, is called the pure fatigue
line [30]. The crack growth in this case is governed by a reversibility condition, as
dislocations have to move to-and-fro with dipole formation and its breakage.

6. Dislocation–crack interactions

Central to the evaluation of Kmax threshold is the shielding effect of the dislocations
in the plastic zone in the wake and at the crack tip. Recently James et al. [31]
examined plasticity-induced crack closure using photoelasticity techniques but
using material that can plastically deform near the crack tip. Based on their analysis,
they concluded that there is no crack–surface contact during unloading, yet reduc-
tion in crack tip stresses occurs. They attributed this reduction to the shielding effect
of plasticity at the crack tip and in the wake. Dislocations shield or anti-shield the
crack-tip stress fields depending on their Burgers vector and position with respect to
the crack tip. The KDT term in equation (6) provides the effect of dislocation shield-
ing on the crack tip stress intensity factor and is based on the Lin–Thomson [26]
equations for a semi-infinite crack. In the following, we examine the shielding effect
for a finite crack and compare the results with those of semi-infinite crack. We also
show that these results can be deduced through the continuum approach by using
weight function methods.

6.1. Dislocation interactions with finite-size crack

Zhang and Li [32] have analysed a finite crack with slip dislocations at both ends
of the crack. The KD term for a finite crack can be computed by considering a
symmetrical configuration with pairs of dislocations at both ends (figure 4):

KD ¼ KDR þ KDL, ð9Þ

where KD is the total effect on any crack tip, KDR is the contribution from the
dislocations at the right edge, and KDL is the contribution from the dislocations at
the left edge. As the crack size increases, the results should converge to the semi-
infinite case.

Figure 5 shows the KD term as a function of the dislocation position in terms
of y. The position of dislocation is ahead of the crack tip for x/y>0 and in the
wake of the crack for x/y<0. The KD term is also represented in non-dimensional
form. The results for a semi-infinite crack are also represented in the plot. Here, a
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y

Figure 4. Finite crack with symmetrical distribution of dislocations at both ends.
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in the plot represents the Burgers vector orientation and is 0 for the x-component
and 90� for the y-component.

Crack length is also expressed in units of y – but for purpose of calculations 2a/y
is taken as 6. Figure 5 indicates that there is very little difference between the
dislocation effects in finite and semi-infinite cracks. Hence, the results of a semi-
infinite case are sufficiently accurate and consistent for purposes of our understand-
ing. From the figure we can also conclude that the predominant shielding effect
of dislocations or plasticity comes when the plastic zone is ahead of the crack
tip. As the dislocation moves behind the crack tip, the effect dies down rapidly,
and for x/y<�2 the effect is almost zero. In the case of a¼ 0 the effect becomes
anti-shielding, inducing a slightly positive force on the crack tip. Hence, any crack
retarding force from the crack wake plasticity should be negligible. This result
can be seen intuitively to be true. As the dislocation moves behind the crack
tip, the distance between dislocation and the crack surface (or essentially the
width of the plastic zone in the wake) becomes smaller in comparison to the crack
length. Hence, the image effects due to the close proximity of the free crack-surface
reduce any long-range effects of the plastic wake. The implication is that for
distances greater than twice the width of the plastic wake, its effect on the crack
tip-driving force is essentially zero. This has important bearing on the role of crack
tip plasticity in the wake of a crack tip.

6.2. Continuum analysis

Glinka [33] has used weight function methods [34] to evaluate the stress intensity
factor arising from dislocation stress fields. For a crack of a finite size, using the
elastic stress field of dislocations [35], the effect on the crack tip driving force, KD,

-1.5

-1

-0.5

0

0.5

-4 -3 -2 -1 0 1 2 3 4

K
ID

 2
π 

(1
ν 

) 
/ µ

 b
y

x/y

Dislocation Shielding

= 90

α 

α 

 = 0

Semi-Infinite Crack

Finite Crack

Figure 5. Variation of shielding effect of a dislocation as it moves towards the crack at
constant y. Results for semi-infinite crack are also shown.

198 K. Sadananda and G. Glinka



was computed as a function of dislocation separation from the crack tip. In his
calculations, Glinka [33] froze the dislocations’ position but moved the crack by
expanding its size. In contrast, in figure 5, the crack size is fixed while the dislocation
is moved to form crack-wake plasticity. The results are shown in figure 6.
Comparison of figures 5 and 6 shows that whether the crack moves forward or
the plastic zone moves behind the crack tip the effects are similar, and it reconfirms
the earlier result that size of the crack has less effect since, in figure 6, crack size
is altered as it grows. All the results are self-consistent and we conclude, therefore,
that the shielding effect from dislocation plasticity arises mostly from the plasticity
close to the crack tip. The dislocation stress fields act as internal stresses, which
retard the crack-tip force. This force has to be exceeded for a crack to move forward.
Since it is not of cyclic nature, it controls the Kmax requirement. The monotonic
plastic zone itself provides the basic factor opposing the crack movement; hence
it defines the Kmax threshold required for fatigue crack growth. This is, however,
only a necessary condition but not a sufficient condition. Environment, for example,
can alter the surface energy term and thus affect nucleation. In addition, it
can induce embrittlement mechanisms that affect the Kmax value. Figure 6 demon-
strates that continuum and discrete dislocation analysis can be combined to arrive at
self-consistent results.

6.3. Discrete dislocation analysis

The analysis thus far has considered crack–tip plasticity in terms of a superdislo-
cation with dislocation strength equal to half of the CTOD. In the following,
we analyse the problem in terms of a discrete dislocation model. For simplicity,
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we replace the crack with discrete dislocations of varying Burgers vector (crack
dislocations) [36, 37] and plasticity with dislocations with finite Burgers vector (crys-
tal lattice dislocations) on a 70� inclined slip plane as shown in figure 7. To arrive at
an equilibrium configuration of the system under remote stress, we minimize the
total energy of the system, which can be written as

ET ¼ Es þ EI þ Eg þ E�a þ E�f ð10Þ

where Es is the self-energy of all the dislocations, EI the mutual interaction energy
of all the dislocations, Eg the surface energy, E�a the work done by applied stress
and E�f the work expended against frictional forces. Expressions for each can
be obtained from any standard dislocation theory book [35]. The self-energy of
the dislocations involves summation of energy of all dislocations (crack þ crystal
lattice). Similarly, the interaction energy term includes interaction of crack–crack
dislocations, crack–crystal lattice dislocations, and crystal lattice–crystal lattice
dislocations taking into consideration that a dislocation does not interact with
itself. The surface energy term includes the crack surface energy as well as the energy
of the ledge as the crystal lattice dislocations emerge from the crack tip. The
work done by the remote applied stress is sum of work done to move the crack
dislocation inside the crack and work done by the resolved shear stress to move
crystal lattice dislocations on their plane. The lattice frictional energy comes into
play only for crystal lattice dislocation, where we use crack tip as the reference
for the computation of the energy. Since friction is a non-conservative force, care
is taken to ensure that the dislocations move in sequence in one direction only during
loading. In the calculations, the crack is filled with crack dislocations until no
more can be packed while minimizing total energy with respect to positional coor-
dinates. As the Burgers vector of crack dislocations is reduced, the number density
required to pack the crack increases. In the limit of infinitesimal Burgers vectors, the
equilibrium (energy minimum) corresponds to the traction-free stress state of crack
surfaces. For computational expediency, a variable Burgers vector for crack disloca-
tions is used, with the largest Burgers vector for the dislocation at the crack tip.
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Figure 7. Discrete dislocation model of a crack with crack and crystal lattice dislocations
present.

200 K. Sadananda and G. Glinka



In the present analysis, we initially fix the size of a crack and let it relax
by pumping dislocations on the glide plane, using reasonable values for applied
and frictional stresses. For the elastic modulus and surface energy, typical values
corresponding to, say, Fe are used. The results, however, are sufficiently general and
are not restricted to the specific values selected. The purpose of this exercise is to
evaluate the degree of approximation involved in replacing the plastic zone by a
super-dislocation model. For this purpose, after determining the equilibrium config-
uration with the dislocations originating from the crack tip, the crystal lattice
dislocations are locked-in and the crack is moved forward elastically. For each
increment in crack size, the new equilibrium configuration of all dislocations
(crack þ crystal lattice) is determined by minimizing the total energy, equation
(15). For each new calculation, old equilibrium positions of the crystal lattice
dislocations are taken as reference. This implies that if the dislocations move
back towards the crack, they have to expend the energy against friction. Friction,
in fact, prevents the complete collapse of the dislocations due to backward motion.
For each crack size increment, the crack has to be repacked with crack dislocations
until it is again full. Calculations in a sense simulate realistic changes that occur
in the plastic zone as it moves to form crack-wake plasticity. In addition, the energy
minimization ensures that crack surfaces are traction-free all the time, and, hence,
includes all the dislocation-image forces in the formulation.

Once the dislocation configuration on the inclined slip plane is determined, the
KD (normalized value) of each dislocation in the plastic zone is calculated using
equations deduced by Lin and Thomson [26]. The results are shown in figure 8. In
presenting the results we have normalized the ordinate with a y-value corresponding
to the 1/4 of the plastic zone size. It represents approximately the ‘‘centre of gravity’’
of dislocations in a pile-up. In the discrete dislocation model, the plastic zone
originates from the crack tip. Hence x/y at the starting point of the calculations is
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Figure 8. Comparison of the results of discrete dislocation calculations with those of super-
dislocation model.
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zero. For a superdislocation of equivalent net Burgers vector, the calculations can be
done for any x/y value. Figure 8 shows that results are surprisingly close, indicating
that superdislocation analogue is not far from reality. The effect is predominant
when the dislocations are ahead of the crack tip. Larger negative values for discrete
dislocations are expected for x/y<0 since some of the dislocations close to the
end of the plastic zone may still be ahead of the crack tip contributing to a larger
share of the shielding effect. The fact remains that the shielding effect rapidly goes
to zero as the plasticity moves behind by more than twice its width.

Here we have not considered the unloading process and how the dislocation
configuration changes. It is assumed that frictional forces will hold the dislocations
thus generated. In the fracture mechanics analysis using FEM, it is generally
assumed that compressive yield stress opposes the reverse plasticity. However, the
crack dislocations will collapse during unloading and one may have to fill the
crack with anti-crack dislocations [37] in order to keep the crack surfaces traction-
free. The concept is somewhat similar to notches under compression. This can be
done if one assumes that the crack remains open like a notch. That, however,
presupposes the results in the evaluation of crack closure. More appropriate
calculations would examine the behaviour of a continuously growing crack with
continuous evolution of the plastic zone both ahead and behind the crack tip.
These calculations are currently underway and will be reported later.

7. Summary and conclusion

We have examined the dislocation behaviour at the growing fatigue crack. Under
steady state conditions, the monotonic plastic zone formed exerts compressive
stresses at the crack tip and retards its growth. For crack growth to occur, the stress
should exceed the stress to nucleate new dislocations against this retarding force.
Hence the threshold Kmax required for crack growth can be related to the stress
necessary for this incremental plasticity. We have analysed the problem by replacing
the plastic zone by a superdislocation of equivalent Burgers vector, using both
semi-infinite and finite cracks. In addition, we have shown that the results agree
closely with the discrete dislocation analysis. The second threshold requirement,
�Kth, is related to the reversible slip needed to re-sharpen the crack tip. At high
strains, the two thresholds can be become equal to the stress necessary to break a
dislocation dipole. It is shown from dislocation considerations that crack closure is
not necessary to account for the fatigue crack growth behaviour. The fatigue crack
growth analysis reduces to a basic fracture mechanics problem preserving the law of
similitude without any need of extrinsic factors.
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