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Abstract

A method for the estimation of time-dependent strains and stresses induced in notches has been developed. The aim

of the method is to generate a solution for the creep strain and stress at the notch root based on the linear-elastic stress

state, the constitutive law, and the material creep model. The proposed solution is an extension of Neuber�s total strain
energy density rule for the case of time-independent deformation. The method was derived for both localized and non-

localized creep in a notched body. Predictions were compared with finite element data and good agreement was ob-

tained for various geometrical and material configurations in plane stress conditions.

� 2003 Published by Elsevier Ltd.
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1. Introduction

As machines and engineering structures become more efficient, they require that their components have

more complex geometries with various discontinuities such as holes, grooves, and notches. It is well known

that these geometrical discontinuities induce a localized high stress concentration zone where stresses may

exceed the yield limit of the material. Mechanical components work often in very demanding conditions

such as a combination of high cyclic stresses with a high operating temperature. In the case of time- and

temperature-dependent deformations (creep) the durability analysis requires detailed knowledge of strains
and stresses in the stress concentration zone.

An accurate estimation of these local time-dependent stresses and strains can be generated by using a

finite element method analysis, however the visco-plastic finite element programs are expensive, and such

analyses are time consuming, particularly when simulating lengthy cyclic loading histories. Therefore, al-

ternative more efficient methods are required to perform an estimation of stresses and strains at the notch

root without compromising the accuracy.
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Nomenclature

A Norton�s power law coefficient
Cp plastic zone correction factor

E Young�s modulus

Kt theoretical stress concentration factor

Ke actual strain concentration factor

Kr actual stress concentration factor

KX total strain energy density concentration factor

rp plastic zone size

Drp plastic zone size increment
t time

Dtn nth time increment

a stress exponent for creep power law

b time exponent for creep power law

e022 total strain component from elastic–plastic solution

ect22 time-dependent creep strain component at the notch tip

ee22 elastic strain at the notch tip from linear elastic solution

eet22 time-dependent elastic strain component at the notch tip

ef22 elastic strain component in a far field point

ep022 mechanically induced plastic strain at t ¼ 0:0

r0
22 total stress from elastic–plastic solution

re
22 elastic stress at the notch tip from linear elastic solution

rf
22 elastic stress component in a far field point

rt
22 time-dependent stress component

Xe total strain energy density at the notch tip from linear-elastic analysis

Xf total strain energy density in a far field point
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To date, only a few authors have tried to develop alternative solutions for localized time-dependent
creep–plasticity problems. In 1978, Chaudonneret [1] suggested that Neuber�s rule [2] could be expressed in

its differential form as long as the applied stress increases monotonically and is a continuous function of

time. Chaudonneret and Culie [3] demonstrated that the differential form of Neuber�s rule could be suc-

cessfully used to predict notch root stresses and strains in creeping bodies under static and cyclic loading.

However a very complex integration procedure had to be incorporated to solve the proposed differential

equation, especially when creep strain was present in the net section of the specimen.

In 1984, Kurath [4] utilized a modified form of Neuber�s rule to simulate the notch root stress–strain

time-dependent behaviour in components made of titanium alloy, and acceptable fatigue life predictions
were obtained in comparison with experimental data. Kubo and Ohji [5] extended their ‘‘small scale creep’’

concept, originally proposed for cracks under elastic–creep conditions, to notches under plane strain and

axisymmetric bodies. The results obtained using the method by Kubo and Ohji are limited to cases where

the creep is strictly localized and does not consider the effect of creep away from the notch tip.

More recently, Moftakhar et al. [6] proposed an extension of Neuber�s rule [2] to estimate creep induced

multiaxial strains and stresses at the notch tip. Their approach was developed assuming that the total

strain energy density at the notch tip does not change when going from a linear elastic solution to a
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time-dependent elastic–plastic–creep solution. Nevertheless, this assumption may be valid only for cases

where the deformation is strictly localized around the point of stress concentration. In 1998, Harkegard and

Sorbo [7] reformulated Chaudonneret�s model to predict creep stresses and strains in notches under con-

stant nominal stress and constant nominal strain. The authors reduced the integration complexity of
Chaudonneret�s model [1] by making extensive use of normalized forms of stress, strain and time. Good

agreement was reported against generated finite element data.

The method presented below is also based on the Neuber concept but the formulation and the numerical

procedure exhibit relatively high degree of time efficiency and accuracy.
2. Application of Neubers rule to creep analysis

Neuber�s rule [2] was initially proposed for elastic–plastic notched bodies in pure shear stress state. The

rule is most often presented in terms relating the theoretical elastic stress concentration factor, Kt, and the

actual stress and strain concentration factors,
K2
t ¼ KrKe: ð1Þ
Neuber�s rule can also be written in the form relating the hypothetical stress re
ij and the corresponding

elastic strain eeij components to the actual elastic–plastic stress r0
ij and strain components e0ij
re
ije

e
ij ¼ r0

ije
0
ij: ð2Þ
In such a case, Eq. (1) for notched bodies in plane stress reduces to
re
22e

e
22 ¼ r0

22e
0
22: ð3Þ
Eq. (3) results directly from the original Neuber�s rule (1) and it can be interpreted as an equivalence of the

total strain energy density.

Moftakhar et al. [6] showed that the total strain energy density at the notch tip, X ¼ re
22e

e
22, remains

almost constant as long as the plastic deformation remains a local event, even when stresses relax due to

creep. In other words, Neuber�s rule can be directly extended to time-dependent stress and strain analysis in

the following way,
X ¼ re
22e

e
22 ¼ r0

22e
0
22 ¼ rt

22e
t
22; ð4Þ
where the term on the right-hand side represents the total strain energy density at a specific time, t, under
constant nominal stress and constant temperature. It has been shown [8] that as long as the plastic yielding

and creep remain a local event limited to the zone near the notch tip, Neuber�s rule will always overestimate

the actual elastic–plastic strains and stresses. Therefore, some authors have called this the upper bound

solution as opposed to the ESED method proposed by Molski and Glinka [9], which is believed to give a

lower bound solution.

The graphical interpretation of the creep Neuber rule is illustrated in Fig. 1. The equivalence of the total

strain energy density means that the total strain energy density obtained from a linear-elastic solution and
represented by area OBeCeAe is equal to the area OBaCaAa representing the actual total strain energy density

at the notch tip.



Fig. 1. (a) Stress distribution in notched specimen under tension loading. (b) Graphical interpretation of the Neuber�s rule approach to

creep analysis.
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3. Localized creep formulation

Consider a notched body at constant temperature and subjected to constant load for an extended period

of time. As long as the creep is localized it is reasonable to assume after Neuber that
r0
22e

0
22 ¼ rt

22e
t
22: ð5Þ
The time-dependent strain can be decomposed into its elastic eet22, mechanically induced plastic epð0Þ22 , and

creep ect22 contributions,
et22 ¼ eet22 þ ep022 þ ect22: ð6Þ
The mechanically induced plastic strain, ep022, is considered to be constant during the hold time period, since

it represents the non-recoverable plastic deformation at time t ¼ 0:0. This assumption suggests that during

the hold time there is only a trade off between the elastic unloading and creep deformation. Substituting Eq.

(6) into Eq. (5) results in
r0
22e

0
22 ¼ rt

22e
et
22 þ rt

22e
p0
22 þ rt

22e
ct
22: ð7Þ
Differentiating Eq. (7) with respect to time leads to the following equation:
0:0 ¼ rt
22 _e

et
22 þ _rt

22e
et
22 þ _rt

22e
p0
22 þ rt

22 _e
ct
22 þ _rt

22e
ct
22: ð8Þ
For a uniaxial stress state at the notch tip, the elastic strain can always be obtained as eet22 ¼ rt
22=E. The

elastic strain rate, on the other hand, is defined as _eet22 ¼ _rt
22=E. Therefore, Eq. (8) can be written in the

following form:
0:0 ¼ 2

E
rt
22 _r

t
22 þ _rt

22e
p0
22 þ rt

22 _e
ct
22 þ _rt

22e
ct
22: ð9Þ
Eq. (9) is the general differential equation which together with the material creep law forms the set of two

equations needed for the mathematical formulation of the problem. A closed form solution to the two

equations is seldom feasible particularly when creep models take complex mathematical forms. Moftakhar
et al. [6] proposed a special time integration method to generate a suitable numerical solution. It was

suggested to divided the integration time period into a finite number of discrete steps, Dtn, and then to



J.E. Nu~nez, G. Glinka / Engineering Fracture Mechanics 71 (2004) 1791–1803 1795
generate solutions for subsequent time steps. Based on the proposed approach, the time derivatives can be

written in the incremental form as
_rt
22 ¼

drt
22

dt
ffi Drtn

22

Dtn
¼ rtn

22 � rtn�1

22

tn � tn�1

ð10Þ
and
_ect22 ¼
dect22
dt

ffi Decn22
Dtn

¼ ecn22 � ecn�1

22

tn � tn�1

: ð11Þ
The substitution of Eqs. (10) and (11) into Eq. (9) results in
0:0 ¼ 2

E
Drtn

22

Dtn
rtn�1

22 þ Drtn
22

Dtn
ep022 þ

Drtn
22

Dtn
ecn22 þ rtn�1

22

Decn22
Dtn

: ð12Þ
The incremental equation (12) can be solved for the stress increment, Drtn
22, occurring during the time step,

Dtn.
Drtn
22 ¼

�rtn�1

22 Decn22
2
E r

tn�1

22 þ ep0 þ ecn22
: ð13Þ
As expected, the stress increment Drtn
22 is negative; hence, it represents the decrement of stress relaxation at

the notch tip induced by creep. The increment of creep strain, Decn22, can be directly obtained from the creep
law _ec22 ¼ f ðrÞgðtÞ, which is often written in the power law form proposed by Norton [10]:
_ec22ðr; tÞ ¼ Aratb; ð14Þ

where A, a and b are material constants for a given temperature. The incremental form of the creep law used

in the model is subsequently written as
Decn22 ¼ Dtn � _ec22ðr; tÞ: ð15Þ
4. Non-localized creep formulation

In most real-life components working in creep conditions, the creep strains in the far field albeit rela-

tively low might be important as well. Analogously to the notch tip, the material in the rest of the com-

ponent may creep as well. As the stress at the notch tip relaxes, so does the constraint provided by the

material from the far field region. Therefore, with the constraint being relaxed, additional creep defor-

mation at the notch tip is allowed for. This situation is the so-called non-localized, or gross creep conditions.

Extending further the idea of the equivalence of the total strain energy density, an extra amount of

energy is needed to account for the constraint loss imposed on the notch tip by the far field. Moftakhar

et al. [8] suggested that the total strain energy density changes occurring in the far field, Xfc, produce similar
but magnified effects at the notch tip. A good measure of such a magnification is the so-called total strain

energy density concentration factor, KX.

The strain energy concentration factor proposed by Moftakhar et al. [6] is defined as
KX ¼ Xe

Xf
¼ re

22e
e
22

rf
22e

f
22

; ð16Þ
where Xe is the total strain energy density at the notch tip obtained from a linear elastic analysis, and Xf is

the total strain energy density at a pre-defined point in the far field also obtained from the linear elastic
solution.



Fig. 2. Graphical representation of the far field stress definition in a notched component: (a) uniaxial tension, (b) pure bending.
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The definition of far field used in our analysis is shown in Fig. 2. The far field stress in the case of a body
subjected to pure axial load is assumed to be equal to the elastic stress found at a distance of three times the

notch radius. In the case of pure bending load, the far field stress is defined as one-half of the nominal

simple bending stress.

The effect the creep in the far field under constant load has on the notch tip behaviour can be interpreted

as an additional input of strain energy density. This additional increment of strain energy density must be

included into Eq. (5),
r0
22e

0
22 þ KXX

cf ¼ rt
22e

t
22; ð17Þ
where
Xcf ¼ rf
22e

cf
22: ð18Þ
Expression (18) represents the total strain energy density contributed as a result of the local and the far field

creep. Decomposing the time-dependent strain into its elastic, initial plastic and creep, the strain energy

density equation at the notch tip can be written as
r0
22e

0
22 þ KXr

f
22e

cf
22 ¼ rt

22e
et
22 þ rt

22e
p0
22 þ rt

22e
ct
22: ð19Þ
Differentiating Eq. (19) with respect to time, results in Eq. (20).
KXðrf
22 _e

cf
22 þ _rf

22e
cf
22Þ ¼ rt

22 _e
et
22 þ _rt

22e
et
22 þ _rt

22e
p0
22 þ rt

22 _e
ct
22 þ _rt

22e
ct
22: ð20Þ
It was observed that the far field stress changes due to creep are relatively small compared to the stress

changes at the notch tip or none if the external load is constant. Therefore the strain energy density

changes in the far field are mainly due to the change in strain. As a result, it can be assumed that the far

field stress rf
22 remains constant during the hold time, and it takes the value of the elastic stress in the

far field calculated at time t ¼ 0:0. This assumption is drawn from the fact that under constant load the

stress due to equilibrium must balance out the load and therefore the far stress field cannot drastically
change.
rf
22 ¼ rf

22jt¼0:0 ¼ rf0
22: ð21Þ
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Furthermore, the elastic strains can be replaced according to the Hooke law by stress. After subsequent

substitutions Eq. (20) can be reduced to
KXr
f0
22 _e

cf
22 ¼

2

E
rt
22 _r

t
22 þ _rt

22e
p0
22 þ rt

22 _e
ct
22 þ _rt

22e
ct
22: ð22Þ
In order to obtain the recursive form of the general differential equation, Eqs. (10) and (11) need to be

substituted into Eq. (22).
KXr
f0
22

Decfn22

Dtn
¼ 2

E
Drtn

22

Dtn
rtn�1

22 þ Drtn
22

Dtn
ep022 þ

Drtn
22

Dtn
ecn22 þ rtn�1

22

Decn22
Dtn

: ð23Þ
Solving for the actual stress increment, Drtn
22, at the notch tip, the following expression is obtained:
Drtn
22 ¼

KXrf0
22De

cfn
22 � rtn�1

22 Decn22
2
E r

tn�1

22 þ ep0 þ ecn22
; ð24Þ
where
jKXr
f0
22De

cfn
22 j < jrtn�1

22 Decn22j: ð25Þ

Eq. (24) is valid as long as inequality (25) is true. Some combinations of load conditions and component

geometry may cause the left-hand side term of expression (25) to be greater than the term on the right-hand

side. However, such situations are seldom encountered.
5. Plastic zone adjustment

Moftakhar et al. [8] has shown that in case of the presence of gross creep plasticity, Neuber�s rule ap-

proach tends to under estimate the real stresses and strains at the notch tip. In order to correct for such an

effect, a correction needs to be introduced for the calculation of the initial total strain energy density ob-

tained from the linear elastic analysis. Therefore, Glinka [11] introduced the plastic zone correction factor
in order to compensate for the stress redistribution occurring in the notch tip region caused by the localized

plastic yielding. This correction factor was derived analogously to Irwin�s [12] plastic zone correction factor

proposed for sharp notches and cracks.

Glinka�s plastic zone correction factor, Cp, has been defined as,
Cp ¼ 1þ Drp
rp

: ð26Þ
A complete procedure of how the plastic zone size, rp, and the plastic zone increment, Drp, can be estimated

for components subjected to tension and pure bending is given in Ref. [11].

Once the plastic zone correction factor is estimated, the total strain energy density equation (19) can be

written as
r0
22e

0
22 þ KXCp

� �
rf
22e

cf
22 ¼ rt

22e
et
22 þ rt

22e
p0
22 þ rt

22e
ct
22: ð27Þ
The resulting final expression for the calculation of the stress increment at the notch tip is
Drtn
22 ¼

ðKXCpÞrf0
22De

cfn
22 � rtn�1

22 Decn22
2
E r

tn�1

22 þ ep0 þ ecn22
: ð28Þ
And the actual strain increment can be calculated as
Detn22 ¼ Decn22 �
Drtn

22

E
: ð29Þ
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6. Validation of the proposed model

In order to assess the accuracy of the proposed model, finite element analyses of creep in notched

components were carried out using the ABAQUS 6.1 [13] finite element software. The elastic–plastic stress–
strain curves, shown in Fig. 3, were given in the form of a series of linear segments. The calculations from

both the finite element and the proposed method were carried out using the strain hardening scheme (as

opposed to a time hardening algorithm), which for a power law creep model of the form of Eq. (14) becomes

the following expression [13]:
_eceq ¼ ðAðreqÞa½ðbþ 1Þeceq�
bÞ1=bþ1

; ð30Þ
where eceq is the uniaxial equivalent creep strain, and req is the uniaxial equivalent deviatoric stress. The

particular form of the flow rule used in the analyses can be expressed as
_ecij ¼ _eceq � nij; ð31Þ
where nij represents the gradient of the deviatoric stress potential.

Four different cases were analyzed including various geometrical, load, and material properties data; two

of them (case C and case D) accounted for the primary creep as well by introducing a value for parameter b
different than zero. Elements at the notch tip had an average size of 1/10 of the notch radius in order to

account for the high strain gradient near the notch tip. The mesh used for case D can be observed in Fig. 4.

All components were subjected to a constant external load held for a pre-defined period of time (see Figs. 5–

8). The analyzed configurations were assumed to be in plane stress conditions resulting in uniaxial stress–

strain state at the notch tip. Only the maximum strain component and corresponding stress were generated
using the proposed method.

The loading histories applied consisted of two steps, namely: instantaneous loading from zero to maxi-

mum load, and hold time under constant maximum load. No creep was generated during the first load-

ing period; however, significant amount of mechanically induced plastic strain was generated by the

load excursion from zero to max (see Figs. 5–8). The Neuber-type analysis of creep commenced from the
Fig. 3. Mechanical elastic–plastic stress–strain curves.



Fig. 4. Mesh used for the finite element analyses of case �D�.

Fig. 5. Results for case �A�: (a) stress–strain response for a nominal stress of 430 MPa and a hold time of 3 h, (b) variation of stress and

creep strain with time.
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moment after reaching the maximum load which was also the reference point for time measurement

ðt ¼ 0:0Þ.
The material constants, time step size, stress concentration factors, as well as the calculated plastic zone

correction factors (using Ref. [11]) for all four cases are listed in Table 1. Although, the materials properties

utilized do not completely represent those of real materials, they were selected so a large enough range of

yield stresses and hardening exponents would be covered. Some of the materials in which the properties are



Fig. 6. Results for case �B�: (a) stress–strain response for a nominal stress of 25 MPa and a hold time of 1 h, (b) variation of stress and

creep strain with time.

Fig. 8. Results for case �D�: (a) stress–strain response for a nominal stress of 157 MPa and a hold time of 9 h, (b) variation of stress and

creep strain with time.

Fig. 7. Results for case �C�: (a) stress–strain response for a nominal stress of 191 MPa and a hold time of 5 h, (b) variation of stress and

creep strain with time.
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Table 1

Constants and material properties for validation of proposed solution

Elastic–plastic

properties

Creep constants Time in-

crement

Calculated factors

ry (MPa) E (MPa) A (1/h) a b Dt (h) Kt Cp
a

Case A: plate with a

circular hole

275.8 191,000 1.800· 10�12 5.0 0.0 1· 10�6 2.78 1.55

Case B: plate with

edge notches

34.4 58,800 9.484· 10�15 7.7 0.0 1· 10�5 2.94 1.17

Case C: notched

cantilever beam

230 75,000 6.960· 10�14 4.7 )0.4 1· 10�6 3.00 1.22

Case D: three-point

bending beam

185 68,000 6.960· 10�14 4.7 )0.4 1· 10�6 5.38 1.59

a For nominal load level investigated.
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based are annealed aluminium, 316L stainless steel, and the titanium alloy Ti–6Al–4V. The geometrical
configurations of the analyzed components and results obtained from both the proposed method and finite

element analyses are shown in Figs. 5–8. The agreement between the finite element and the proposed

method results was very good in all four cases analyzed.
6.1. Final set of equations to be solved for each increment

• Increment of creep strain (Eq. (15))

Decn22 ¼ Dtn � _ec22ðr; tÞ:
• Decrement of stress due to creep (Eq. (28))

Drtn
22 ¼

ðKXCpÞrf0
22De

cfn
22 � rtn�1

22 Decn22
2
E r

tn�1

22 þ ep0 þ ecn22
:

• Increment of total strain (Eq. (29))

Detn22 ¼ Decn22 �
Drtn

22

E
:

6.2. General stepwise procedure to generate a solution

1. Determine the notch tip stress, re
22, and strain, ee22, using the linear-elastic analysis.

2. Determine the elastic–plastic stress, r0
22, and strain, e022, using the original Neuber�s rule [2], the ESED

method [9], or finite element analysis.

3. Begin the creep analysis by calculating the increment of creep strain, Decn22, for a given time increment,

Dtn. A specific creep hardening rule has to be followed.

4. Determine the decrement of stress, Drtn
22, due to the previously calculated increment of creep strain,

Decn22.
5. Determine the increment of total strain in the notch tip, Detn22, for a given time increment, Dtn.
6. Repeat steps from 3 to 5 until the total time is completed.

The detailed algorithm for calculating the stress–strain response with time is shown in Fig. 9.



Fig. 9. General time-integration algorithm for notched components under hold-time load and non-localized creep.
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7. Conclusions

The proposed solution for creep in notches makes it possible to calculate creep-induced stresses and

strains for a variety of geometrical and load configurations. The comparison with the finite element data

revealed that the proposed methodology predicted correctly stresses and strains even in cases were the

primary creep ðb 6¼ 0:0Þ had to be taken into account. The agreement between results obtained with Eqs.

(28) and (29), and those obtained from the finite element analysis was within 5% on stresses and 10% on

strains for the majority of the cases analyzed to date (Figs. 5–8).
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The method can be easily programmed and it yields good results for various creep data and creep

hardening models. It is particularly suitable for simulating creep deformation in notches under constant

load. However, it is anticipated that the method can be extended for variable loading such as those in

components subjected to cyclic loading.
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