Calculation of Stress Intensity
Factors and Crack Opening
a.xiciak | Displacements for Cracks
woaina § Subjected to Complex Stress
e te | Fields

Canada N2L 3G1
D. J. Burns Fatigue cracks in shot peened and case hardened notched machine components and
Conestoga College, high-pressure vessels are subjected to the stress fields induced by the external load and
299 Doon Valley Drive, the residual stress resulting from the surface treatment or autofrettage. Both stress fields
Kitchener, Ontario, are usually nonuniform and available handbook stress intensity factor solutions are in
Canada N2G 4M4 most cases unavailable for such configurations, especially in the case of two-dimensional
surface breaking cracks such as semi-elliptical and quarter-elliptical cracks at notches.
The method presented in the paper makes it possible to calculate stress intensity factors
for such cracks and complex stress fields by using the generalized weight function tech-
nique. It is also shown that the generalized weight functions make it possible to calculate
the crack opening displacement field often used in the determination of the critical load or
the critical crack size[DOI: 10.1115/1.1593080
Introduction factor for a one-dimensional crack can be obtained by multiplying

Fatigue durability, damage tolerance, and strength evaluatic}rqg w_e|ngt functionm(x,a) alrgd lthe mtegnal stress d'imbu“%n
of cracked structural components require calculation of stress fﬁ-x) 'E the prkolspec’;ve crack plane, and integrating the product
tensity factors for cracks subjected to complex stress fields. TRE" the crack lengta,
variety of crack configurations and the complexity of stress fields a
occurring in engineering components require more versatile tools K‘f
for calculating stress intensity factors than available handbook
solutions, obtained for a range of specific geometry and load cofhe weight functionm(x,a) can be interpretedFig. 2a) as the
binations. Therefore, a method for calculating stress intensity fastress intensity factor that results from a pair of splitting forces,
tors for cracks subjected to complex stress fields is discussed pe=1, applied to the crack face at position The unit forceF

low. The method is based on the use of the weight functiashown in Fig. 2 represents actually a uniformly distributed pres-
technique. sure along a line normal to the plarg (Fig. 2b).

The application of the weight function technique to the analysis Since the stress intensity factor is linearly dependent on the
of fatigue crack growth in autofrettaged high pressure vessels wgsplied load, the contributions from multiple splitting forces ap-
presented at previous confererjdg. The detail numerical proce- plied over the crack surface can be superposed and the resultant
dure for calculating stress intensity factors and crack opening disress intensity factor can be calculated as the sum of all indi-
placements of cracks subjected to nonlinear stress distributiongual load contributions. This results in the integral, EL, of
such as those in autofrettaged cylinders or near notches is dise product of the weight functiom(x,a) and the stress function
cussed below.

ag(x)m(x,a)dx. (1)
0

Stress Intensity Factors and Weight Functions ¢S
S Y1 \&

Most of the existing methods of calculating stress intensity fac‘y‘* \ \
tors require separate analysis of each load and geometry config
ration. Fortunately, the weight function method developed by |~ |~ o(x)
Bueckner{2] and Rice[3] simplifies considerably the determina- mm m

X
a given cracked body, the stress intensity factor due to any loa j—_—’
system applied to the body can be determined by using the san a
weight function. It can be showr] that the stress intensity factor
the same as the stress intensity factor in a geometrically identic. /,r _,/r |
body (Fig. 1c) with the local stress field-(x) applied to the crack / S / S
faces. The local stress fields(x), induced in the prospective a) b) <)
crack plane, is determined for amcrackedbody (Fig. 1b) which
stress intensity factors based on the weight function tech-

Contributed by the Pressure Vessels and Piping Division for publication in tféique. a Loaded cracked body. b The stress distribution in the

JOURNAL OF PRESSUREVESSEL TECHNOLOGY. Manuscript received by the PVP prospective crack plane. ¢ The “uncracked” stress field applied

o(x)
tion of stress intensity factors. If the weight function is known for
a a
t
for a cracked bodyFig. 1a) subjected to the external loadigjs
makes the stress analysis relatively simple. The stress intensify. 1 The principle of superposition used in calculation of
Division March 13, 2003; revision received May 6, 2003. Associate Editor: M. Pero the crack surface.
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Fig. 2 Example of the notation and the system of co-ordinates
for the weight function:  a one-dimensional representation; b
interpretation of the point load in three-dimensional bodies

o(x) for a continuously distributed stress field. A variety of oneEig- 3 Weight function notation for a semi-elliptical crack in a
dimensional(line-load weight functions can be found in Refs,thick-walled cylinder

[5—7]. However, their mathematical forms vary from case to case

and they are not easy to use. Therefore, Glinka and $8gn

proposed one general weight function expression, which can be

used for a wide variety of one-dimensional mode | cracks, * For point A(Fig. 3)

ma(x,a,al/c,alt)

X 1/2 X 1
m(x,a)= 1+M1(1— 5) +M2(1—5)

2F
V2mr(a—X)

x\ 372
1-- .
a

The system of coordinates and the notation for an edge crack as an ) )
example are given in Fig. 2. In order to determine the weightFor point B(Fig. 3
function m(x,a) for a particular cracked body, it is sufficient to x| 12
determine[9] the three parameteid,, M,, andMj in expres- 1+ MlB(_)
sion (2). Because the mathematical form of the weight function a
(2) is the same for all cracks, the same method can be used for the
determination of parameteM,, M,, andM 5 and calculation of
stress intensity factors from E€l). The method of finding thi;
parameters was discussed in H6l. A variety of line load weight The weight functionsna(x,a) andmg(x,a) given above and cor-
functions[8—14] have been derived and published already. responding to the deepest and the surface point A and B respec-
In order to calculate stress intensity factors using the weigtively have been derived for one-dimensional stress figHits 3),
function technique the following tasks need to be carried out: dependent on one variabteonly. The weight function parameters
« Determine stress distributiomr(x) in the prospective crack Miy andM;g are given in Ref[11].
plane using the linear elastic analysis of uncracked k&tdty.
1b), i.e., perform the stress analysis ignoring the crack and
determine the stress distributien(x) = o f(S,X). .
» Apply the “uncracked” stress distribution(x), to the crack The Integration Method
surfaceqFig. 1c) as tractions. One of the difficulties in using the weight function method is
» Choose an appropriate generic weight function. accurate integration of the product of the stress function and the
« Integrate the product of the stress functieiix) and the weight function as shown in Eq@l). The stress fieldr(x) can be
weight functionm(x,a) over the entire crack length or crackvery complex and nonlinear and analytical integration is seldom
surface, Eq(2). easy in practice. Also, standard numerical integration methods are
inaccurate due to the singularity of the weight function at the
crack tip. Therefore, a special integration routine has been devel-
Universal Weight Functions for Two-Dimensional Part- ?upnecc:iorﬁ:.ultlng in highly accurate integration of arbitrary stress
Through Surface and Corner Cracks Obtaining an analytical closed form integfd) might be often
In the case of two-dimensiondlD) cracks such as semi- difficult or impossible for a nonlinear stress fiete(x) but it is
elliptical and corner surface cracks in plates and cylinders tf@g@sible for a linear stress function. Therefore it is very convenient
stress intensity factor changes along the crack front. However, ifapproximate the stress function as a series of linear segments as
most practical cases the deepest poirFhy. 3) and the surface SNOWN in Fig. 4. The stress functiarn(x) over the linear segment
point B are associated with the highest and the lowest value of the2n be given in the form of the linear equatic),

X 1/2
) 1+M1A(1—5)

= 1 3/2
@) vam(a=x) +M2A(1— g) +M3A(1— g)

©)

mg(x,a,alc,alt)= ME B

a

X
\/R +M25(5

stress intensity factor along the crack front. Therefore, the weight o(x)=Ax+B, )
functions for the point A and B have been derived analogously to ! v

the universal weight functio(2). Thus the contribution to the stress intensity factor associated with
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the stress segmentan be calculated from E@l) after substitut-

ing appropriate expressions for the stress and the weight function.
The solutions given below have been derived for the deepest and
for the surface point of semi-elliptical crack using the weight
function (3) and(4), respectively. The solution to one-dimensional
cracks is the same as for the deepest point of semi-elliptical
cracks.

« Deepest point AFig. 4),

k= [ axrey

2

Xj_ X

x ' \/Zwa(l)
a

X\ 112
: @ 1+M1A(l— a)
A a f % X %\ 1 ¥\ 32 dx. (6)
¢ +Mop| 11— —| +Mgal 1——
- i ; ; 2A a 3A a
i \
= I
® b : « Surface point B(Fig. 4),
~0i (%)= Ax + B
s \F i H . H X 2
: P ! KiB:f (AX+Bj) ———=
: A i Xi_1 X
poE Y oyt : 2mal 1——
yob (O i a
T ' g : )
o UNG i X\ 112
E Pt i _
i ot : R el 1+MIB( )
! A ; iZX % X ¥\ 1 ME LS (7
b i R A 1 +M25( +M35()
Xy Xp Xz Xi Ki Xi =0 x a a
(b) The closed form expressions resulting from the integration of Egs.
Fig. 4 Application of the simplified integration method: (a) the (6) and(7) are given l:_)elow.
weight function m(x,a) and (b) nonlinear stress distribution * Deepest point AFig. 4),
o(x)
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Fig. 5 Comparison of weight function based stress intensity factors for
a semi-elliptical internal crack in a pressurized thick-walled cylinder with
finite element data
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where:

ai=Bi+aAi and Bi:_aAi,
X 1|12 x| 12
Ci1=2a 1—T — 1—5 ,
xi-1|* x|\
Co=al[1- 2 —[1-2) |,
a a
2a xi_ 1|32 x| 32
Co=z (|17 \t7a) |
L P 2 . 2
w3\t el )
2a xi_ 1|52 ¥\ 572
Cs75 _T) ‘( “al |
3 3
_a Xi—1 X
Cie=3 a (1 a
Surface point B(Fig. 4),
(@i +Bi)X
2 (Dil+MlBDi2 )
KB=—=| | +MpgDjz+MgzgDiy
- ‘(Di3+MlBDi4 )
" +M2gDis+M3zpDie
where
aj= Bi+aAi and ﬂi: _aAi ,
x\¥2 (x4 x| 1
Di1=2a E — —a : Di2:a E —
2al[x\%2 [x_,|3 al[x\2
Pz lla) 1) [ PeTzlla) T
2 X, 5/2 Xi 1 5/2 al(x 3
P55 |la) 1= [ PeTalla) o
a;=B;+aA and B;=-—aA,
x|\ 12 (x |12 X,
Di1:2a g — T ) Di2=a g —
2a[ (%% (x-1\¥7 al[x\2
~3llal 1) | Pemalla
2a[(x 52 (x, 4|57 5 Caf(x)?
575 |la a © 7873l a

1

2

3
Xi—1

a

9)

Equations(8) and (9) can be used for calculating stress intensit
contributions due to each linear piece of the stress distributit
function by substituting appropriate values farx; _,, X, A,
andB; . The stress intensity factdf is finally calculated as the
sum of all contributiond; from all linear stress segments within

the range of &x=<a,

K= K.

1

(10

Thus the integration can be reduced to the substitution of app
priate parameters into Eq8) and(9) and summation according

to Eq.(10). This makes it possible to develop a very efficient anflig. 6 (a) Modeling the notch and cracks for the use of the

accurate numerical integration routine, which is important in th@eght function method, and

case of lengthy fatigue crack growth analyses.

Journal of Pressure Vessel Technology

Stress Intensity Factors for the Lame Stress Distribu-
tion

The method described above was applied for calculating stress
intensity factors due to the Lame stress distribution applied to a
semi-elliptical crack(Fig. 3) in a thick wall cylinder R;/t=1).
The results(Fig. 5 are presented in the form of the geometrical
correction factolY =K /p;/(mal/Q), corresponding to the deep-
est pointA, whereQ is the elliptical integral of the second kind

o/ Sref
Kt=3.03
8.2 8.4 8.6
x/W
7 o/ Sref
Kt=3.03
8.2 X} 8.6
x/W
(@
Name : OHEDGE
Points: 38
o/Sref
x/H o/Sref
B8 .0888 6.0080
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(b)

(b) Stress distribution ahead of a

semi-elliptical edge notch in a wide plate under uniform tension
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Fig. 7 Stress intensity factor for symmetric cracks emanating from a circular notch in a
wide plate

approximated by expressio@=1+1.464@/c)'%% The weight Crack Opening Displacements
function stress intensity factors agree well with the ASME and
finite element data. However, the weight function enables the c
culation of stress intensity factors beyond the ASME range )
applications, i.e., also for deep cracks with the relative depth

The weight function and the stress intensity factor are uniquely
lated to the crack opening displacement field which can be ob-
ined by integrating the stress intensity factor and the weight

nction,
a/t>0.5.
The weight functions for cracks in plates can also be used for E’ du(x,a)
calculating stress intensity factors for cracks emanating from m(x,a):@ 7 (11)

notcheqFigs. 6 and ¥. The notch and the actual crack are treated

as one crack but loaded only over the region coincided with depfhthe stress intensity factdf(a) induced by the stress distribu-
of the actual crack. The stress distributi¢figs. 6—8 is that, tion o(x) is known than the crack opening displacement at any
which would exist near the notch tip in the absence of the crackordinatex can be determined,

The weight function based stress intensity factors agree reason- 1 fa

ably well with the finite element dafd5]—see Figs. 7 and 8. The u(x,a)= — f
geometricalY factors presented in Figs. 7 and 8 are defined as E
Y=K/Sy(ma), whereSis the nominal remote stress in the gross

K(a)m(x,a)da. (12)

X
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Fig. 8 Stress intensity factors for cracks emanating from a
semi-elliptical edge notch in a wide plate (depth d=8, notch Fig. 9 The hoop and residual stress distribution in a thick wall
radius r=2, plate width W=160) cylinder under internal pressure  p;

Coordinate x (notch depth + crack, mm)
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Fig. 10 Opening displacements of an internal edge crack in autofrettaged thick-walled cyl-
inder subjected to internal pressure  p;

Substitution of expressiofil) into Eq. (12) results in the final Gaussian quadrature technique for evaluating integrals with such a
relationship enabling the crack opening displacement to be calaingular term was adopted to calculate crack surface displace-
lated based on the weight function and the stress field appliedn@nts.

the crack surface, Several theoretical studies have been carried out concerning the
1 (a profile of an opened crack subjected to complex stress fields.

u(x,a)= _/j [a(x)M(x, @)dx]m(x,a)de. (13) Among them an edge crack in a thick-wall cylinder subjected to
E" Jx nonlinear residual and the Lame stress has been analyzed. An

example of the resultant stress fields is shown in Fig. 9. The

In some cases closed form solutions are attainable but most offgl a4 crack profiles corresponding to several pressure levels are
numerical techniques have to be employed for calculating the 'ﬂfesented in Fig. 10. As discussed in Rif] a crack may first

tegral of Eq.(13). Substitution of the general weight functié®)  ¢jnse at the mouth rather than at the tip, as pressure is reduced.
into the above formulas results in the expresgibf),

1 [2 [2Ky(a)
uxa)= g ?fm

X

Conclusions

[ 1/2 [ X
1+ Ml( 1- ;) + Mz( 1- ;) A method of calculating stress intensity factors for cracks sub-
' jected to complex stress fields has been discussed in the paper.
The method is based on the use of generalized weight functions. It
da, (14) has been shown that the weight functions enable the determination
of stress intensity factors for a variety of geometrical and stress
where K,(a) is determined for a crack with a instantaneoufield configurations. The crack opening displacement analysis

X 3/2
+Mj 1—;

length of «, based also on the use of the same weight functions revealed that
1/2 crack in autofrettaged cylinder may remain partially closed indi-
Ku(a) \/E J“ a(X) 1o M (1 X) w1 X) cating that the usual superposition method might not be valid in
@)=\ — | += = 2|+
7 Jo \/ﬁ a some cases.
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