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Calculation of Stress Intensity
Factors and Crack Opening
Displacements for Cracks
Subjected to Complex Stress
Fields
Fatigue cracks in shot peened and case hardened notched machine componen
high-pressure vessels are subjected to the stress fields induced by the external loa
the residual stress resulting from the surface treatment or autofrettage. Both stress
are usually nonuniform and available handbook stress intensity factor solutions a
most cases unavailable for such configurations, especially in the case of two-dimen
surface breaking cracks such as semi-elliptical and quarter-elliptical cracks at notc
The method presented in the paper makes it possible to calculate stress intensity f
for such cracks and complex stress fields by using the generalized weight function
nique. It is also shown that the generalized weight functions make it possible to calc
the crack opening displacement field often used in the determination of the critical loa
the critical crack size.@DOI: 10.1115/1.1593080#
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Introduction
Fatigue durability, damage tolerance, and strength evaluat

of cracked structural components require calculation of stress
tensity factors for cracks subjected to complex stress fields.
variety of crack configurations and the complexity of stress fie
occurring in engineering components require more versatile t
for calculating stress intensity factors than available handb
solutions, obtained for a range of specific geometry and load c
binations. Therefore, a method for calculating stress intensity
tors for cracks subjected to complex stress fields is discussed
low. The method is based on the use of the weight funct
technique.

The application of the weight function technique to the analy
of fatigue crack growth in autofrettaged high pressure vessels
presented at previous conference@1#. The detail numerical proce
dure for calculating stress intensity factors and crack opening
placements of cracks subjected to nonlinear stress distribut
such as those in autofrettaged cylinders or near notches is
cussed below.

Stress Intensity Factors and Weight Functions
Most of the existing methods of calculating stress intensity f

tors require separate analysis of each load and geometry con
ration. Fortunately, the weight function method developed
Bueckner@2# and Rice@3# simplifies considerably the determina
tion of stress intensity factors. If the weight function is known f
a given cracked body, the stress intensity factor due to any
system applied to the body can be determined by using the s
weight function. It can be shown@4# that the stress intensity facto
for a cracked body~Fig. 1a! subjected to the external loadingS is
the same as the stress intensity factor in a geometrically iden
body ~Fig. 1c! with the local stress fields(x) applied to the crack
faces. The local stress field,s(x), induced in the prospective
crack plane, is determined for anuncrackedbody ~Fig. 1b! which
makes the stress analysis relatively simple. The stress inte
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factor for a one-dimensional crack can be obtained by multiply
the weight functionm(x,a) and the internal stress distributio
s(x) in the prospective crack plane, and integrating the prod
over the crack lengtha,

K5E
0

a

s~x!m~x,a!dx. (1)

The weight functionm(x,a) can be interpreted~Fig. 2a! as the
stress intensity factor that results from a pair of splitting forc
F51, applied to the crack face at positionx. The unit forceF
shown in Fig. 2a represents actually a uniformly distributed pre
sure along a line normal to the planexy ~Fig. 2b!.

Since the stress intensity factor is linearly dependent on
applied load, the contributions from multiple splitting forces a
plied over the crack surface can be superposed and the resu
stress intensity factor can be calculated as the sum of all i
vidual load contributions. This results in the integral, Eq.~1!, of
the product of the weight functionm(x,a) and the stress function

the

rl.

Fig. 1 The principle of superposition used in calculation of
stress intensity factors based on the weight function tech-
nique. a Loaded cracked body. b The stress distribution in the
prospective crack plane. c The ‘‘uncracked’’ stress field applied
to the crack surface.
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s(x) for a continuously distributed stress field. A variety of on
dimensional~line-load! weight functions can be found in Refs
@5–7#. However, their mathematical forms vary from case to c
and they are not easy to use. Therefore, Glinka and Shen@8#
proposed one general weight function expression, which can
used for a wide variety of one-dimensional mode I cracks,

m~x,a!5
2F

A2p~a2x!
F11M1S 12

x

aD 1/2

1M2S 12
x

aD 1

1M3S 12
x

aD 3/2G . (2)

The system of coordinates and the notation for an edge crack a
example are given in Fig. 2. In order to determine the wei
function m(x,a) for a particular cracked body, it is sufficient t
determine@9# the three parametersM1 , M2 , andM3 in expres-
sion ~2!. Because the mathematical form of the weight functi
~2! is the same for all cracks, the same method can be used fo
determination of parametersM1 , M2 , andM3 and calculation of
stress intensity factors from Eq.~1!. The method of finding theMi
parameters was discussed in Ref.@9#. A variety of line load weight
functions@8–14# have been derived and published already.

In order to calculate stress intensity factors using the we
function technique the following tasks need to be carried out:

• Determine stress distributions(x) in the prospective crack
plane using the linear elastic analysis of uncracked body~Fig.
1b!, i.e., perform the stress analysis ignoring the crack a
determine the stress distributions(x)5s0 f (S,x).

• Apply the ‘‘uncracked’’ stress distribution,s(x), to the crack
surfaces~Fig. 1c! as tractions.

• Choose an appropriate generic weight function.
• Integrate the product of the stress functions(x) and the

weight functionm(x,a) over the entire crack length or crac
surface, Eq.~1!.

Universal Weight Functions for Two-Dimensional Part-
Through Surface and Corner Cracks

In the case of two-dimensional~2D! cracks such as semi
elliptical and corner surface cracks in plates and cylinders
stress intensity factor changes along the crack front. Howeve
most practical cases the deepest point A~Fig. 3! and the surface
point B are associated with the highest and the lowest value o
stress intensity factor along the crack front. Therefore, the we
functions for the point A and B have been derived analogously
the universal weight function~2!.

Fig. 2 Example of the notation and the system of co-ordinates
for the weight function: a one-dimensional representation; b
interpretation of the point load in three-dimensional bodies
Journal of Pressure Vessel Technology
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• For point A ~Fig. 3!

mA~x,a,a/c,a/t !

5
2

A2p~a2x! F 11M1AS 12
x

aD 1/2

1M2AS 12
x

aD 1

1M3AS 12
x

aD 3/2G .

(3)

• For point B ~Fig. 3!

mB~x,a,a/c,a/t !5
2

Apx F 11M1BS x

aD 1/2

1M2BS x

aD 1

1M3BS x

aD 3/2G . (4)

The weight functionsmA(x,a) andmB(x,a) given above and cor-
responding to the deepest and the surface point A and B res
tively have been derived for one-dimensional stress fields~Fig. 3!,
dependent on one variablex only. The weight function parameter
M iA andM iB are given in Ref.@11#.

The Integration Method
One of the difficulties in using the weight function method

accurate integration of the product of the stress function and
weight function as shown in Eq.~1!. The stress fields(x) can be
very complex and nonlinear and analytical integration is seld
easy in practice. Also, standard numerical integration methods
inaccurate due to the singularity of the weight function at t
crack tip. Therefore, a special integration routine has been de
oped resulting in highly accurate integration of arbitrary stre
functions.

Obtaining an analytical closed form integral~1! might be often
difficult or impossible for a nonlinear stress fields(x) but it is
feasible for a linear stress function. Therefore it is very conveni
to approximate the stress function as a series of linear segmen
shown in Fig. 4. The stress functions(x) over the linear segmen
i can be given in the form of the linear equation~5!,

s~x!5Aix1Bi . (5)

Thus the contribution to the stress intensity factor associated

Fig. 3 Weight function notation for a semi-elliptical crack in a
thick-walled cylinder
AUGUST 2003, Vol. 125 Õ 261
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Fig. 4 Application of the simplified integration method: „a… the
weight function m „x ,a… and „b… nonlinear stress distribution
s„x …
262 Õ Vol. 125, AUGUST 2003
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the stress segmenti can be calculated from Eq.~1! after substitut-
ing appropriate expressions for the stress and the weight func
The solutions given below have been derived for the deepest
for the surface point of semi-elliptical crack using the weig
function~3! and~4!, respectively. The solution to one-dimension
cracks is the same as for the deepest point of semi-ellipt
cracks.

• Deepest point A~Fig. 4!,

Ki
A5E

xi 21

xi

~Aix1Bi !
2

A2paS 12
x

a
D

3F 11M1AS 12
x

a
D 1/2

1M2AS 12
x

a
D 1

1M3AS 12
x

a
D 3/2Gdx. (6)

• Surface point B~Fig. 4!,

Ki
B5E

xi 21

xi

~Aix1Bi !
2

A2paS 12
x

a
D

3F 11M1BS x

a
D 1/2

1M2BS x

a
D 1

1M3BS x

a
D 3/2Gdx. (7)

The closed form expressions resulting from the integration of E
~6! and ~7! are given below.

• Deepest point A~Fig. 4!,

Ki
A5A 2

pa Fa i~Ci11M1ACi21M2ACi31M3ACi4

1b i~Ci31M1ACi41M2ACi51M3ACi6!G , (8)
Fig. 5 Comparison of weight function based stress intensity factors for
a semi-elliptical internal crack in a pressurized thick-walled cylinder with
finite element data
Transactions of the ASME
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where:

a i5Bi1aAi and b i52aAi ,

Ci152aF S 12
xi 21

a D 1/2

2S 12
xi

a D 1/2G ,
Ci25aF S 12

xi 21

a D 1

2S 12
xi

a D 1G ,
Ci35

2a

3 F S 12
xi 21

a D 3/2

2S 12
xi

a D 3/2G ,
Ci45

a

2 F S 12
xi 21

a D 2

2S 12
xi

a D 2G ,
Ci55

2a

5 F S 12
xi 21

a D 5/2

2S 12
xi

a D 5/2G ,
Ci65

a

3 F S 12
xi 21

a D 3

2S 12
xi

a D 3G .
Surface point B~Fig. 4!,

Ki
B5

2

Apa F ~a i1b i !3

S Di11M1BDi2

1M2BDi31M3BDi4
D

2b i S Di31M1BDi4

1M2BDi51M3BDi6
D G , (9)

where

a i5Bi1aAi and b i52aAi ,

Di152aF S xi

a D 1/2

2S xi 21

a D 1/2G ; Di25aF S xi

a D 1

2S xi 21

a D 1G ,
Di35

2a

3 F S xi

a D 3/2

2S xi 21

a D 3/2G ; Di45
a

2 F S xi

a D 2

2S xi 21

a D 2G ,
Di55

2a

5 F S xi

a D 5/2

2S xi 21

a D 5/2G ; Di65
a

3 F S xi

a D 3

2S xi 21

a D 3G ,
a i5Bi1aAi and b i52aAi ,

Di152aF S xi

a D 1/2

2S xi 21

a D 1/2G ; Di25aF S xi

a D 1

2S xi 21

a D 1G ,
Di35

2a

3 F S xi

a D 3/2

2S xi 21

a D 3/2G ; Di45
a

2 F S xi

a D 2

2S xi 21

a D 2G ,
Di55

2a

5 F S xi

a D 5/2

2S xi 21

a D 5/2G ; Di65
a

3 F S xi

a D 3

2S xi 21

a D 3G .
Equations~8! and ~9! can be used for calculating stress intens
contributions due to each linear piece of the stress distribu
function by substituting appropriate values fora, xi 21 , xi , Ai ,
and Bi . The stress intensity factorK is finally calculated as the
sum of all contributionsKi from all linear stress segments withi
the range of 0<x<a,

K5(
1

n

Ki . (10)

Thus the integration can be reduced to the substitution of ap
priate parameters into Eqs.~8! and ~9! and summation according
to Eq. ~10!. This makes it possible to develop a very efficient a
accurate numerical integration routine, which is important in
case of lengthy fatigue crack growth analyses.
Journal of Pressure Vessel Technology
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Stress Intensity Factors for the Lame Stress Distribu-
tion

The method described above was applied for calculating stre
intensity factors due to the Lame stress distribution applied to
semi-elliptical crack~Fig. 3! in a thick wall cylinder (Ri /t51).
The results~Fig. 5! are presented in the form of the geometrical
correction factorYA5KA /piA(pa/Q), corresponding to the deep-
est pointA, whereQ is the elliptical integral of the second kind

Fig. 6 „a… Modeling the notch and cracks for the use of the
weght function method, and „b… Stress distribution ahead of a
semi-elliptical edge notch in a wide plate under uniform tension
AUGUST 2003, Vol. 125 Õ 263
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Fig. 7 Stress intensity factor for symmetric cracks emanating from a circular notch in a
wide plate
c

s
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approximated by expressionQ5111.464(a/c)1.65. The weight
function stress intensity factors agree well with the ASME a
finite element data. However, the weight function enables the
culation of stress intensity factors beyond the ASME range
applications, i.e., also for deep cracks with the relative depth
a/t.0.5.

The weight functions for cracks in plates can also be used
calculating stress intensity factors for cracks emanating fr
notches~Figs. 6 and 7!. The notch and the actual crack are treat
as one crack but loaded only over the region coincided with de
of the actual crack. The stress distribution~Figs. 6–8! is that,
which would exist near the notch tip in the absence of the cra
The weight function based stress intensity factors agree rea
ably well with the finite element data@15#—see Figs. 7 and 8. The
geometricalY factors presented in Figs. 7 and 8 are defined
Y5K/SA(pa), whereS is the nominal remote stress in the gro
section.

Fig. 8 Stress intensity factors for cracks emanating from a
semi-elliptical edge notch in a wide plate „depth dÄ8, notch
radius rÄ2, plate width WÄ160…
AUGUST 2003
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Crack Opening Displacements
The weight function and the stress intensity factor are uniqu

related to the crack opening displacement field which can be
tained by integrating the stress intensity factor and the we
function,

m~x,a!5
E8

K~a!

]u~x,a!

]a
. (11)

If the stress intensity factorK(a) induced by the stress distribu
tion s(x) is known than the crack opening displacement at a
coordinatex can be determined,

u~x,a!5
1

E8 Ex

a

K~a!m~x,a!da. (12)

Fig. 9 The hoop and residual stress distribution in a thick wall
cylinder under internal pressure p i
Transactions of the ASME
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Fig. 10 Opening displacements of an internal edge crack in autofrettaged thick-walled cyl-
inder subjected to internal pressure p i
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Substitution of expression~1! into Eq. ~12! results in the final
relationship enabling the crack opening displacement to be ca
lated based on the weight function and the stress field applie
the crack surface,

u~x,a!5
1

E8 Ex

a

@s~x!m~x,a!dx#m~x,a!da. (13)

In some cases closed form solutions are attainable but most o
numerical techniques have to be employed for calculating the
tegral of Eq.~13!. Substitution of the general weight function~2!
into the above formulas results in the expression~14!,

u~x,a!5
1

E8
A2

p E
x

a K1~a!

Aa2x
F11M1S 12

x

a D 1/2

1M2S 12
x

a D
1M3S 12

x

a D 3/2Gda, (14)

where K1(a) is determined for a crack with a instantaneo
length ofa,

K1~a!5A2

p E
0

a s~x!

Aa2x
F11M1S 12

x

a D 1/2

1M2S 12
x

a D
1M3S 12

x

a D 3/2Gdx. (15)

The stress intensityK1(a) for the instantaneous crack lengtha
can be calculated using the method describe above.

With the exception of cracks in infinite or semi-infinite bodie
the parameters,Mi ( i 51,2,3), of the general weight function ar
continuous but usually are nonstandard functions of the ratio
crack length to the characteristic dimension of the body, such
plate width. Also, the stress intensity factorK1(a) for an arbitrary
stress distribution may become a complicated function of
crack length. Therefore, in general, calculation of crack surf
displacements using the integral relationships above must be
formed numerically.

The integral in Eq.~14! contains the term 1/(a2x)1/2 that be-
comes singular at one end of the integration interval. A speciali
ure Vessel Technology
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Gaussian quadrature technique for evaluating integrals with su
singular term was adopted to calculate crack surface displ
ments.

Several theoretical studies have been carried out concerning
profile of an opened crack subjected to complex stress fie
Among them an edge crack in a thick-wall cylinder subjected
nonlinear residual and the Lame stress has been analyzed
example of the resultant stress fields is shown in Fig. 9. T
opened crack profiles corresponding to several pressure level
presented in Fig. 10. As discussed in Ref.@1# a crack may first
close at the mouth rather than at the tip, as pressure is reduc

Conclusions
A method of calculating stress intensity factors for cracks s

jected to complex stress fields has been discussed in the p
The method is based on the use of generalized weight function
has been shown that the weight functions enable the determina
of stress intensity factors for a variety of geometrical and str
field configurations. The crack opening displacement analy
based also on the use of the same weight functions revealed
crack in autofrettaged cylinder may remain partially closed in
cating that the usual superposition method might not be valid
some cases.
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