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A generalised step-by-step procedure for fatigue crack growth analysis of structural components sub-
jected to variable amplitude loading spectra has been presented. The method has been illustrated by ana-
lysing fatigue growth of planar corner crack in an attachment lug made of Al7050-T7451 alloy.

Stress intensity factors required for the fatigue crack growth analysis were calculated using the weight
function method. In addition, so-called ‘‘load-shedding’’ effect was accounted for in order to determine
appropriate magnitudes of the applied stress intensity factors. The rate of the load shedding was deter-
mined with the help of the finite element (FE) method by finding the amount of the load transferred
through the cracked ligament. The UniGrow fatigue crack growth model, based on the material stress–
strain behaviour near the crack tip, has been used to simulate the fatigue crack growth under two vari-
able amplitude loading spectra. The comparison between theoretical predictions and experimental data
proved the ability of the UniGrow model to correctly predict fatigue crack growth behaviour of two-
dimensional planar cracks under complex stress field and subjected to arbitrary variable amplitude
loading.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Lug-type joints are often used to connect components in various
mechanical systems. Since the lug is usually attached to the fork by
a single bolt or pin without clamping, it is easy to mount and does
not produce any additional local bending moments. However,
cracks or other discontinuities can be initiated due to corrosion,
material imperfection, manufacture defects, or fatigue. Despite
the improved damage tolerance design procedures and usage of
non-destructive inspection techniques, unsafe cracks may still be
present in lugs and go unchecked during regular maintenance
inspections. If such a crack or flow occurs in the region of high
stress concentration near the lug hole it can quickly propagate
and significantly reduce the operational life of a component. In or-
der to ensure operational safety of a structure it is necessary to
perform fatigue crack growth analysis assuming the possibility of
fatigue crack initiation and growth. A number of analytical and
experimental studies have been performed over last three decades,
aiming at investigating the fatigue behaviour of attachment lugs
under both constant and variable amplitude loading [1–3].

The approach discussed below is based on the weight function
method [4] and the UniGrow fatigue crack growth model proposed
ll rights reserved.

vskiy).
by Noroozi et al. [5] and extended by Mikheevskiy and Glinka [6].
The list of main steps required for the fatigue analysis of an attach-
ment lug is given below:

� Collect material information (modulus of elasticity, cyclic
stress–strain curve, constant amplitude fatigue crack growth
data).
� Determine required stress field in an un-cracked lug induced by

the applied load (with the help of the FE-finite element analysis
or any other method).
� Calculate the load shedding parameter for several different

crack sizes.
� Determine the crack shape and calculate stress intensity factors

using the weight function method and the load shedding cor-
rection factor for each cycle of the loading spectrum.
� Determine the instantaneous fatigue crack growth rate using

the UniGrow fatigue model.

2. Geometry of the component and material data

The attachment lug [7] was made of Al 7050-T7451 aluminium
alloy material. The constant amplitude fatigue crack growth data
for this material was collected from several literature sources
[7–9]. Eight constant amplitude (CA) fatigue crack growth (FCG)
data sets, obtained at six different stress ratios, were selected as

http://dx.doi.org/10.1016/j.ijfatigue.2011.07.006
mailto:volchishka@gmail.com
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Fig. 2. Geometry of the attachment lug with an initial quarter-circular corner crack
(W = 22 mm, Ri = 13 mm, Ro = 35 mm and t = 20 mm).
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Fig. 3. Stress distribution in un-cracked lug.

S. Mikheevskiy et al. / International Journal of Fatigue 42 (2012) 88–94 89
the reference for subsequent fatigue crack growth and fatigue life
analysis (Fig. 1).

The geometrical configuration and dimensions of the lug tested
[7] under variable amplitude loading spectra are shown in Fig. 2.
The lug was 10 mm thick (t = 10 mm) with the hole radius of
13 mm (Ri = 13) and the outer radius of 35 mm (Ro = 35). A beryl-
lium copper bushing was installed with 0.1 mm diametrical inter-
ference between the lug and the pin.

A quarter-circular corner crack (Fig. 2) with initial dimensions
of a = c = 1 mm was artificially made in the lug whose growth mon-
itored later. As soon as the corner crack propagated through the
entire thickness of the specimen it quickly transformed into the
classical edge crack emanating from a hole. Therefore special stress
intensity factor solution was needed in order to appropriately
model the fatigue crack shape evolution. A more detailed descrip-
tion of the specimen and the testing procedure can be found in the
original work of Kim et al. [7].

3. The stress field in the critical cross section of the attachment
lug

The stress field in the un-cracked attachment lug was deter-
mined with help of the finite element method. The stress field
was used to determine the stress intensity factor by using the
weight function method. The stress field in the potential crack
plane of an un-cracked lug is shown in Fig. 3. The variation of
through thickness stress was assumed to be small due to relatively
large diameter of the lug-hole compared to the lug thickness.

The same lug was also analysed by Kim et al. [7] using the
boundary element method. As one can see the results are almost
identical and the elastic gross stress concentration factor was
around five.

4. Determination of the stress intensity factor

The geometrical shape of the growing fatigue crack, as was
mentioned earlier, was changing from quarter-circular to an edge
one. Therefore, the stress intensity factor analysis consisted of sev-
eral stages appropriate for various crack shapes as shown in Fig. 4.

4.1. The stress intensity factor (SIF) for quarter-elliptical crack

The quarter-elliptical corner crack was analysed first using two-
dimensional generalised weight function proposed by Glinka and
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Fig. 1. Experimental constant amplitude fatigue crack growth data for the Al 7050
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Fig. 4. Evolution of the fatigue crack in attachment lug.
Shen [10]. Strictly speaking, the fatigue growth of a corner or any
other planar crack depends on the value of stress intensity factor
at each point along the crack front. In the analysis below it is as-
sumed that the crack shape remained quarter-elliptical, and there-
fore only two surface points ‘A’ and ‘B’ (Fig. 4) needed to be
considered. It has been shown [10] that stress intensity factors at
point ‘A’ and point ‘B’ can be determined using the integrals involv-
ing the stress field and appropriate weight functions.

KA ¼
Z c

0
rðxÞmAðx; c; c=aÞdx

KB ¼
Z c

0
rðxÞmBðx; c; c=aÞdx

ð1Þ

where ‘r(y)’ is the stress distribution through the width of the spec-
imen, ‘c’ and ‘a’ are the crack dimensions as shown in Fig. 2. The
weight function expressions ‘mA’ and ‘mB’ are given in reference
[10].



Fig. 6. Edge crack in attachment lug and the weight function model.
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While the fatigue crack propagates point ‘B’ moves into the re-
gion of lower stresses as shown in Fig. 3. On the other side, stresses
for point ‘A’ stay the same since they are uniformly distributed
through the thickness. Therefore, it is reasonable to expect higher
stress intensity factors and fatigue crack growth rates at point ‘A’
resulting in the change of the initial crack shape from quarter-cir-
cular to quarter-elliptical and elongated along the thickness. The
variation of stress intensity factors at points ‘A’ and ‘B’ obtained
as a function of the crack length ‘a’ for the aspect ratio a/c = 1
and the applied stress S = 30 MPa is shown in Fig. 5.

4.2. The stress intensity factor for the transition crack

When the corner crack breaks through the whole thickness of
the lug it turns into an edge crack. Unfortunately, the weight func-
tion enabling smooth transition from corner to edge crack as
shown Fig. 4 (Region 3) has not been derived yet. Thus, the follow-
ing approach has been adopted.

The two-dimensional weight functions (Eq. (1)) have been de-
rived for stress fields which are uniform through the thickness.
Therefore, despite the fact that they depend on both crack dimen-
sions ‘a’ and ‘c’, they do not depend on the through thickness stress
variation. Thus, the crack was analysed first as a corner crack until
the length ‘a’ exceeded (see Figs. 2 and 4) the lug thickness ‘t’ by
20%, i.e. when a > 1.2t. After that stage the crack was modelled as
an edge crack with its initial depth ‘c’ coinciding with the location
of point B2 (Fig. 4).

4.3. Thestress intensity factor for an edge crack emanating from a hole

An edge crack in a lug is less difficult to analyze than a corner
one, and therefore, several attempts have been made in the past
aiming to investigate the stress intensity factor for only an edge
crack in a lug. Aberson and Anderson [11] used finite element anal-
ysis with a crack tip singularity elements, Impellizeri and Rich [12]
employed the weight function method, and Schijve and Hoeymak-
er [13] found the empirical solution based on the fatigue crack
growth data.

Glinka and Shen [14] have derived the general form of one-
dimensional weight function (Eq. (3)) which was used to calculate
the stress intensity factor (Eq. (4)) for the edge crack in the lug
based on the actual stress field r(x) obtained from finite element
analysis (Fig. 3) of un-cracked lug. The stress distribution r(x) in
the prospective crack plane was obtained from the finite element
analysis. The load force P in the hole was replaced by a pressure
distribution resulting from the contact between the pin and the
hole in the lug and it was simulated by imposing restrains on radial
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Fig. 5. SIF for quarter-circular crack obtained using generalised two-dimensional
weight function.
displacement in the region of the contact between the pin and the
lug.

mðx; cÞ ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðc � xÞ

p 1þM1 1� x
c

� �1
2

�
ð2Þ

þM2 1� x
c

� �1
þM3 1� x

c

� �3
2
�

ð3Þ

K ¼
Z c

0
rðxÞmðx; cÞdx ð4Þ

Coefficients M1, M2, and M3 were derived for an edge crack in a fi-
nite plate width with fixed one edge as shown in Fig. 6.

The stress intensity factor solution obtained from the weight
function has been compared to the solution calculated by Kim
et al. [7] by the using boundary element method and both sets of
results are shown in Fig. 7. The weight function based stress inten-
sity factors seem to be slightly conservative while compared with
the boundary element method.
5. The load shedding

The weight function method described in Section 4 requires
using the stress field from un-cracked body induced by the applied
load in the prospective crack plane (Fig. 3). This approach is valid
as long as the cracked section is taking all the time the same
amount of the resultant load while the crack propagates through
the cross section. However, in the case of a single crack in a lug
(Fig. 8), the cracked section ‘‘W2’’ becomes less rigid than
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Fig. 7. Comparison of stress intensity factors obtained from the weight function
and the boundary element method (nominal gross stress S = 30 MPa).
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un-cracked section ‘‘W1’’, and part of the applied load is trans-
ferred to section ‘‘W1’’. This situation would not happen in the case
of two symmetric cracks because both sections have to hold the
same amount of load equal to the half of the load applied to the lug.

It has been shown using finite element analysis that this effect
is relatively small as long as crack stays quarter-elliptical, but be-
comes significant when crack breaks through the entire thickness
of the lug.

Introduction of the load shedding coefficient, LS(c/W), enables
to estimate the amount of load taken by the cracked section ‘W2’
and estimate the actual load (Fig. 8).

P2 ¼ LS
c

W

� �
� P
2

where LSð0Þ ¼ 1 ð5Þ

Since the magnitude of the stress field in a ligament depends
only on the magnitude of the load transferred through the liga-
ment the instantaneous stress distribution can be written as

rðxÞ ¼ LS
c

W

� �
� P

2
� rnðxÞ ð6Þ

where rn(x) is the stress field/distribution normalised obtained for
the unit load. Thus, the stress intensity factor for a single edge crack
in a lug can be subsequently written in the form:

KðcÞ ¼
Z c

0
LS

c
W

� �
� P

2
� rnðxÞ �mðc; xÞdx ð7Þ

Taken into account the fact that the load shedding coefficient con-
trols only the magnitude of the stress field and does not depend
on the ‘x’ coordinate, the final equation for the resultant stress
intensity factor can be written as:

KðcÞ ¼ LS
c

W

� �
� KWFðcÞ ð8Þ

where KWF(c) is the standard solution obtained by using the weight
function method as described in Section 4. The main challenge is to
determine the load shedding parameter, LS(c/W), as a function of
the crack size. Therefore, complete 3D finite element analysis was
carried out for three different edge cracks of 5 mm, 10 mm, and
15 mm deep. Accurate modelling of the stress field near the crack
tip was not necessary in those cases, and therefore, coarse finite ele-
ment mesh could be used over the entire ligament. The stress distri-
butions obtained from the FE analyses are presented in Fig. 9. The
resultant force P2 transferred by the cracked ligament was deter-
mined by integrating appropriate stress field acting in the remain-
ing cross section.

P2 ¼
ZZ

s
rðx; yÞdx dy ¼ t

Z
W

rðxÞdx ð9Þ

As one can see, stresses in the un-cracked section went up as the
crack propagated through the other ligament. This means that the
resultant force P2 in the cracked ligament must have got decreased
and the amount of the decrease could be measured by the load
shedding factor LS.
The variation of the load in the cracked and un-cracked liga-
ment of the lug as a function of the crack depth ‘c’ is shown in
Fig. 10. The results show that at the crack depth c = 15 mm the load
transferred by the cracked cross-section was reduced by around
20%, which resulted in approximately 55% reduction in the fatigue
crack growth rate.

The load shedding parameter was subsequently fitted into fol-
lowing expression
LS
c

W

� �
¼ 1� A

c
W

� �q
ð10Þ
with parameters A = 0.4 and q = 1.3. It has been shown that Eq. (10)
fits well into the data obtained from the FE analysis for relative
crack depths 0 < c/i < 0.8.

The final expression for the edge crack stress intensity factor
was obtained by including all the information discussed above into
Eq. (3).
KðcÞ ¼ 1� 0:4
a

W

� �1:3
� � Z c

0
rðxÞ �mðc; xÞdx ð11Þ
Based on Eq. (11) the maximum applied stress intensity factor,
Kmax,appl and the applied stress intensity range, DKappl, could be
determined for each cycle of the applied loading spectrum. As men-
tioned in Section 2, the UniGrow fatigue model was used for the
determination of the instantaneous fatigue crack growth rate and
crack increments induced by each individual loading cycle.
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6. Basics of the UniGrow fatigue model

The UniGrow fatigue crack growth model, initially proposed by
Noroozi et al. [5], is based on the idea that the fatigue process near
cracks and notches is governed by highly concentrated strains and
stresses in the notch/crack tip region. Therefore, the fatigue crack
growth can be subsequently considered as a process of successive
crack increments resulting from material damage in this region.

According to the micro-support concept of Neuber [15], the real
material can be modelled as a set of elementary particles or mate-
rial blocks of a finite dimension, q�. The idea of elementary mate-
rial blocks was also postulated by Forsyth [16] based on
microscopic observations of the fatigue crack front advance. The
assumption of the elementary material block implies that the ac-
tual stress–strain and fatigue response of the material near the
crack tip is such as the crack had a blunt tip with the radius of
q�. It means that it might be reasonable to model the crack, within
the continuum mechanics framework, as a sharp notch with the tip
radius q�. Therefore, the classical notch stress–strain analysis tech-
niques can be applied in order to determine stresses and strains in
the crack tip region.

The following assumptions and computational rules form the
base for the UniGrow fatigue crack growth model.

� The material consists of elementary blocks of a finite dimension
q�.
� The fatigue crack is regarded as a notch with the tip radius q�.
� The analysis is based on the Ramberg-Osgood (cyclic) [17] and

Manson-Coffin (fatigue) [18] material properties.
� The number of cycles to fail the material over the distance q�

can be obtained using the Smith–Watson–Topper damage
parameter [19] and the Manson-Coffin fatigue curve.
� The instantaneous fatigue crack growth rate can be expressed as

da/dN = q⁄/N.

Based on the assumptions stated above Noroozi et al. [5] have
analytically derived the fatigue crack growth expression in the
form of

da
dN
¼ C ðKmax;appl þ KrÞpðDKappl þ KrÞ1�p

� �m
ð12Þ

where Kmax,appl and DKappl, are the applied maximum stress inten-
sity factor and the stress intensity range respectively, and Kr is
the residual stress intensity factor accounting for the effect of crack
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tip residual stresses resulting from reversed plastic deformations.
For the simplicity, Eq. (12) can be rewritten as

da
dN
¼ CðDjÞm; Dj ¼ ðKmax;appl þ KrÞpðDKappl þ KrÞ1�p ð13Þ

where Dj is total two-parameters driving force.
A very similar fatigue crack growth equations has been pro-

posed by Walker [20] and Dinda and Kujawski [21] based on
empirical fitting of observed constant amplitude fatigue crack
growth data. However, Walker and Kujawski expressions did not
1.00E+020E+01
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take into account the fact that the correlation between the stress
intensity factor and the crack tip stress/strain field is often altered
by residual stresses resulting from reversed plastic deformations.

The UniGrow fatigue crack growth model has been subse-
quently modified and extended by Mikheevskiy and Glinka [6] in
order to make it applicable to arbitrary variable amplitude loading
spectra. It was found that the instantaneous fatigue crack growth
rate depended not only on the residual stresses produced by the
latest loading cycle but also on all stress fields generated by pre-
ceding cycles of the loading history. In order to combine residual
stress fields generated by all preceding loading cycles into one
resultant stress field controlling the current fatigue crack growth
rate several so-called ‘‘memory rules’’ have been established based
on the experimental observations of fatigue crack growth under
variable amplitude loading. Detailed description and experimental
verifications of the UniGrow fatigue crack growth model in the
case of variable amplitude loading spectra can be found in refer-
ences [5,6,22].

The two parameter driving force (Eq. (13)) is valid for any stress
ratio and therefore da/dN � DK fatigue crack growth curves ob-
tained at various R ratios can be approximated by one ‘master
curve’ (Fig. 11) by presenting the fatigue crack growth rate as a
function of the total two parameter driving force Djtot. The ‘master
curve’ was subsequently divided into two segments and approxi-
mated by two linear pieces in the log–log scale by using the linear
regression method.

7. Analysis results and discussion

The fatigue crack growth analysis was carried out for the lug
subjected to variable loading spectrum described in reference [7]
and shown in Fig. 12. The loading spectrum was predominantly
tensile with occasional high overloads and underloads.

The data concerning theoretical analysis and the experimental
fatigue crack growth through the lug ligament are shown in
Fig. 13. The first set of data was obtained from the lug tested under
the original loading spectrum. The second loading spectrum, de-
noted as being 80% clipped, was obtained, according to the nomen-
clature of reference [7], from the original loading spectrum with all
high peaks reduced (truncated) to the 80% of the highest peak in
the original (100% clipped) spectrum while all lower stress peaks
being unchanged.

The truncation of the loading spectrum from the top reduces
residual stresses produced by overloads but also eliminates cycles
with high stress intensity ranges and high maxima which may sig-
nificantly contribute to the fatigue crack propagation. Thus, it was
of great interest to find out which effect was dominating. The
retardation effect of multiple overloads can be quantified by com-
paring the fatigue lives corresponding to the truncated loading
spectrum with that one obtained under the original loading spec-
trum. In this particular case the truncation resulted in shorter fati-
gue life and it was correctly predicted by the UniGrow model. Good
agreement between computed and experimentally measured fati-
gue crack growth (c–N data) indicate that the model correctly sim-
ulated the effect of overloads, under-loads and their sequence.

Kim et al. [7] has additionally investigated the corner crack
growth by applying marker cycle load with frequency of 100 times
per one flight spectrum. He has shown that the distances between
beach marks were wider for the 80% clipped spectrum than for the
original loading spectrum. This led to shorter fatigue life in the case
of the clipped loading spectrum. The experimental beach marks
obtained by Kim et al. [7] and the crack shape estimated by the
UniGrow fatigue model are shown in Fig. 14. In both cases the cal-
culated crack shape was very similar to that one observed
experimentally.
8. Conclusions

The analysis presented in the paper indicates that a variety of
effects influencing the fatigue crack growth and resulting from
the application of cyclic variable amplitude loading can be mod-
elled by considering the effect of residual stresses in the crack tip
region induced by reversed cyclic plastic deformation. The analysis
needs to be carried out on cycle-by-cycle basis accounting for each
cycle of the applied load/stress history. It has been also shown that
the use of appropriate ‘memory rules’ and the two-parameter driv-
ing force enables relatively accurate prediction of fatigue lives of
cracked bodies subjected to complex variable amplitude service
loading spectra.

The importance of the load shedding in the lug has been quan-
tified by accounting for the decrease of the resultant load in the
cracked cross-section. It has been found that the exclusion of this
effect in the fatigue crack growth analysis can cause high underes-
timation of the fatigue crack growth life.

It has been also shown that the weight function technique can
be used to obtain stress intensity factor solutions for corner, edge,
and transient cracks.
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