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This paper presents the application of weight function method for the calculation of stress intensity fac-
tors in embedded elliptical cracks under complex two-dimensional loading conditions. A new general
mathematical form of point load weight function is proposed based on the properties of weight functions
and the available weight functions for two-dimensional cracks. The existence of this general weight func-
tion form has simplified the determination of point load weight functions significantly. For an embedded
elliptical crack of any aspect ratio, the unknown parameters in the general form can be determined from
one reference stress intensity factor solution. This method was used to derive the weight functions for
embedded elliptical cracks in an infinite body and in a semi-infinite body. The derived weight functions
are then validated against available stress intensity factor solutions for several linear and non-linear
stress distributions. The derived weight functions are particularly useful for the fatigue crack growth
analysis of planer embedded cracks subjected to fluctuating non-linear stress fields resulting from surface
treatment (shot peening), stress concentration or welding (residual stress).

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

A problem frequently encountered in applied fracture and fati-
gue analysis is the calculation of the stress intensity factors for
defective components subjected to a complex stress distribution.
Weight function method [1,2] has been widely used in the deter-
mination of stress intensity factors for its distinctive advantage
of separating the loading and the geometry. Once the weight func-
tion is known for a given cracked geometry, the stress intensity
factor due to any load system applied to the body can be deter-
mined by using the same weight function. Therefore it is especially
suited when a large number of stress intensity factor solutions are
desired for complex stress distributions. The success of the weight
function method depends on the accurate determination of the
weight function itself. Because the concept of ‘‘weight function”
was originally introduced [1,2] for one-dimensional edge cracks
or through cracks, most of work in the literature has been concen-
trated on one-dimensional cracks. The methods of obtaining the
weight functions for one-dimensional cracks have been well devel-
oped, see [3–5] for example. However, to date, the method of
obtaining weight functions for two-dimensional cracks is still not
well developed. For two-dimensional cracks, close-form exact
weight functions are available only for very limited cases: the
circular crack and the half plane crack in an infinite body [6].
ll rights reserved.
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).
Embedded elliptical crack is one of the most used models for
two-dimensional embedded cracks in many engineering compo-
nents (Fig. 1). Fig. 1a shows an embedded elliptical crack in an infi-
nite body (i.e., b, t and h� a and c); and Fig. 1b illustrates an
embedded elliptical crack in a semi-infinite body, where the
embedded crack in close to one free surface represented by the dis-
tance d. The notation of the ellipse geometry is shown in Fig. 2. For
embedded elliptical crack in an infinite body (Fig. 1a), stress inten-
sity factor solutions are available for limited simple loading condi-
tions. When the uncracked stress distribution in the area to be
occupied by the elliptical crack is a simple one such as uniform
(tension) or one-dimensional linearly varying (bending), the
well-known explicit solutions [7,8] can be used to determine the
stress intensity factor at any point, P0, along the crack front. When
the stress distribution is two-dimensional depending on two vari-
ables, r(x, y), which is the case in many engineering applications,
more complicated calculations have to be made. Exact stress inten-
sity factor solutions for 2D polynomial stress distributions of the
order of three were provided by Shah and Kabayashi [9], and for
polynomial of any order n were provided by Vijaykumar and Atluri
[10] and Nishioka and Atluri [11], where tedious labour intensive
evaluation of elliptic integrals are involved.

For embedded elliptical cracks in a semi-infinite body (Fig. 1b),
the effect of free boundary needs to be included and there is no
analytical solution available. Using finite element method, the
stress intensity factors were obtained by Shiratori et al [12] for
polynomial stress distributions of order 3. For complex stress
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Nomenclature

A, B, C three points along the crack front for embedded crack in
semi-infinite body

a half length of minor axis for embedded elliptical crack;
crack length

b, t, h dimensions of the cracked body
c half length of major axis for embedded elliptical crack
d distance of embedded crack in semi-infinite body to free

surface
E Young’s modulus; shape factor for an ellipse
F normalized stress intensity factor
H generalized elastic modulus
K mode I stress intensity factor
Kr reference stress intensity factor
l small crack front segment variation
m(x,y;P0) point load weight function
Mi, M parameters in point load weight function expression
P point load location on crack face
P0 point along the crack front under consideration

r radius of polar coordinate
S entire crack face area
R radius of polar coordinate for points along crack front
s shortest distance between point load and the boundary

of crack front
ur crack face displacement for reference stress intensity

factor
x, y Cartesian coordinates for point P
w(x,y;P0) regular function in weight function expression
h angle of polar coordinate for crack front point P0

q distance between load point P and point along crack
front under consideration P0

/ parametric angle of ellipse for point P0

m Poisson’s ratio
r0 nominal stress
a aspect ratio of elliptical crack = a/c
C boundary of crack front
u angle of polar coordinate for load point P

X. Wang, G. Glinka / International Journal of Fatigue 31 (2009) 1816–1827 1817
distributions which can be approximated using polynomials of or-
der 3, the stress intensity factor can be then calculated using the
superposition method. However, there are stress distributions
which cannot be easily represented by polynomials. It is therefore
of practical significance to develop weight function solutions for
both embedded elliptical cracks in infinite body (Fig. 1a) and in
semi-infinite body (Fig. 1b), which will enable the determination
of stress intensity factor for any complex stress distributions.

Several attempts have been made to derive the weight func-
tions for embedded elliptical crack by solving the problem analyt-
ically, see recent development in [13,14]. However, these solutions
are in a series expansion form and cannot be easily used for engi-
neering applications. Numerical methods were developed that can
be used to determine the weight functions numerically, for exam-
ple using finite element method [15,16]. However, the amount of
work needed to determine the weight function for two-dimen-
sional cracks with numerical method can be very large, and the
weight functions in numerical form are often inconvenient to use.

One of the important features of weight function method is that
the weight functions for a wide variety of crack configurations can
be represented using the same mathematical form, which has been
demonstrated extensively from weight function theories for one-
dimensional crack problems [5]. The existence of a general mathe-
matical form simplified the determination of weight functions sig-
nificantly. Several attempts have been made to find the general
weight function form for two-dimensional crack. The most com-
monly used method is the O-integral method [17,18]. However,
it has been realised that the O-integral functional form works well
for some geometries but its accuracy is not as good for other geom-
etries, particular for low aspect ratio embedded elliptical cracks
[18]. Various analytical methods have also been used by several
authors to develop approximate weight functions specifically for
embedded elliptical cracks [19–21]. However, no general accepted
form has been established for 2D cracks.

The objective of the present paper is the development of
approximate weight functions for embedded elliptical cracks based
on a newly proposed general form for two-dimensional crack prob-
lems. The paper is organized as follows. First, the background of
weight function method is reviewed, and a general form for point
load weight function is proposed and the method of finding the
parameters of the weight function is discussed. Based on the devel-
oped method, weight functions for embedded elliptical cracks in an
infinite body (Fig. 1a) and in a semi-infinite body (Fig. 1b) for a
wide range of aspect ratios of a/c (see Fig. 2) is derived and vali-
dated against available stress intensity factor solutions for several
linear and non-linear stress distributions.
2. Approximate point load weight functions

2.1. Theoretical background

The weight function technique for calculating stress intensity
factors is based on the principle of superposition. For one-dimen-
sional cracks, it can be shown [1] that the stress intensity factor
for a cracked body (Fig. 3a) subjected to the external loading sys-
tem, S, is the same as the stress intensity factor in a geometrically
identical body (Fig. 3c) with the local stress field r(x) applied to the
crack faces. The local stress field, r(x), induced in the prospective
crack plane by preload S, is determined from an uncracked body
(Fig. 3b). The stress intensity factor for a cracked body with loading
applied to the crack faces can be calculated by integrating the
product of the weight function, m(x,a), and the stress distribution,
r(x), in the crack plane:

K ¼
Z a

0
rðxÞmðx; aÞdx ð1Þ

The weight function m(x,a) depends only on the geometry of
the crack and the cracked body. Once the weight function has been
determined, the stress intensity factor for this geometry can be ob-
tained from Eq. (1) for any stress distribution, r(x). Mathemati-
cally, the weight function, m(x,a), is the Green’s function for the
present boundary value problem scaled with respect to the crack
dimension a. It represents the stress intensity factor at the crack
tip for a pair of unit point loads acting on the surface at the location
x.

For a two-dimensional crack, the stress intensity factors vary
along the crack front, as shown in Fig. 4. The counterpart to Eq.
(1) for two-dimensional cracks is a double integral over the crack
surface

KðP0Þ ¼
Z Z

S
rðx; yÞmðx; y; P0ÞdS ð2Þ
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where m(x,y;P0) is the point load weight function, it represents
stress intensity factor at point P0 on the crack front for a pair of unit
point loads acting on the crack surface at point (x,y) as shown in
Fig. 4, and r(x,y) is a general two-dimensional stress distribution
as shown in Fig. 4. If the stress distribution r(x,y) is one-dimen-
sional, for example, only a function of x, then Eq. (2) can be simpli-
fied to

KðP0Þ ¼
Z

a
rðxÞ

Z
mðx; y; P0Þdy

� �
dx ¼

Z
a
rðxÞMðx; P0Þdx ð3Þ

where M(x;P0) represents the stress intensity factor at point P0 for
unit line load at position x as shown in Fig. 4; and a is the crack
depths in the x-direction. In other words, M(x;P0) is the line load
weight function for two-dimensional cracks.
For any one-dimensional or two-dimensional cracks, if the
weight functions m(x,a), m(x,y;P0) or M(x;P0) are obtained, the
stress intensity factors for other loading conditions can be calcu-
lated using Eqs. (1)–(3).

For one-dimensional cracks, the determination of the weight
function, m(x,a), in Eq. (1) can be simplified by using the relation
between stress intensity factor under consideration and a refer-
ence stress intensity factor solution and the corresponding crack
face displacement, as derived in [2]

K � Kr ¼ H
Z a

0
rðxÞ ourðx; aÞ

oa
dx ð4Þ

where H is the generalized elastic modulus which equals E for plane
stress or E/(1 � m2) for plane strain, and K and ur are the stress inten-
sity factor and corresponding crack face displacement for one refer-
ence stress distribution. From Eq. (4), the weight function m(x,a)
can be obtained as

mðx; aÞ ¼ H
Kr

ourðx; aÞ
oa

ð5Þ

Eq. (5) provides an efficient way to determine weight function from
a reference stress intensity factor solution and the corresponding
displacement fields. An appropriate reference stress intensity factor
Kr can often be found either in the literature or by numerical calcu-
lation. Although the corresponding analytical expression for the
crack opening displacement function ur(x,a) is more difficult to ob-
tain, because it is seldom published together with stress intensity
factor solutions, several authors (Petroski and Achenbach, [22];
Wu and Carlsson [3]; Fett and Munz [4]; Glinka and Shen [5]) have
proposed approximate expressions for the displacement, ur(x,a), or
the weight function, m(x,a). Glinka and Shen [5] have found that the
mode I weight functions for a variety of 1D crack geometries can be
accurately approximated using the following expression

mðx; aÞ ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pða� xÞ

p 1þM1 1� x
a

� �1=2
�

þM2 1� x
a

� �
þM3 1� x

a

� �3=2
�

ð6Þ

As shown in Eq. (6), the weight function has the same singular
term and M1–M3 are parameters of the non-singular term and they
depend on the specific crack geometry. The existence of a general
weight function form simplified the determination of weight



σ(x)

t

S

a

y

x

σ(x)

S

a

t

y

x

S

S

a

t

y

x

σ(x)

t

S

a

y

x

σ(x)

S

a

t

y

x

S

S

a

t

y

x

cba

Fig. 3. Weight function for one-dimensional cracks, (a), (b) and (c).

P(x, y)

P’(x’, y’)

s

ρ

r
Γ

Fig. 5. Weight function notation for general two-dimensional crack.

X. Wang, G. Glinka / International Journal of Fatigue 31 (2009) 1816–1827 1819
functions; the derivation of weight function for a particular geo-
metrical configuration of cracked body is reduced to the determi-
nation of parameters M1–M3.

For two-dimensional cracks (see Fig. 5), the counter-part rela-
tionship between two stress intensity factor solutions (Eq. (4))
are also derived by Rice [2,6]Z

C
½K � Krdl�dC ¼ H

Z Z
d
rðx; yÞdurðx; yÞdS ð7Þ

where C represents the crack front, dl is a smooth function of posi-
tion along C making the advance of the crack in a direction locally
normal to C. du(x,y) is the first order variation of displacement cor-
responding to dl. If we define the dl is local to point P0, and the cor-
responding area change is dFP0 = dl � dC, the weight function
m(x,y,P0) can be obtained

mðx; y; P0Þ ¼ H
KrðP0Þ

durðx; yÞ
dFP0

ð8Þ

That is if the three-dimensional solutions of any reference load
system is known so that the first order variation du(x,y) can be
determined, at any point along the crack front P0, corresponding
to variation dFP, the weight function for point P0 can be obtained
from Eq. (8).

Several methods were developed to apply Eqs. (7) and (8) to de-
rive weight functions for two-dimensional cracks. However, the
complete solution for du(x,y) for arbitrary dFP is much more diffi-
σ (x, y)
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Fig. 4. Two-dimensional crack under two-dimensional stress distribution.
culty to obtain than our/oa in the one-dimensional crack problem,
several simplifications were used (See Fett [23], for example).

On the other hand, the line load weight function for two-dimen-
sional cracks M(x;P0) in Eq. (3) can be determined in a similar way
as deriving weight function m(x,a) for one-dimensional cracks. For
surface cracks and corner cracks, the general weight function forms
of M(x,P0) have been obtained for the deepest point M(x,A0), surface
point M(x,B0) and general point M(x,P0) [24,25]. Using these general
forms, the line load weight functions were derived for a variety of
two-dimensional crack geometries [24–28].

In spite of the high efficiency and usefulness of the line load
weight function in engineering applications, they cannot be used
if the stress field is of a two-dimensional nature, i.e., when the
stress field r(x,y) depends on both x and y coordinates. Therefore,
a general method for the determination of point load weight func-
tion m(x,y;P0) is needed.

2.2. Properties of point load weight functions for two-dimensional
cracks

By analyzing the properties of weight functions for two-dimen-
sional cracks, Rice [6] pointed out that, for an embedded planar
crack in an infinite body (see Fig. 5), there are two key parameters
s and q in the weight function expression, m(x,y;P0). Here s is the
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shortest distance between the load point P(x,y) and the boundary
of the crack front C, and q is the distance between the load P
and the point P0 under consideration (see Fig. 5). These two param-
eters can be used to describe available analytical weight functions.
For the half-plane crack in an infinite body as shown in Fig. 6a, the
weight function is

mðx; y; P0Þ ¼
ffiffiffiffiffi
2s
p

p3=2q2 ð9Þ

For the penny shaped crack as shown in Fig. 6b

mðx; y; P0Þ ¼
ffiffiffiffiffi
2s
p

p3=2q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s

2a

r
ð10Þ

where a is the radius of the penny shaped crack.
For an arbitrary planar crack embedded in an infinite body

(Fig. 5), the weight function can be represented using the following
general expression [6]

mðx; y; P0Þ ¼
ffiffiffiffiffi
2s
p

p3=2q2 wðx; y; P0Þ ð11Þ

It is apparent from Eq. (11) that the singularity term in the point

load weight function is of the order of
ffiffi
s
p

q2 , and weight function

tends to infinite when q approaches zero. When s equals zero
and q is not zero, the weight function value is zero.

The function w(x,y;P0) describes the effect of the embedded
crack geometry configuration. For any given crack geometry, if
the function w(x,y;P0) can be obtained, then the point load weight
function can be obtained from Eq. (11).

For the half plane crack

wðx; y; P0Þ ¼ 1 ð12Þ

and for the penny shape crack

wðx; y; P0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s

2a

r
ð13Þ

It was also pointed out by Rice [6] that the function w(x,y;P0)
has a well-defined limit when point P(x,y) approached the crack
boundary, i.e., s approaches 0. For both cases of a half plane or pen-
ny shaped crack

lim
s!0
½wðx; y; P0Þ� ¼ 1 ð14Þ

That is the function w(x,y;P0) in Eq. (11) is a regular function
(without any singularity), and the singular term has already been

represented by the term
ffiffi
s
p

q2 .

Note that as shown in Eq. (8), the weight function is closely re-
lated to the crack opening displacement fields. It has also been
shown by Bueckner [1] that weight functions are in fact singular
displacements of so-called ‘‘fundamental fields,” which produce
an infinite energy in a small volume.

2.3. Proposed general form for point load weight function

Now consider the embedded elliptical crack as shown in Fig. 7.
The objective is to find the weight function m(x,y,P0). Based on the
preceding discussion, it is reasonable to further represent the point
load weight function using the following form:

mðx; y; P0Þ ¼
ffiffiffiffiffi
2s
p

p3=2q2 1þ
Xn

i¼1

Miðh;aÞ 1� rðuÞ
RðuÞ

� �i
" #

ð15Þ

i.e.,

wðx; y; P0Þ ¼ 1þ
Xn

i¼1

Miðh;aÞ 1� rðuÞ
RðuÞ

� �i
" #

ð16Þ

That is: the weight function can be represented by the summa-
tion of two parts; the first part is the singular term, and the second
part accounts for the effect of crack configurations. Here h repre-
sents the location of P0; and r, u are the polar coordinates of point
P(x,y). And R(u) is the corresponding point on the crack front (See
Fig. 7). Note that the weight function parameter Mi depends on the
aspect ratio of the ellipse, a = a/c.

It can be easily shown it satisfies the condition represented by
Eq. (14). In addition, for the special case of half plane crack, from
Eq. (12), we have

M1 ¼ M2 ¼ M3 � � � ¼ 0 ð17Þ



Fig. 8. Typical mesh used for numerical integration (a/c = 0.2).
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for circular crack, the exact weight function Eq. (13) gives

wðx; y; P0Þ ¼ 1� s
2a

� �1=2
¼ 1� 1

2
ð1� r

R
Þ

� �1=2

ð18Þ

It can be represented using a following series expansion (i.e., Eq.
(15))

wðx; y; P0Þ ¼ 1þM1 1� r
R

� �
þM2 1� r

R

� �2
þM3 1� r

R

� �3

þ � � � ð19Þ
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Table 1
Weight function parameter M(/,a) for a = 0.1, 0.2, 0.4, 0.6, 0.8 and 1.

2//p a = 0.1 a = 0.2 a = 0.4 a = 0.6 a = 0.8 a = 1

0 �4.35 �2.1772 �0.9053 �0.5042 �0.3262 �0.2321
0.0625 �3.5898 �1.9917 �0.8735 �0.4958 �0.3241 �0.2321
0.125 �2.5633 �1.6044 �0.7895 �0.4721 �0.3178 �0.2321
0.1875 �1.7968 �1.2214 �0.6784 �0.4371 �0.3079 �0.2321
0.25 �1.2669 �0.9121 �0.5634 �0.3954 �0.2952 �0.2321
0.3125 �0.9127 �0.6811 �0.4587 �0.3518 �0.2806 �0.2321
0.375 �0.6774 �0.5144 �0.3701 �0.3096 �0.2651 �0.2321
0.4375 �0.5192 �0.3959 �0.2986 �0.2711 �0.2494 �0.2321
0.5 �0.4107 �0.3117 �0.2423 �0.2374 �0.2343 �0.2321
0.5625 �0.3346 �0.2515 �0.199 �0.2089 �0.2202 �0.2321
0.625 �0.2801 �0.2083 �0.166 �0.1853 �0.2076 �0.2321
0.6875 �0.2404 �0.177 �0.1412 �0.1664 �0.1966 �0.2321
0.75 �0.2114 �0.1544 �0.123 �0.1516 �0.1875 �0.2321
0.8125 �0.1904 �0.1384 �0.11 �0.1407 �0.1803 �0.2321
0.875 �0.1757 �0.1277 �0.1013 �0.1331 �0.1751 �0.2321
0.9375 �0.1668 �0.1214 �0.0963 �0.1287 �0.172 �0.2321
1 �0.1636 �0.1192 �0.0946 �0.1271 �0.1709 �0.2321
In fact, further studies indicate, which will be discussed in the
following Section 2.4, that only two-terms of Eq. (19) are required
to provide good approximation of Eq. (18) with M1(h,a) = �0.23213
and all other Mi = 0 (i = 2, 3 and . . .).

Another available weight function for cracks in an infinite body
is the tunnel crack geometry. Through an approximate analysis, the
weight function was presented in [18] for tunnel crack in an infi-
nite body, which can be further accurately approximated using
Eq. (19).

In summary, our analyses have indicated that the general form
of Eq. (15), with one term, i.e., n = 1, can approximate the point
load weight functions with good accuracy for a wide range of
embedded crack configurations. That is

mðx; y; P0Þ ¼
ffiffiffiffiffi
2s
p

p3=2q2 1þMðh;aÞ 1� rðuÞ
RðuÞ

� �� �
ð20aÞ

or wðx; y; P0Þ ¼ 1þMðh;aÞ 1� rðuÞ
RðuÞ

� �� �
ð20bÞ

In addition, for the case of embedded elliptical crack in a semi-
infinite body (Fig. 1b), the weight functions will also depend on the
distance of the crack to the free surface, d. This effect can be ac-
counted for by the M factor in Eq. (20). It is also a function of the
distance. It is therefore reasonable to further represent the corre-
sponding weight function as

mðx; y; P0Þ ¼
ffiffiffiffiffi
2s
p

p3=2q2 1þM h;a;
d
a

� �
1� rðuÞ

RðuÞ

� �� �
ð21aÞ

or wðx; y; P0Þ ¼ 1þM h;a;
d
a

� �
1� rðuÞ

RðuÞ

� �� �
ð21bÞ

The derivation of point load weight function can then be simpli-
fied using this general expression. Here d/a is the non-dimensional
distance.

2.4. Determination of weight function parameters

Knowing the general weight function form, Eq. (21) or (20)
which is a specific case of (21)), the derivation of weight function
for a particular embedded elliptical crack has been reduced to
the derivation of parameters M(h,a, d/a) along the entire crack
front.

The parameter M(h,a,d/a) can be determined using Eq. (2) pro-
vided that one reference stress intensity factors solution Kr is
known. The stress distribution expression and the general weight
function expression Eq. (21) can be substituted for r(x,y) and
m(x,y;P0) into Eq. (2). This leads to the equation for the determina-
tion of the unknown parameter M(h,a,d/a)

KrðP0Þ ¼
Z Z

s
rrðx; yÞ

ffiffiffiffiffi
2s
p

p3=2q2 1þM h;a;
d
a

� �
1� rðuÞ

RðuÞ

� �� �
dS ð22Þ

After integration, Eq. (22) can be used to solve for M(h,a,d/a). Note
that this calculation needs to be carried out at every point along the
crack front. The M(h,a) in Eq. (20) can be determined in the exact
same way, except it is independent of d/a.
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3. Point weight function for embedded elliptical cracks

In this section, Eq. (22) is applied to derive weight functions for
embedded elliptical cracks in both infinite and semi-infinite
bodies. The M factors are determined for each crack configurations.
The derived weight functions are then validated using stress inten-
sity factor solutions for other loading conditions. For any point P0

along the crack front, it can either be identified by the polar angle
h or parametric angle / (see Figs. 2 and 7), and they are related
simply by: tanh = atan/. In the following sections, parametric an-
gle / is used to represent point P0.

3.1. Embedded elliptical cracks in an infinite body

The weight functions for embedded elliptical crack in an infinite
body (Fig. 1a) in the format of Eq. (20) are derived and validated in
this section. The solutions are derived for the entire crack front.

3.1.1. Reference stress intensity factor solutions
For embedded elliptical crack as shown in Fig. 1a, the stress

intensity factor for uniform stress field is used as reference solu-
tion. The uniform stress is applied directly on to the crack face

rðx; yÞ ¼ r0 ð23Þ

The exact stress intensity factor solution is [7]

Kð/Þ ¼ r0
ffiffiffiffiffiffi
pa
p

E
sin2 /þ 1

a2 cos2 /

� �1=4

ð24Þ

where / is the parametric angle, a = a/c and E is the complete ellip-
tical integral of second kind, given by the following empirical equa-
tion [29]

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:0þ 1:464ðaÞ1:65

q
ð25Þ
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Fig. 10. Comparison of the weight function based stress intensity factor and exact
solution for a/c = 0.8. (a) Uniform and linear stress distributions. (b) Two-dimen-
sional non-linear and parabolic stress distributions.
3.1.2. Determination of weight functions
By substituting Eqs. (23) and (24) into Eq. (2), an equation with

unknown M(/,a) is established. Numerical integration is required
to solve for M(/,a).

A computer program was developed to perform the numerical
integration based on the standard Gauss-Legendre quadrature
technique. Curved eight-nodes elements are used to distretize
the entire elliptical areas. The integration algorithm was verified
using the analytical weight function for a penny shaped crack
(a/c = 1). For uniform stress field, the maximum difference be-
tween the exact stress intensity factor solution and the calculation
based on the present integration routine was less than 0.8% along
the whole crack front. Fig. 8 shows a typical mesh used in the pres-
ent calculations for a/c = 0.2.

The results for the parameters M(/,a) are obtained and pre-
sented in Table 1 for points along the crack front. The aspect ratios
considered are a/c = 0.1, 0.2, 0.4, 0.6 and 0.8. The results are plotted
in Fig. 9. Note the function M(/,a) is symmetric about both x and y
axis, therefore only a quarter (0 6 / 6 p/2) is plotted. Using this
method, the M(/,a) for penny shaped crack is found to be
�0.23213. For comparison, the results for penny shaped crack
(a/c = 1) are also presented. For engineering applications, the
M(/,a) factors are fitted using empirical formulas, and it is sum-
marised in Appendix A1.

3.1.3. Validation of weight functions
Six different loading cases were applied to the surface of the

elliptical crack to validate the derived weight functions in the form
of Eq. (20). Applying Eq. (2), stress intensity factors along the crack
front of an embedded elliptical crack of aspect ratio a = 0.1, 0.2, 0.4,
0.6 and 0.8 were calculated for the following stress fields
Uniform stress field

rðx; yÞ ¼ r0 ð26Þ

One-dimensional linear stress field depending on coordinate x

rðx; yÞ ¼ r0
x
a

ð27Þ

One-dimensional linear stress field depending on coordinate y

rðx; yÞ ¼ r0
y
c

ð28Þ

Two-dimensional non-linear stress field

rðx; yÞ ¼ r0
xy
ac

ð29Þ
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One-dimensional quadratic stress field depending on coordinate x

rðx; yÞ ¼ r0
x
a

� �2
ð30Þ

and one-dimensional quadratic stress field depending on coordinate
y

rðx; yÞ ¼ r0
y
c

� �2
ð31Þ

The resulting stress intensity factors were normalized as follows:

Fð/Þ ¼ Kð/Þ
ðr0

ffiffiffiffiffiffi
pa
p

=EÞ
ð32Þ

where F is the boundary correction factor, and E is given in Eq. (25).
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Fig. 11. Comparison of the weight function based stress intensity factor and exact
solution for a/c = 0.6. (a) Uniform and linear stress distributions. (b) Two-dimen-
sional non-linear and parabolic stress distributions.
The boundary correction factors F from the weight function pre-
dictions were compared with the exact solutions for these six load-
ing conditions [9]. The results are shown in Figs. 10–14 for aspect
ratios a = 0.1, 0.2, 0.4, 0.6 and 0.8, respectively. Note that the uni-
form stress distribution is the reference case. For other linear and
non-linear loadings, the differences were generally within 5% for
all the aspect ratios. These accuracies are in the same range as
the weight functions developed in [21]. But the present weight
function is much easier to implement.

3.2. Embedded elliptical cracks in an semi-infinite body

In this section the weight functions for embedded elliptical
crack in a semi-infinite body (Fig. 1b) are derived and validated.
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Fig. 12. Comparison of the weight function based stress intensity factor and exact
solution for a/c = 0.4. (a) Uniform and linear stress distributions. (b) Two-dimen-
sional non-linear and parabolic stress distributions.
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Fig. 13. Comparison of the weight function based stress intensity factor and exact
solution for a/c = 0.2. (a) Uniform and linear stress distributions. (b) Two-dimen-
sional non-linear and parabolic stress distributions.
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Fig. 14. Comparison of the weight function based stress intensity factor and exact
solution for a/c = 0.1. (a) Uniform and linear stress distributions. (b) Two-dimen-
sional non-linear and parabolic stress distributions.
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The weight functions are derived using one reference stress
intensity factor solution corresponding to uniform loading
condition, and validated using several linear and non-linear stress
distributions.

3.2.1. Reference stress intensity factor solutions
The stress intensity factors at the three points A, B and C

along the crack front (see Figs. 1b and 2) were obtained using fi-
nite element method in Ref. [12]. The uniform stress was applied
directly on to the crack face (Eq. (23)). The stress intensity factor
was normalised following Eq. (32). The resulting F for a/c = 0.2,
0.4, 0.6 and 1.0 and d/a = 0.25, 0.4, 0.5 and 0.625 are summarised
in Table 2. They are used as the reference stress intensity factor
solutions.
3.2.2. Determination of weight functions
Following the same procedure as Section 3.1.2, the weight func-

tion is now in the format of Eq. (21). The factor M(h,a,d/a) is solved
at point A (corresponds to / = �p/2), B (/ = p/2) and C (/ = 0). The
results for the parameters M(/,a,d/a) are obtained and presented
in Table 3. Empirical formulas of M(/,a,d/a) are given in Appendix
A2. Note the geometry is only symmetric about y axis, and M at
point A and B are therefore have different values.

3.2.3. Validation of weight functions
The derived weight functions for point A, B and C are validated

using finite element results for various linear and non-linear stress
distributions. Using Eq. (2), stress intensity factors are calculated
for the following stress fields applied to the crack face



Table 2
Reference stress intensity factor solutions at point A (/ = �p/2), Point B (/ = p/2) and Point C (/ = 0), from Ref. [12].

a/c d/a = 0.25 d/a = 0.4 d/a = 0.5 d/a = 0.625

Point A 0.2 1.355 1.238 1.195 1.157
0.4 1.271 1.174 1.138 1.108
0.6 1.209 1.131 1.102 1.086
1.0 1.143 1.089 1.071 1.055

Point B 0.2 1.108 1.088 1.079 1.071
0.4 1.078 1.063 1.056 1.048
0.6 1.053 1.043 1.038 1.033
1.0 1.041 1.038 1.037 1.035

Point C 0.2 0.467 0.464 0.462 0.460
0.4 0.685 0.676 0.672 0.668
0.6 0.815 0.819 0.814 0.810
1.0 1.050 1.040 1.036 1.031

Table 3
Weight function parameter M(/,a,d/a) for a = 0.2, 0.4, 0.6 and 1 and d/a = 0.25, 0.4,
0.5 and 0.625.

a/c d/a = 0.25 d/a = 0.4 d/a = 0.5 d/a = 0.625

Point A 0.2 0.8941 0.5601 0.4373 0.3289
0.4 0.7890 0.4727 0.3553 0.2575
0.6 0.6169 0.3392 0.2360 0.1790
1.0 0.3386 0.1187 0.0454 �0.0196

Point B 0.2 0.1890 0.1319 0.1062 0.0834
0.4 0.1597 0.1108 0.0879 0.0618
0.6 0.0616 0.0259 0.0081 �0.009
1.0 �0.0766 �0.0888 �0.0929 �0.1174

Point C 0.2 �1.8246 �1.8780 �1.9137 �1.9493
0.4 �0.4171 �0.4727 �0.5379 �0.5750
0.6 �0.2463 �0.2207 �0.2526 �0.2782
1.0 �0.0400 �0.0808 �0.0971 �0.1011
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Fig. 15. Comparison of the weight function based stress intensity factor and finite
element data [12] at Point A for polynomial stress distributions, n = 0, 1, 2 and 3.
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Fig. 16. Comparison of the weight function based stress intensity factor and finite
element data [12] at Point B for polynomial stress distributions, n = 0, 1, 2 and 3.
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Fig. 17. Comparison of the weight function based stress intensity factor and finite
element data [12] at Point C for polynomial stress distributions, n = 0 and 2.
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rðx; yÞ ¼ r0 1� x
a

� �n
n ¼ 0;1;2;3 ð33Þ

The stress intensity factors calculated from weight functions are
compared to the finite element results from [12] for the same stress
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distributions. Very good agreements were achieved for all the as-
pect ratios, a/c = 0.2, 0.4, 0.6 and 1.0 and d/a = 0.25, 0.4, 0.5 and
0.625 at all these points. The maximum differences are within 5%.
The boundary correction factor results F for d/a = 0.25 are shown
in Figs. 15–17 for points A, B and C, respectively.
4. Conclusions

An approximate general mathematical form of weight function
is proposed which has simplified the determination of weight
functions for embedded elliptical cracks. Based on this general
form, the point load weight functions are derived for embedded
elliptical cracks in an infinite body and in a semi-infinite body.
One reference stress intensity factor solution is used to derive
these weight functions. It is demonstrated that this method gives
very accurate weight functions for the wide range of geometric
configurations for embedded elliptical cracks (for the aspect ratio
range 0.1 6 a/c 6 1.0). The derived weight functions are suitable
for calculating stress intensity factors for embedded elliptical
cracks under any complex two-dimensional stress distributions.
They are particularly useful for the fatigue crack growth analysis
of planer embedded cracks subjected to fluctuating non-linear
stress fields resulting from surface treatment (shot peening), stress
concentration or welding (residual stress).

The new weight function form can also serve as the foundation
for the further development of weight functions for two-dimen-
sional surface cracks, corner cracks and other part-through cracks
in engineering structures.
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Appendix A1

Weight function parameters M(/,a) for an embedded elliptical
crack in an infinite body presented in Table 1 have been fitted
using empirical formulas with the maximum differences generally
within 3% or better.

Applicable range: 0 6
2/
p
6 1, and 0:1 6 a < 0:8.

M factor

Mð/;aÞ ¼ 1

�0:1104� 9:0633ð2/
p Þ

2 � 3:9542ðaÞ1:5
h i ðA1Þ

a ¼ a
c

Comparison of the curve fitting predictions and the numerical
data is shown in Fig. 9.
Appendix A2

Weight function parameters M(/,a,d/a) for an embedded
elliptical crack in a semi-infinite body presented in Table 3 at three
points, point A (corresponds to / = �p/2), B (/ = 0) and C (/ = p/2),
have been fitted into empirical formulas with the maximum differ-
ences generally within 4% or better.

Applicable range: 0:25 6
d
a
6 0:625, and 0:2 6 a < 1:0.

M factor at Point A (/ = �p/2)
MA a;
d
a

� �
¼ EA þ FAaþ GA

d
a

� �
þ HAa2 þ IA

d
a

� �2

þ JAa
d
a

� �
ðA2Þ

EA ¼ 1:8495
FA ¼ �0:7826
GA ¼ �3:9999
HA ¼ �0:07223
IA ¼ 2:6881
JA ¼ 0:7203

a ¼ a
c

M factor at Point B (/ = p/2)

MBða;
d
a
Þ ¼ EB þ FBa�1 þ GB

d
a

� �
þ HBa�2 þ IB

d
a

� �2

þ JBa�1 d
a

� �
ðA3Þ

EB ¼ �0:2257
FB ¼ 0:2606
GB ¼ �0:2548
HB ¼ �0:03145
IB ¼ 0:1671
JB ¼ �0:03906

a ¼ a
c

M factor at Point C (/ = 0)

MCða;
d
a
Þ ¼ EC þ FCa�1 þ GC

d
a

� �
þ HCa�2 þ IC

d
a

� �2

þ JCa�1 d
a

� �
ðA4Þ

EC ¼ 0:07905
FC ¼ �0:02209
GC ¼ �0:1046
HC ¼ �0:06776
IC ¼ �0:02864
JC ¼ �0:05068

a ¼ a
c
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