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a b s t r a c t

A method for crack growth analysis of planar cracks under arbitrary Mode I loading is presented in the
paper. The method is based on the point-load (2-D) weight function used for the calculation of stress
intensity factors. An algorithm for the analysis of fatigue crack growth of planar cracks, and validation
results supporting the entire methodology is also discussed. Application examples of the proposed
method for crack growth analysis under arbitrary Mode I stress fields are presented as well.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction require experience and are time consuming in the case of the fati-
Mechanical and structural components contain often crack-like
defects or cracks initiated at notches under service cyclic loading.
Cracks can initiate sub-surface (embedded elliptical-like cracks)
or at the surface and have most often a semi-elliptical shape (sur-
face cracks). The surface cracks are very common for welded joints
of structural components.

In order to determine the time spent on the stable fatigue
growth of such cracks the crack growth analysis needs to be carried
out. Crack growth analyses in engineering practice are very often
carried out for Mode I crack loading, i.e. for normal stress applied
to the crack surface. One of the most important issues in the crack
growth analysis is the calculation of the stress intensity factor
(SIF). The problem is quite simple if the stress applied to the crack
surface is uniform or symmetrical with respect to the crack axis
[7,8]. However, the problem gets complicated in the case of 2-D
non-uniform stress distribution. Moreover, in the case of geomet-
rically complex crack shapes and machine or structural compo-
nents certain simplifications are necessary resulting in the
approximation of actual cracks by standard elliptical or semi-ellip-
tical shapes. This may result in inaccurate (and usually conserva-
tive) residual life predictions.

The determination of SIFs and the two-dimensional analysis of
fatigue growth of planar cracks under non-uniform stress distribu-
tion is possible only by using the finite element (FEM) or boundary
element (BEM) method. Despite some advantages both methods
ll rights reserved.
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gue crack growth analysis.
The point-load weight function developed by Glinka and Rein-

hardt [1,9] enables calculation of stress intensity factors for planar
convex cracks under any Mode I stress distribution. Application of
the method, discussed below, to fatigue crack growth analysis may
significantly reduce the calculation time. The method makes possi-
ble to calculate stress intensity factors at arbitrarily selected num-
ber of points on the actual crack contour. Crack extensions are then
calculated for each of these points and the new crack shape is
determined. The process is repeated on cycle-by-cycle basis until
the final crack dimension is achieved. The number of repetitions
determines the fatigue crack propagation life in cycles.
2. Point-load weight function (WF2D)

The two-dimensional point-load weight function mA(x,y) repre-
sents the stress intensity factor at an arbitrary point A on the crack
front, induced by a pair of unit forces, F = 1, applied to the crack
surface at point P(x,y), presented in Fig. 1. In order to determine
the SIF at the point A on the crack front induced by a two-dimen-
sional stress field r(x ,y) the product of the stress field r(x,y) and
the weight function mA(x ,y) needs to be integrated over the entire
crack surface area X [7]:

KA ¼
Z

X

Z
rðx; yÞ �mAðx; yÞdxdy ð1Þ

The point-load weight function mA(x,y) was derived from the
approximate equation proposed by Oore and Burns [6] – see nota-
tion in Fig. 1.
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Fig. 1. Point load (2-D) weight function notation.
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mAðx; yÞ ¼
ffiffiffi
2
p

p � q2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiH

GC

dGc
q2

i

q ð2Þ

It is quite difficult to drive the point load weight function (2) in
a closed form for a specific configuration. Only a limited number of
solutions and mostly for cracks in infinite bodies are known
contemporary.

It is worth noting while calculating the weight function (2) that
the line integral represents the arc length, CC, of the crack contour
inverted with respect to the point P(x,y) – Fig. 1. The inverted con-
tour CC, shown in Fig. 1, can also be understood at as the locus of
inverted radii 1/qi. It can also be proved that inverted contours
form circles in the case of straight and circular crack contours. In
other words, the inverted contour is a circle in the case of cracks
with a constant curvature. Subsequently, the weight function (2)
makes it possible to derive closed form weight functions for a vari-
ety of straight and circular crack configurations [1,7].

The weight function properties mentioned above can also be
used for the SIF calculation and analysis of fatigue crack growth
of irregular shape cracks. In such a case it is necessary to approxi-
mate the crack contour by rectilinear segments (Fig. 2). Stress
intensity factors are calculated at points A(x,y) in the middle of
each segment. Therefore approximation of the crack contour re-
quires some caution so that angles c between adjacent linear seg-
ments are as close as possible to 180�. The requirement concerning
the maximalisation of angles c helps to determine the optimum
number of linear segments. The inverted contour, CC, is calculated
Fig. 2. Determination of the 2-D weight function for approximated contours of the
crack and external boundary.
as the sum of all inverted contours, CCi, corresponding to each lin-
ear segments of the crack contour:

CC ¼
Xn

i¼1

DCCi ð3Þ

where

DCCi ¼
1

2sPi
� Dai ð4Þ

In the case of embedded cracks in finite bodies the external bound-
ary effect has to be accounted for as well. Glinka and Reinhardt [1]
proposed the following formula for that purpose:

mAðx; yÞ ¼
ffiffiffi
2
p

p � q2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CC þ CB
p

CC
ð5Þ

The arc length, CB, represents the length of the external bound-
ary contour inverted with respect to the point A(x,y) – Fig. 2. The
inverted external contour, CB, can also be looked at as the locus
of inverted radii 1/rk. The inverted contour, CB, is calculated as
the sum of inverted contours, CBk, of all linear segments of the
external boundary contour:

CB ¼
Xm

k¼1

DCBk ð6Þ

where

DCBk ¼
1

2sAk
� Dbk ð7Þ

Analyses described in Refs. [1,3] revealed that accuracy of
approximation of the external boundary contour is not as impor-
tant as that of the crack contour. Calculation of the stress intensity
factor for any point A(x,y) on the crack contour needs summation
of all products of the point-load weight function, mA(x,y), and loads
Fj(x,y), resulting from the stress field r(x,y) acting over the ele-
mental crack surface area, dxdy:

KA ¼
Xl

j¼1

Fjðx; yÞ �mAðxj; yjÞ ð8Þ

where

Fjðx; yÞ ¼
Z xjþdx

2

xj�dx
2

Z yjþ
dy
2

yjþ
dy
2

rðx; yÞ � dxdy ð9Þ

Stress intensity factors determined using the general expression
(8) coincides fairly well with results acquired from the finite ele-
ment method [9].
3. Crack growth analysis using the integration algorithm WF2D

If planar cracks are subjected to a non-uniform stress distribu-
tion, r(x,y), they may grow non-symmetrically, thus it is not en-
ough to analyze the crack growth in two directions, x and y only,
as it is the case of symmetric crack shapes and symmetric stress
distributions. For non-uniform stress distribution crack extensions
have to be determined for a sufficient number of points along the
crack contour.

The method presented below is based on the point-load (2-D)
weight function, since it allows for the calculation of SIFs at arbi-
trarily points along the crack contour. As it was described above,
the actual crack contour is replaced by a number of rectilinear seg-
ments, and SIFs can be calculated at mid point, Ai(x,y) of each of
them.



Fig. 4. Influence of the c angle on the predicted fatigue crack growth life of semi-
elliptical surface crack.
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Having calculated SIFs at points Ai(x,y), the crack extension
(increment) Dai for each segment can be calculated based on crack
growth rate data and effective stress intensity range, DKAi, corre-
sponding to the current applied loading cycle. For the Paris’ fatigue
crack growth law the crack increment at point Ai(x,y) is calculated
as

Dai ¼ DN � C � ðDKAiÞn ð10Þ

where C and n are material constants describing the fatigue crack
growth rate, da/dN.

It is assumed that increment Dai describes the magnitude of a
parallel shift of the ith linear segment of the crack contour due
to the application of DN loading cycles (Fig. 3). For the cycle-by-cy-
cle crack growth analysis the increment is DN = 1, however, it can
be increased for faster analysis without loosing too much from the
accuracy [4] of fatigue crack growth prediction.

The accuracy of the proposed analysis method depends on sev-
eral factors. An important factor is the accuracy of the piecewise
linear approximation of the crack contour. It is obvious that the in-
crease of the number of linear segments results in a better accuracy
of the analysis. However, large number of linear segments on the
other hand results in a substantial increase of the computing time.
Since the basic goal of the proposed procedure is aimed at shorten-
ing and simplification of fatigue crack growth life assessment pro-
cedure for cracks subjected to complex stress distributions, a
compromise must be found.

In order to find a reasonable approximation method, an ex-
tended analysis was carried out [5] for various crack/load configu-
rations. Since the analysis was performed for idealized crack
shapes such as: an elliptical, semi-elliptical, and corner crack the
crack contour was approximated with segments of equal length,
and the research was aimed at finding sufficient number of seg-
ments. Several observations were drawn from that examination
and they are summarized below.

First observation was that the coarser approximation of the
crack contour the shorter was the predicted fatigue crack growth
life. It was observed that using more than 30 segments (31 points)
for the crack contour approximation of semi-circular crack with
the aspect ratio of a/c = 1 and the uniform tensile stress distribu-
tion would not significantly improve the accuracy of predicted fa-
tigue lives (Fig. 4). More than 30 linear segments resulted in only
small increase of the predicted life in comparison with the life pre-
dicted on the 30 linear segments approximation. On the other
hand, the computing time for the same crack begins to increase
significantly (faster) when the number of segments is greater than
20. This led to the conclusion that for the crack shape and loading
Fig. 3. The idea of the crack growth analysis by using the point load weight
function.
distribution being examined from 20 to 30 segments were suffi-
cient for reasonably accurate representation of the actual crack
contour.

Other cracks examined such as the elliptical and corner crack
had shown similar dependence and the proposed number of seg-
ments for their approximation were 36–60 and 9–15, respectively.
The important observation was that similar effects were observed
for non-uniform stress distributions, which makes the observa-
tions more general in nature.

In the case of irregular crack shapes the number of segments it-
self is not of primary importance as far as the accuracy of the crack
contour approximation is concerned. However, the increase of the
number of linear crack contour segments results in larger values of
the angle c between adjacent segments (Fig. 3). It appears that the
angle c can be considered as a more general parameter defining the
accuracy of the crack or external contour approximation. The angle
c is a convenient parameter because it can be easily and quickly
evaluated, and also it can be applied as an accuracy parameter to
approximate any crack shape. It is worth to note that if the require-
ment of the constant angle c is applied an unequal linear crack con-
tour segments need to be used.

In order to select appropriate value of the angle c, resulting in
acceptable accuracy of the crack contour approximation several
types of cracks under uniform stress distribution were analyzed.
The analysis has shown that the preferable value of the angle c
can be needs to be at least 170�. For semi-circular cracks with
the aspect ratio a/c = 1 that value of angle c yields approximately
20 equal segments necessary for the approximation of the entire
crack contour. Increasing the angle above 174� (ca. 30 segments)
only slightly improves the accuracy (1–2%) of the predicted life
(Fig. 5) but significantly increases the computing time.

Several other factors affecting the accuracy of the analysis were
examined earlier [4] such as
Fig. 5. The effect of the angle c on predicted fatigue life for a semi-elliptical crack.
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1. The effect of the increase of the number of linear segments dur-
ing the crack growth simulation by applying new approxima-
tions (increased number of linear segments),

2. Partitioning of long linear segments which evolved due to
uneven crack extension and fitting them to the theoretical crack
contour.

The analyses performed for various crack shapes and stress dis-
tributions revealed that the predicted life was only few percent
longer than that one obtained for constant number of segments,
whereas the calculation time increased significantly.

The algorithm for crack growth analysis using the 2-D weight
function is as follows:

1. Determine the location of the crack or crack-like defect in a
component, and define the plane of the prospective crack
growth (Fig. 6). The plane can be assumed as perpendicular to
the principal stress component S1.

2. Replace the actual crack contour by a number of linear
segments.

3. Calculate the SIFs at mid point Ai(x,y) of each linear segment.
4. Calculate the crack extension (increment) Dai for each segment

based on crack growth rate data and the effective stress inten-
sity range, DKAi, induced by current loading cycle.

5. Apply parallel translation of each linear segment by the calcu-
lated crack increment Dai.

6. Construct the new crack contour and locate positions of points
Ai(x,y) for each segment. It should be noted that after several
subsequent crack increments the linear crack contour segments
adjacent to the external boundary elements may vanish.

7. Repeat steps 3 through 6 until the crack growth analysis limit-
ing condition is reached. The crack growth can be considered
complete after reaching pre-defined final crack dimension or
by exceeding the fracture toughness of the material or after
elapsing required number off loading cycles. The number of
cycles, N, accumulated to reach one of the limiting conditions
determines the fatigue crack propagation life of the analyzed
component.

4. Validation of the crack growth procedure

An extensive validation of the proposed procedure concerning
fatigue crack growth analysis of two-dimensional cracks was car-
ried out. The results were compared with those obtained from
the FALPR fatigue analysis program described in Ref. [2]. The FALPR
program uses 1-D weight function method for calculating stress
intensity factors, which in the case of planar cracks is limited to
Fig. 6. Defining the prospective crack growth plane and the Mode I stress
distribution.
only one-dimensional stress distributions. Therefore the compari-
sons were performed for selected planar cracks (semi-elliptical
and corner cracks) under stress distributions defined by 1-D math-
ematical formula. The results obtained for semi-elliptical cracks
are described below.

The comparisons were performed for a semi-elliptical crack
with initial aspect ratios a/c = 0.2–2.0, and for three different stress
distributions, i.e. uniform, linearly decreasing along the symmetry
axis of the crack, and linearly increasing along the same axis. The
through thickness fatigue crack growth was analyzed in the plate
of thickness t = 12 mm and finite width of 2w = 200 mm and sub-
jected to constant amplitude loading. The crack contour was in
all cases approximated by 20 segments (21 points), ensuring suffi-
cient accuracy of the fatigue life estimation. The fatigue life, N, de-
fined as a number of cycles necessary to grow the crack from its
initial size of ai = 1 mm to the final crack size of af = 9.6 mm. The
varying aspect ratio, a/c was accounted for in the analysis as well.
The results are summarized in Figs. 7 and 8.

The fatigue lives calculated for the same initial crack dimen-
sions were usually shorter by approximately 10–20% than those
obtained from the FALPR program. One of possible reasons of such
a discrepancy is that in the case of linear segments adjacent to the
free surface points Ai(x,y), where the SIF was calculated, were
slightly below the surface (x axis) whereas the SIF calculated by
the FALPR program using 1-D weight function was calculated ex-
actly at the surface point. This can also be seen in Fig. 8 showing
the final crack aspect ratio a/c evolution obtained from the FALPR
program and the proposed method using the 2-D weight function.

The results obtained for the uniform and linearly decreasing
along the symmetry axis stress distributions were very close to
those obtained from the classical method. In the case of the linearly
Fig. 7. Predicted relative fatigue crack growth lives for semi-elliptical crack with an
initial aspect ratio of a/c = 0.2–2.0.

Fig. 8. Predicted relative final aspect ratio for semi-elliptical crack having initial
crack aspect ratios a/c = 0.2–2.0.



Fig. 10. Variation of the SIF magnitude along the crack front at various numbers of
elapsed loading cycles.

Fig. 11. An example of a semi-elliptical crack under non-uniform stress
distribution.
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increasing along the symmetry axis stress distribution the differ-
ence between results obtained from the two methods was more
distinct. This is the case where the SIF at the surface point of
semi-elliptical crack is smaller than that one at the deepest point;
hence the FALPR program predicts slower crack growth along the
surface than the proposed method.

The comparisons presented above indicate that fatigue lives
predicted according to the proposed method were conservative
by several percent in comparison to the FALPR predictions.

5. Application examples

5.1. An embedded oval crack in a finite thickness plate

To present the capability of the developed method based on the
point load weight function (WF2D) some examples of crack growth
analysis are presented below. An example set of results obtained
for an embedded oval crack (similar to deformed elliptical crack)
under uniform stress distribution is shown in Fig. 9. For a better
visualization of results the analysis was performed using coarse
crack contour approximation.

One may observe that the initial oval-shape crack has been
transformed into to a penny-shape crack which indicates that the
magnitude of the stress intensity factor along the crack front (at
mid points of linear segments) varied and it was particularly visi-
ble in the case of the initial crack geometry. The variation of the
SIF along the crack front for several crack sizes is shown in
Fig. 10. The difference between the smallest and the largest SIF val-
ues calculated along the initial crack contour was approximately
40% whereas it was only about 2% in the case of the final (last reg-
istered) crack contour. The smallest values of SIFs along the initial
crack contour were observed at points located in regions with the
largest crack contour curvature.

5.2. A semi-elliptical crack in a finite thickness plate

The example discussed below illustrates application of the pro-
posed method to a fatigue crack growth analysis of a semi-elliptical
crack (Fig. 11) in a plate of finite thickness t = 12 mm and finite
width of 2w = 100 mm. The initial crack dimensions were:
a = 4 mm and c = 6 mm. The distribution of the stress normal to
Fig. 9. Evolution of the crack front geometry during fatigue growth of an embedded
oval crack.
the crack surface is shown in Fig. 11. For such case the fatigue crack
growth life assessment can be performed using methods based on
the1-D weight function only if the actual stress distribution is can
be approximated the uniform one. Since conservative assessments
are usually preferable in engineering practice one may use the uni-
form stress distribution as an approximation with the characteris-
tic magnitude equal to the maximum stress, i.e. r = rref The other
possibility is to use a uniform stress distribution with characteris-
tic magnitude equal to the average stress, i.e. r = ravg, which in the
analyzed case is ravg = 0.357 rref.

The fatigue crack growth analysis was subsequently carried out
for using the actual and both uniform stress distributions. The
coarse crack contour approximation was applied in the analysis.
The initial and final crack contour shapes are shown in Fig. 12. It
can be noted that the final crack shapes obtained under the two
uniform and the actual stress distribution are were almost the
same but the final position of the crack grown under the actual
stress distribution is was shifted to the left hand side, i.e. to the re-
gion of the high stress understandably.

The fatigue crack growth live, defined as the number of cycles
necessary to grow the crack up to the depth equal to 80% of the
plate thickness, and obtained under the uniform stress distribution
with the characteristic stress being equal to the maximum stress,
i.e. r = rref consisted of only 6% of the fatigue crack growth life ob-
tained under the actual distribution. In the case of the uniform
stress distribution, having the characteristic stress equal to the



Fig. 12. Examples of the initial and final crack contours (semi-elliptical crack).

Fig. 14. Predicted crack front contours of the initially penny-shape crack.
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average stress, i.e. r = ravg the fatigue life was longer and consisted
of 115% of the life obtained under the actual stress distribution.

5.3. A penny-shape crack in a spring

Potential capabilities of the proposed method concerning the
assessment of fatigue crack growth lives of cracked bodies was ver-
ified by applying it to a real case of an internal flaw in a spring
wire. The flaw location and the Mode I stress distribution in the po-
tential crack plane are shown in Fig. 13. The diameter of the initial
circular crack was 0.02 mm. The stress distribution was estimated
using standard theoretical expressions appropriate for helical
springs.

The initial crack contour was approximated with 32 linear seg-
ments of equal length and the component cross-section boundary
was approximated with 16 linear segments. The crack growth sim-
ulation was carried out for a constant amplitude loading and it was
continued until the crack contour reached the external body con-
tour, i.e. the free surface.

The evolution of the crack front shape, obtained in due course, is
shown in Fig. 14. One may note that the crack growth was faster in
the direction towards the free surface so the final crack extension
was 70% larger towards the free surface than into the interior of the
wire cross-section. The fatigue crack growth rate was relatively
high for segments approaching the free surface. The predicted fati-
gue life coincided fairly well with the observed service life of the
actual component.

The examples presented above illustrate potential applications
and capabilities of the proposed method in fatigue crack growth
life assessment of cracked components containing convex cracks
subjected to the Mode I stress distribution. It is also important to
Fig. 13. Location of the penny-shape crack-like internal flaw in the spring wire
cross-section and the stress distribution in the critical cross-section.
note that the actual cracks of irregular geometry and subjected
to arbitrary 2-D stress distributions do not have to be approxi-
mated by equivalent standard elliptical, semi-elliptical or corner
quarter-elliptical cracks as it is in the case of methods using 1-D
weight functions. It is also worth noting that the computation time
necessary for the simulation of the fatigue crack growth of planar
cracks requiring a few million repetitions (loading cycles) is sub-
stantially shorter than that one needed for FEM or BEM based fati-
gue crack growth analyses. The simulation of the fatigue crack
growth in the spring wire resulted in the final fatigue life of 58 mil-
lion cycles and it required ca. 12 h CPU time on a computer with
2 GHz clock. The calculations were carried out on the block-by
block method (1 block = 1000 cycles), i.e. the calculation process
had to be repeated 58 thousand times. In the case of the FEM or
BEM based analyses it would require re-meshing the entire prob-
lem also 58 thousand times!

6. Conclusions

The method of fatigue crack growth analysis based on the SIF
calculations obtained from the point-load weight function has
been presented in the paper along with examples of its application.
The method can be used for fatigue crack growth life assessment of
mechanical components containing convex planar cracks or crack-
like defects subjected to arbitrary Mode I stress distribution. The
fatigue crack growth assessment requires definition of the pro-
spective crack plane in a component and the knowledge of the
Mode I stress distribution over that plane. The stress distribution
can be obtained for an un-cracked body and independently of the
fatigue crack growth analysis. The stress distribution can be deter-
mined analytically or numerically depending of the complexity of
the configuration to be analyzed. The method is applicable to
cracks and the cross-sections of arbitrary but convex geometry
subjected to arbitrary Mode I stress distribution.

One of the important elements of the proposed method is the
approximation of the actual crack contour with a series of linear
segments. The studies carried out up to date have revealed that
the best results regarding the accuracy of the SIF and fatigue crack
growth life estimations were obtained when the crack contour
approximation was achieved with a constant angle c between
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adjacent linear segments. Acceptable accuracy was achieved when
the angle c between adjacent segments was at least 170�.

In most cased the predicted fatigue crack growth lives were
conservative by 10–20% in comparison with simulations using
the 1-D weight functions and resulting approximations.

The proposed method enables prediction of crack growth lives
in CPU times comparable to those needed only for the calculation
of handbook classical SIF solutions therefore it is much less time
consuming than the FEM/BEM numerical methods.
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