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A B S T R A C T

Hydrogen-capped polyynes have been synthesized by 800 nm femtosecond photolysis of

acetone molecules. Four bands appearing in the 1800–2200 cm�1 range of surface enhanced

Raman spectra show a mixture of polyynes with variable chain lengths in the irradiated

acetone. The shortest hydrogen-terminated chain is found to be C6H2. The presence of

charged carbon dimer, monomer Cþ2 , C+ and double charged C2+ has been confirmed by

time-of-flight mass spectroscopy. These ions are generated as irradiation products of step-

wise dissociation of acetone and further act as building blocks in the synthesis of polyynes.

� 2008 Elsevier Ltd. All rights reserved.

Polyynes, linear carbon chains with alternating triple and sin-

gle sp-hybridized C–C bonds terminated by atoms or groups

(conventionally polyynes represent the class of molecules

H(–C„C–)mH, with integer m), have attracted considerable

interest in astrophysics and nanoscience [1–3]. These com-

pounds have been detected in interstellar materials [1], and

are important precursor molecular components in the forma-

tion of fullerenes and carbon nanotubes [2]. They have been

investigated as prototypes of carbyne, a novel sp-bonded allo-

trope of carbon [2,4]. Recently, hybrid nano-materials have

been developed in which polyynes have been inserted into

single wall carbon nanotubes [3] or bonded to silver nanopar-

ticles [4]. Conventional synthesis of polyynes involves reac-

tions of acetylenic coupling [5]. However, due to the complex

nature of these chemical reaction sequences, the generation

of polyynes via laser ablation of suspended carbon solids

[6–11] or by arc discharge [1] using carbon electrodes in organic

solvents may constitute a more practical synthetic route.

Polyynes have been generated by the laser ablation of sus-

pended graphite [6–9], C60 [10] and nanodiamond [11] particles

in solution. In these experiments, polyyne molecules do not

originate from decomposition of the solvent but by ablation

of suspended particles. This is also true for the submerged

arc, where the graphite electrode provides the precursor mol-

ecules required for the formation of polyynes [1]. It has also

been shown that there is no direct formation of polyynes by

pyrolysis at the focus of nanosecond laser pulses in hydrocar-

bon liquids even at pulse energies in excess of 300 mJ [6,10]. It

is expected, however, that pyrolysis would occur at the focus

of femtosecond pulses because the high electric intensity

generated leads to ionization and bond breaking [12,13]. In

our previous work, we have shown that fs irradiation of the

surface of graphite produces liquid carbon as part of a non-

equilibrium metastable high temperature phase containing

polyynes [4]. In this letter, we report the preparation of polyy-

nes in solution by direct dissociation of acetone molecules

with fs laser radiation followed by growth of polyynes from

the dissociation products. Acetone was chosen because dia-

mond-like carbon films have been successfully deposited

using femtosecond laser ablation of frozen acetone [14]. It is

found that a variety of carbon species are created by femto-

second laser ablation of hydrocarbons, however, since ace-

tone contains a C@O bond the laser induced dissociation of

this molecule is more complex than for alkane molecules

[12,13]. It is therefore of interest to elucidate the femtosecond

laser induced dissociation of acetone.

The output beam of a regenerative amplified Ti:sapphire

laser operating at 800 nm producing 90 fs pulses at a repeti-

tion frequency of 1 kHz was focused into an optical cell con-

taining 20 ml of acetone with a 4 cm focal length lens. As

the diameter at the beam focus was �10 lm, the resulting la-

ser intensity was �1015 W/cm2 at a pulse energy of 300 lJ. The

molecular composition of the solution after irradiation for

one hour was obtained from surface enhanced Raman spec-

tra (SERS) after mixing at a ratio of 5:1 with a 0.1 M solution

of nanosilver particles. SERS spectra were recorded by focus-
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ing a 632 nm laser beam into the resulting solution with a ·50

objective at an excitation power of 0.3 mW.

Fig. 1 shows SERS spectra of irradiated and unirradiated

acetone. It can be seen that four Raman bands appear in

the 1800–2200 cm�1 range after irradiation. These features

can be attributed to polyynes with different chain lengths

[4,7,8]. An estimate of chain length can be obtained as the

two primary SERS bands in polyynes have been characterized

by Tabata et al. [7] using size-separated polyynes CnH2 in the

range n = 8–16. They found that the high vibration frequency

of the a mode is linearly dependent on chain length, with a

lower frequency corresponding to an increase in chain length.

Compagnini et al. [8] have used this correlation to show that

C6H2 is produced as a result of the laser ablation of graphite

in water. The inset to Fig. 1 shows the correlation derived by

Tabata et al. [7] together with the high frequency band ob-

served in fs-irradiated acetone. It is evident that the fre-

quency of the present SERS mode lies on this curve

indicating that the shortest chain produced after fs irradia-

tion is also C6H2. The possible presence of longer chains can-

not be detected as the frequency of the b mode in SERS

spectra of C8H2–C14H2 is not strongly correlated with chain

length. In addition, there is considerable overlap between

the b modes of short chains and the a mode of longer chains

[7]. Further experiments using high performance liquid chro-

matography will be used to determine if longer polyynes are

also present in the irradiated solution.

During irradiation of liquid acetone with fs pulses, bubbles

were observed to evolve from the focal volume. This gas was

collected and analyzed using gas-phase chromatography

combined with ion trap mass spectroscopy (GC-MS). Irradi-

ated acetone was colorless clear transparent liquid without

solid suspension. Molecular fragments due to fs irradiation

were characterized by a Wiley–McLaren time-of-flight (TOF)

mass spectroscopy equipped with a double multichannel

plate detector, which enables more than 107 gain. The pristine

acetone was fed into the chamber through a high vacuum

leak valve and the work pressure of the TOF mass spectros-

copy was kept as 2 · 10�7 Torr. The laser was focused by a

5 cm focal length spherical mirror. Positive charged ions were

first extracted by a 20000 V/m electric field and then acceler-

ated by 1.2 kV voltage prior to flying into a free drift chamber.

The free drift length was about 30 cm.

Fig. 2 shows time-of-flight mass spectra of acetone vapor

dissociated by fs pulses. The relationship between drift time

and mass/charge ratio is given by t � k
ffiffiffiffiffiffiffiffiffi
m=q

p
, where k is a con-

stant which depends on experimental configurations, t is the

total drift time, m and q are the ion mass and charge. This

relation is derived on the basis of the following assumptions:

1. that the initial ion velocity corresponds to that at 300 K (cor-

responding kinetic energy of 0.25 eV); 2. all ions experience

the same extraction and acceleration voltages. All charged

species in the TOF spectrum can be identified on the assump-

tion that the first peak at 0.542 ls is that of H+ while the last

strong peak at 2.81 ls corresponds to singly-charged acetone.

From fast species to low ones the analysis shows that these

ions are H+, H2+, C2+, C+, CH3
+, O+, Cþ2 , CO+, O2

+, CH3CO+ and

(CH3)2CO+. The inset to Fig. 2 shows all TOF peaks plotted

vs. the root of m/q. The perfect linear correlation confirms

that individual species have been correctly identified. Fur-

thermore, the presence of CO and CH4 molecules in the gas

extracted during irradiation has been detected by GC-MS as

expected from the assignment of ionic species shown in

Fig. 2. It is apparent that carbon radicals and radical ions like

Cþ2 , C+ and C2+, are created in the dissociation of acetone mol-

ecules. These species are likely the primary building blocks in

the growth of polyyne molecules.

The growth of polyynes proceeds by the addition of C, C2

and H to acetylenic groups [6]. Hydrogen atoms required in

the terminal or capping bonds can be extracted from the sol-

vent. While C atoms require the breaking of all C–C and CH

bonds the formation of polyyne molecules cannot proceed

in the absence of this species. Previous experimental and the-

oretical work has shown that the dissociation of acetone with

fs pulses is a stepwise procedure that occurs sequentially in

increasing energy as C–C, C@O, C–H bonds are each dissoci-

ated [12,13]. At intensities <1014 W/cm2, the C–H bond does

not break so that C atoms are not available for the growth
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Fig. 1 – Surface enhanced Raman spectra of unirradiated

(dashed line) and acetone after irradiation with fs pulses.

Inset: Raman shift of the a mode of polyynes as a function of

the number of carbon atoms in a polyyne chain [15].

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

1 2 3
0

2

4

6

8

ro
ot

 o
f m

/q

time (μs)

(C
H

3 )2 C
O

+

Time of flight (μs)

In
te

ns
ity

 (
a.

 u
.)

H+

H2+

C
2+

C+

C
H

3 +

O+

C
2

+

C
O

+

O
2

+

C
H

3 C
O

+

Fig. 2 – Time-of-flight mass spectra of molecular acetone

after irradiation with 120 fs pulses from a 800 nm laser at a

pulse energy of 300 lJ. Inset: drift time of identified atomic

and molecular species plotted vs. mass/charge ratio.
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of polyyne molecules. This result is consistent with the ef-

fects observed after irradiation with ns laser pulses where

the intensity is in 108–1012 W/cm2 range [2]. In the present

experiment, the laser intensity at the focus of the spherical

mirror is �1015 W/cm2, which is close to the threshold value

for the production of a Coulomb explosion. At this intensity,

all bonds in acetone can be easily broken resulting in the gen-

eration of C and C+. The presence of the C2+ ion may indicate

that dissociation occurs via Coulomb explosion. A similar pic-

ture can also explain the femtosecond laser ablation of ace-

tone solid, where the presence of C+, C2+ and C2 are evident

from emission spectra [14]. However, it is necessary to point

out that the use of acetone is not critical to the production

of polyynes via fs laser irradiation of hydrocarbons. Recently

we have also successfully synthesized polyynes using differ-

ent alkane molecules as precursors. It is worth noting that

polyynes are not stable at high temperature [15]. At tempera-

tures in the range between 50 �C and 100 �C, polyynes form

graphene-like species by crosslinking. This process cannot

however occur during fs irradiation as the timescale for ther-

mal heating is much longer than that of the pulse width. This

is a manifestation of the highly non-equilibrium nature of fs

laser processing and indicates that the local thermal effect

(occurring over a nanoscale dimension) by fs irradiation can

enhance the stability of the resulting polyyne composition [4].

In summary, polyynes have been successfully synthesized

in a single-step process involving the dissociation of acetone

molecules in a liquid. Time-of-flight mass spectroscopy con-

firms that the dissociation of acetone generates simple car-

bon species such as C and C2 and their ions that act as the

molecular building blocks of polyynes.
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