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A numerical method for elasto-plastic
notch-root stress–strain analysis

Ayhan Ince and Grzegorz Glinka

Abstract
In this article, a computational modeling method of the multiaxial stress–strain notch analysis has been developed to
compute elasto-plastic notch-tip stress–strain responses using linear elastic finite element results of notched compo-
nents. Application and validation of the multiaxial stress–strain notch analysis model were presented by comparing com-
puted results of the model to the experimental data of SAE 1070 steel notched shaft subjected to several
nonproportional load paths. Based on the comparison between the experimental and computed strain histories, the
elasto-plastic stress–strain model predicted notch strains with reasonable accuracy using linear elastic finite element
stress histories. The elasto-plastic stress–strain notch analysis model provides an efficient and simple analysis method
preferable to expensive experimental component tests and more complex and time-consuming incremental nonlinear
finite element analysis. The elasto-plastic stress–strain model can thus be employed to perform fatigue life and fatigue
damage estimates associated with the local material deformation.
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Introduction

Fatigue failure is considered to be the most common
type of failure mode experienced by most engineering
components. Many mechanical components contain
notches and geometrical irregularities, which cannot be
avoided in practice. In addition, most of the mechanical
notched components are subjected to biaxial/multiaxial
loadings in services. Multiaxial loading paths produce
complex stress and strain states near notches and can
cause a fatigue failure at or near notch roots even without
any evident large-scale plastic deformation. Therefore,
notches have been considered as one of the most impor-
tant problems in the design of machine components.

Local strain-based fatigue life prediction of notched
components subjected to multiaxial loading paths requires
detail knowledge of stresses and strains in such regions.
Early researches focused primarily on determining theore-
tical stress concentration factors using either elasticity the-
ory or photoelastic analysis. Peterson1 has compiled
theoretical stress concentration factors for various geome-
tries into one book. Stowell2 and Hardrath and Ohman3

investigated stress concentrations in the plastic range. The
most well-known approximation formula that relates the
theoretical stress concentration factor to the product of
the elasto-plastic stress and strain concentration factors

was originally proposed by Neuber.4 Neuber studied a
semi-infinite prismatic notched body obeying a nonlinear
stress and strain law. He proposed that the product of the
stress and strain at the notch tip in any arbitrary notched
geometry in a prismatic body is not dependent on materi-
al’s nonlinear parameters but can be related to material’s
elastic parameters and the far field boundary conditions.
Neuber’s rule for uniaxial loading is

saea =K2
t Se ð1Þ

where sa and ea are the elasto-plastic notch-tip stress
and strain, S and e are the nominal section stress and
strain and Kt is the elastic stress concentration factor.
Alternatively, Neuber’s rule can be written in the form

sa ea =seee ð2Þ

Department of Mechanical and Mechatronics Engineering, University of

Waterloo, Waterloo, ON, Canada

Corresponding author:

Ayhan Ince, Department of Mechanical and Mechatronics Engineering,

University of Waterloo, 200 University Avenue West, Waterloo, ON,

Canada N2L 3G1.

Email: ayhan.ince@yahoo.com

 at SWETS WISE ONLINE CONTENT on June 11, 2013sdj.sagepub.comDownloaded from 

http://sdj.sagepub.com/


where se =KtS and ee =Kte are the fictitious elastic
strain and stress. Equation (2) states that the total strain
energy density and complementary energy density at
the notch tip are equal to the fictitious strain energy
density and complementary energy density as if a mate-
rial hypothetically remained elastic.

Topper et al.5 extended validation of Neuber’s rule
to several notch geometries subjected to uniaxial cyclic
loading. Their results showed that Neuber’s rule for
cyclic loading was in good agreement with experimental
results for notched aluminum alloy sheets. Molski and
Glinka6 proposed the equivalent strain energy density
(ESED) method as an alternative to Neuber’s rule.
They postulated that the strain energy density at a
notch equals that if the body were to hypothetically
remain elastic. The authors showed6 that the ESED
method provided good agreement with experiment for
several notched specimens subjected to monotonic
loading. The ESED method can be written in terms of
stresses and strains as

1

2
seee =

ðea

0

sadea ð3Þ

Glinka7 later extended the ESED method to address
notched bodies subjected to cyclic loading. As the local
strain-life approach was extended to multiaxial loading
using multiaxial fatigue damage parameters, these dam-
age parameters require multiaxial strains and stresses to
be determined at notch areas. Since nonlinear finite ele-
ment analysis (FEA) is too costly to compute multiaxial
stresses and strains for a long load history, simple uni-
axial notch stress and strain approximation techniques
were extended to states of multiaxial stress and strain.
Hoffmann and Seeger8,9 proposed a method for multi-
axial proportional loading by applying an equivalent
form of Neuber’s rule as

sa
eqe

a
eq =se

eqe
e
eq ð4Þ

where sa
eq and eaeq are the notch-tip elastic–plastic equiv-

alent stress and strain, respectively, and se
eq and eeeq are

those that would be obtained if the material remained
elastic. They assumed that the ratio of minimum princi-
pal strain components at the notch tip remains constant
during loading.

Ellyin and Kujawski10 proposed a method that the
maximum stress and strain at the notch roots can be
calculated for monotonic and cyclic loadings from the
knowledge of the theoretical stress concentration factor
Kt. This method is based on an averaged similarity
measure of the stress and strain energy densities along
a smooth notch boundary. The method can also be
used in the case of multiaxial states of stress. Ellyin and
Kujawski reported that the predicted stresses and
strains at the notch root were in good agreement with
the available experimental data and FE results. The
generalization of both the ESED method and Neuber’s
rule for proportional multiaxial loading for notched

bodies was suggested by Moftakhar.11 Numerical and
experimental studies conducted by Moftakhar et al.12

showed that the generalized ESED method and
Neuber’s rule provide upper and lower bounds of the
actual strains. Their study concluded that Neuber’s rule
tends to overestimate the notch-tip elastic–plastic
strains and stresses and the ESED method tends to
underestimate the notch-tip inelastic strains and stres-
ses. Hoffman et al.13 presented a method to estimate
notch-root stresses and strains for bodies subjected to
nonproportional loading. In their method, the multiax-
ial loads are first separated and notch-root strain his-
tories are calculated for the loads independently by
following the same solution procedure as for propor-
tional loading. Compatibility iteration is then used to
account for interaction between strain components that
result from nonproportional loading. Their calculations
compared well with FEA. Barkey14 and Barkey et al.15

later proposed a method to estimate multiaxial notch
strains in notched bars subject to cyclic proportional
and nonproportional loading, using the concept of a
structural yield surface. The structural yield surface
describes the relationship between nominal stresses and
notch strains. The hardening parameter is found by
using the uniaxial form of the ESED method as the
basis of nominal load to notch plastic strain curve.
Their results showed good agreement with experimen-
tal nonproportional tension–torsion tests for a notched
steel bar. Köttgen et al.16 extended Barkey’s approach
by incorporating the notch effect into the constitutive
relation. They first obtained pseudo stress history by
assuming elastic material behavior. The yield criterion
and the flow rule were determined using elastic stress
history, and the hardening parameter was determined
using pseudo stress and local plastic strain curve
obtained from a uniaxial simplified rule. The resulting
elastic–plastic strain increments were then fed back into
the flow rule to calculate notch stresses. Köttgen et al.
reported correlation of their method with elasto-plastic
FEA for various geometries and applied loads. Singh17

extended the ESED and Neuber’s methods to estimate
the notch-root stresses and strains for monotonic non-
proportional loading. The approach is an incremental
generalization of the ESED method and Neuber’s rule.
In generalizing the ESED method, Singh suggested that
for a given increment of external load, the correspond-
ing increment of the strain energy density at the notch
tip in an elastic–plastic body is equal to the increment
of the strain energy density if the body were to remain
elastic.

Recent research studies18–20 have shown that the
notch correction method can be combined with the cyc-
lic plasticity model to compute the local stress and
strain history from the pseudo-elastic stress and strain
at the notch area. Coupling the notch correction
method and the cyclic plasticity to compute the local
stresses and strains at critical locations in components
provides a great advantage over experiments and incre-
mental elastic–plastic FEAs due to its simplicity,
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computational efficiency, low cost and reasonable accu-
racy. The multiaxial stress–strain notch analysis
method originally proposed by Buczynski and Glinka19

is adapted to develop the elastic–plastic stress–strain
model to compute local stress–strain responses using
linear elastic FE results of notched components. A gen-
eral numerical algorithm is developed on the basis of
incremental relationships, which relate the elastic and
elastic–plastic strain energy densities at the notch root
and the material stress–strain behavior, simulated by
the Garud21 cyclic plasticity model. The algorithm com-
putes multiaxial elasto-plastic stress–strain responses
for many nodal points that define critical notch areas
of the FE model. A flowchart for the algorithm imple-
menting the stress and strain analyses for notched com-
ponents subjected to the multiaxial loadings is shown in
Figure 1.

Linear elastic stress–strain histories

FE models are used often to analyze engineering com-
ponents. A linear elastic FEA can be used to calculate
linear elastic stresses/strains for a notched component.
Once the elastic stresses/strains are known, the elasto-
plastic stress–strain analysis (combined with the multi-
axial notch correction and the cyclic plasticity) can be
used to compute the actual elastic–plastic stress and
strain responses at notch areas. The linear elastic FEA
assumes that there is a linear relationship between the
applied external load and stress–strain results. Axle

and shaft components often experience combined bend-
ing and torsion loads. Let us consider a notched shaft
shown in Figure 2, which has two applied load his-
tories, namely, bending and torque. The FEA is per-
formed to calculate unit-load linear elastic stress
tensors for each applied load. The elastic stress tensor
at each node from the linear elastic FEA is multiplied
by the corresponding load history to compute a time
history of elastically calculated stress tensor. If the elas-
tic stress tensor at a node is s

ep
ij for a unit load of p, the

time history of the elastic stress tensor s
eP(t)
ij for the

load history P(t) can be calculated as

Figure 1. Algorithm for notch stress and strain analyses.
FEA: finite element analysis.

Figure 2. A notched shaft with applied load histories P(t) and
Q(t).
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s
eP(t)
ij =P(t)s

ep
ij ð5Þ

If the elastic stress tensor at the same node is s
eq
ij for

a unit load of q, the time history of the elastic stress ten-
sor s

eQ(t)
ij for the load history Q(t) can be calculated as

s
eQ(t)
ij =Q(t)s

eq
ij ð6Þ

Time histories of elastic stress tensors s
eP(t)
ij and

s
eQ(t)
ij for the same node are then superimposed to

obtain the resultant time history of the elastic stress
tensor for both load histories P(t) and Q(t), applied
simultaneously

se
ij =seP

ij +s
eQ
ij ð7Þ

Figure 3 shows a schematic representation of the
implementation procedure for superimposing elastic
stress tensors. Since fatigue crack initiation is formed
on the surface of a component, elastic stress tensors for
surface nodes at critical notch areas are used for esti-
mating actual elastic–plastic stress–strain responses. A
macro routine written in ANSYS Parametric Design
Language (APDL) is used to compute elastic stress
results for surface nodes for each unit load. Unit-load
elastic stress results from the FEA and corresponding
time histories for each unit load are used as input to a
computer program to calculate combined time histories
of elastic stress tensor at critical notch areas.

If components of a stress tensor change proportion-
ally during the loading, the loading is called propor-
tional. When the applied load results in the change of
the principal stress directions and the ratio of the prin-
cipal stresses, the loading is called nonproportional.
When plastic yielding takes place at the notch tip, then
the stress path at the notch-tip region is usually non-
proportional regardless of whether the external loading
is proportional or not. Nonproportional loading/stress
paths are usually defined by increments of load/stress
components, and therefore, stress–strain calculations
have to be carried out in incremental form. Time his-
tories of elastic stresses are transformed to increments
of elastic stresses. A schematic representation of elastic
stress increments used as input to the stress–strain
notch analysis model is shown in Figure 4.

For the case of general multiaxial loading applied to
a notched body, the state of stress near the notch tip is
triaxial. However, the stress state at the notch tip is

Figure 3. Superimposing FEA elastic stress results from two load histories.

Figure 4. The input elastic stress increments of the time
history of the stress.
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biaxial because of the notch-tip stress for a free surface
as shown in Figure 5. Since equilibrium of the infinite-
simal element at the notch tip must be maintained, that
is, se

23 =se
32 and ee23 = ee32, there are three nonzero

stress components and four nonzero strain components
(Figure 5)

se
ij =

0 0 0
0 se

22 se
23

0 se
32 se

33

2
4

3
5 and eeij =

ee11 0 0
0 ee22 ee23
0 ee32 ee33

2
4

3
5
ð8Þ

Seven fictitious linear elastic stress and strain com-
ponents (se

ij, e
e
ij) are obtained from the linear elastic FE

solution; however, the actual elastic–plastic stress and
strain components (sa

ij, e
a
ij) at the notch tip are

unknown. Therefore, a set of seven independent equa-
tions are required for the calculation of actual elastic–
plastic stress and strain components at the notch tip.
The multiaxial Neuber notch correction rule and the
Garud cyclic plasticity model are integrated to provide
the required seven equations to solve for all unknown
stress and strain components. The cyclic plasticity pro-
vides four equations, and the notch correction rule pro-
vides the remaining three equations.

Constitutive governing equations

Under applied cyclic loadings, stress–strain responses
at critical regions (notches) often show a transient
response but stabilize over a number of cycles. For
nonproportional load histories, an incremental plasti-
city analysis is required to estimate the material’s
stress–strain response. A number of incremental plasti-
city models21–27 have been developed to estimate con-
stitutive material behavior, and some of those models
are sophisticated to include the transient hardening
responses. However, these complex models require sig-
nificant material testing to characterize model

parameters and are not appropriate for practical engi-
neering use. Furthermore, for the multiaxial fatigue
analysis, the transient nature of deformation behavior
is not as critical as the behavior of cyclically stabilized
material behavior. Therefore, a relatively simple Garud
hardening model is used to deal with proportional and
nonproportional multiaxial loadings.

The cyclic plasticity model provides a set of govern-
ing equations to relate stress and strain components.
Since the fatigue cracks most often initiate on the sur-
face of a component, governing equations are provided
for stress–strain state on the free component surface.
Governing equations are presented in deviatoric space
based on a rate-independent, homogenous and isotro-
pic material because it is easier to formulate the equa-
tions using deviatoric stress and strain quantities.

In elastic loadings, the deformation process is rever-
sible, and when the applied load is removed from the
body, the deformed body returns to its original state.
There is a direct relationship between stress and strain,
and relations between stress and strain tensors are
determined by Hooke’s law (equation (9)).

The generalized Hooke’s law in an incremental form
is represented as

deeij =
1+ v

E
dsij �

v

E
dsijdij ð9Þ

When the body is deformed beyond the material’s
yield limit, permanent plastic deformation occurs, and
the deformation process becomes irreversible. When
the applied load is removed from the body, the perma-
nent deformation remains in the body. Based on the
plasticity theory, the stress and strain states are depen-
dent on the loading path. As well known, there are
three main elements required in order to model consti-
tutive behavior of the material: a yield criterion, which
defines a boundary between elastic and elastic–plastic
stress states; a flow rule, which describes the relation-
ship between stress and strain increments; and a hard-
ening rule, which describes how yield function changes
during the plastic deformation. The von Mises yield cri-
terion has been the most popular criterion for modeling
the material constitutive behavior. Since it is widely
accepted that hydrostatic stresses do not influence
yielding, the yield function, equation (10), for the iso-
tropic hardening can be described as a uniform and
symmetrical expansion of the yield surface in all direc-
tions during plastic loading

F=
3

2
SijSij � s2

y kð Þ=0 ð10Þ

where Sij is the deviatoric stress tensor and sy kð Þ is the
current size of the yield surface as a function of k.

The yield function, equation (11), for the kinematic
hardening can be represented as a translation of the
yield surface without any expansion during plastic
loading. The yield surface for the kinematic hardening
maintains its shape and size

Figure 5. Stress and strain states at a notch tip.
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F=
3

2
Sij � aij
� �

Sij � aij
� �

� s2
yo=0 ð11Þ

The flow rule, equation (12), defines the relationship
between stress and plastic strain increments. The flow
rule, based on the normality postulate by Drucker,22

implies that the increment of plastic strain is in the nor-
mal direction to the yield surface during plastic
deformation

depij = dl
∂F

∂sij
ð12Þ

where deij is the plastic strain increment tensor, sij is the
stress tensor, F is the yield function, and dl is a scalar-
valued function.

For elastic–plastic loading, total strain tensor is the
sum of elastic strain determined by Hooke’s law and
plastic strain determined by the flow rule

eij = eeij + epij ð13Þ

Similarly, the elastic and plastic strain increment can
be added to obtain the total strain increment

deij = deeij + depij ð14Þ

Substituting equations (9) and (12) into equation
(14) yields a general form of the total elastic–plastic
strain increment. The generalized constitutive elasto-
plastic stress–strain relationships are derived from the
uniaxial stress–strain curve by using principles of the
theory of elasticity and plasticity

deij =
1+ v

E
dsij �

v

E
dsijdij + dl

∂F

∂sij
ð15Þ

In the case of proportional stress path, the Hencky
total deformation of plasticity equations can be used
for stress–strain analysis

eaij =
1+ v

E
sa
ij �

v

E
sa
kkdij +

3

2

epaeq
sa
eq

� Sa
ij ð16Þ

The normality flow rule, also called the Prandtl–
Reuss relation, is considered one of the most frequently
used model in the incremental plasticity. The total
strain increment, equation (15), can be expressed in the
form of the Prandtl–Reuss strain–stress relationship

Deaij =
1+ v

E
Dsa

ij �
v

E
Dsa

kkdij +
3

2

Depaeq
sa
eq

� Sa
ij ð17Þ

The notch-tip deviatoric stresses of the hypothetical
linear elastic body are determined as

Se
ij =se

ij �
1

3
se
kk dij ð18Þ

The elastic deviatoric strain and stress increments
can be calculated from Hooke’s law

Deeij =
DSe

ij

2G
ð19Þ

The actual deviatoric stress components in the notch
tip can analogously be defined as

Sa
ij = sa

ij �
1

3
sa
kkdij ð20Þ

The incremental deviatoric stress–strain relations
based on the associated Prandtl–Reuss flow rule can be
subsequently written as

Deaij =
DSa

ij

2G
+ dl � Sa

ij ð21Þ

where

1

2G
=

1+ n

E
, dl=

3

2

Depeq
sa
eq

, sa2
eq =

3

2
Sa
ijS

a
ij,

Depeq =
df(sa

eq)

dsa
eq

Dsa
eq

This relation assumes that the plastic strain increments
at any instant of loading are proportional to the devia-
toric stress components. The relation between the
equivalent plastic strain increment and the equivalent
stress increment in the uniaxial stress–strain curve can
be used to determine the multiaxial incremental stress–
strain relation

Depaeq =
Dsa

eq

E
p
T

ð22Þ

where Depaeq is the equivalent plastic strain increment,
Dsa

eq is the equivalent stress increment and E
p
T is the

current value of the generalized plastic modules.
The function Depaeq = f Dsa

eq

� �
is identical to the plas-

tic strain–stress relationship obtained experimentally
from uniaxial tension test. The plastic strain–stress rela-
tionship can be expressed according to the uniaxial
Ramberg–Osgood equation

s =K9 epð Þn9 ð23Þ

where the constants K# and n# are determined by uniax-
ial tensile test.

The analytical expression of the generalized plastic
modules Ep

T can be derived using the Ramberg–Osgood
equation

E
p
T =

2

3

ds

dep
=

2

3
Ep =

2

3
K9n9

s

K9

� �n9�1
n9 ð24Þ

where Ep is the slope of the uniaxial stress–plastic strain
curve (or the uniaxial plastic modulus).

The uniaxial stress–strain curve is divided into a
number of stress fields (Figure 6). Each stress surface
defines regions with constant plastic modulus in the
stress space. Figure 6 shows a graphic interpretation of
generalizations of the seq � epeq curve in the stress space
and stress fields of constant plastic modules.

In the case of stress and strain states on the free sur-
face of the notch, material constitutive equations are
given in terms of deviatoric stresses as

234 Journal of Strain Analysis 48(4)
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Dea11 =
DSa

11

2G
+ dl � Sa

11

Dea22 =
DSa

22

2G
+ dl � Sa

22

Dea33 =
DSa

33

2G
+ dl � Sa

33

Dea23 =
DSa

23

2G
+ dl � Sa

23

ð25Þ

Four notch strain increments (Dea11, Dea22, Dea33, Dea23)
and three notch stress increments (Dsa

22, Dsa
33, Dsa

23) in
equation (25) form seven unknowns to be solved. Four
deviatoric stress increments (DSa

11, DSa
22, DSa

33, DSa
23) in

equation (25) are functions of three notch stress incre-
ments (Dsa

22, Dsa
33, Dsa

23).

Coupling constitutive equations and
Neuber’s notch correction relation

The main goal of this section is to show how to com-
bine a cyclic plasticity model and notch correction
method to determine a set of governing equations to
compute the notch stress and strain components.

The load is usually represented by the nominal stress
being proportional to the remote loading for notched
bodies. In the case of notched bodies in a plane stress
or plane strain state, the relationship between the elas-
tic notch-tip stresses and strains and the actual elastic–
plastic notch-tip stresses and strains in the localized
plastic zone is often approximated by the Neuber rule
or the ESED method. It was shown17,19 that both
methods can also be extended for multiaxial propor-
tional and nonproportional modes of loading. Similar
approaches were proposed by Hoffman and Seeger13

and Barkey.14 All methods consist of two parts,
namely, the constitutive equations and the notch cor-
rection relating the pseudo-linear elastic stress–strain
state (se

22, ee22) at the notch tip with the actual elastic–
plastic stress–strain response (sa

22, ea22).
The Neuber rule4 for proportional loading, where

the Hencky stress–strain relationships are applicable,
can be written for the uniaxial and multiaxial stress

states in the form of equations (26) and (27),
respectively

se
22 e

e
22 =sa

22 e
a
22 ð26Þ

se
ij e

e
ij =sa

ij e
a
ij ð27Þ

The ESED method6 represents the equality between
the strain energy density at the notch tip of a linear elas-
tic body and the notch-tip strain energy density of a
geometrically identical elastic–plastic body subjected to
the same load. The strain energy density equations for
the ESED method for the uniaxial and multiaxial stress
states can be written in the form of equations (28) and
(29), respectively

ðee22
0

se
22de

e
22 =

ðea22
0

sa
22de

a
22 ð28Þ

ðeeij

0

se
ijde

e
ij =

ðeaij2

0

sa
ijde

a
ij ð29Þ

The strain energy density equality, equations (27)
and (29), relating the pseudo-elastic and the actual
elastic–plastic notch strains and stresses at the notch
tip, has been widely used as a good approximation
method, but additional conditions are required for the
complete solution of a multiaxial stress state problem.
However, those conditions have been the subject of
controversy. Hoffman and Seeger13 assumed that the
ratio of the actual principal strains at the notch tip is
equal to the ratio of the fictitious elastic principal strain
components, while Barkey14 suggested using the ratio
of principal stresses. Barkey’s approach was based on
assumptions that if the applied loads are proportional,
the notch-tip deviatoric stress components remain in
fixed proportion, and if the applied loads are nonpro-
portional, the ratio of the normal stresses remains in
fixed proportional during the loading history. These
assumptions are sufficiently accurate in the case of cir-
cumferential notches for cylindrical bodies but are not
true in general multiaxial loading. Moftakhar11 found
that the accuracy of the stress or strain ratio–based
analysis depended on the degree of constraint at the
notch tip. Therefore, Moftakhar et al. proposed12 to
use the ratios of strain energy density contributed by
each pair of corresponding stress and strain compo-
nents. Singh17 confirmed later that the additional
energy equations provide a good accuracy when used
in an incremental form. Because the ratios of strain
energy density increments seem to be less dependent on
the geometry and constraint conditions at the notch tip
than the ratios of stresses or strains, the analyst is not
forced to make any arbitrary decision about the con-
straint while using these equations. It was also found
that the conflict between the plasticity model (normal-
ity rule) and strain energy density equations at some
specific ratios of stress components may cause singular-
ity for a set of seven equations. Such a conflict can be

Figure 6. A graphical representation of fields of constant
plastic modules and the multilinear material curve.
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avoided if the principal idea of Neuber is implemented
in the incremental form. It should be noted that the
original Neuber rule was derived for bodies in pure
shear stress state. It means that the Neuber equation
states the equivalence of only distortional strain ener-
gies. In order to formulate the set of necessary equa-
tions for a multiaxial analysis of elastic–plastic stresses
and strains at the notch tip, the equality of increments
of the total distortional strain energy density should be
used. Therefore, a set of seven equations from the nor-
mality rule and strain energy density should be formu-
lated in a deviatoric stress space to be consistent with
the original Neuber rule. However, Moftakhar et al.12

and Singh17 suggested these equations in the normal
stress space. Thus, the equations were overconstrained
due to inclusion of hydrostatic stress components in
the solution.

Buczynski and Glinka19 proposed, analogous to the
original Neuber rule, to use the equivalence of incre-
ments of the total distortional strain energy density
contributed by each pair of associated stress and strain
components, that is

Se22Dee22 + ee22DS
e
22 =Sa

22De
a
22 + ea22DS

a
22

Se
33De

e
33 + ee33DS

e
33 =Sa

33De
a
33 + ea33DSa

33

Se
23De

e
23 + ee23DS

e
23 =Sa

23De
a
23 + ea23DSa

23

ð30Þ

The equalities of strain energy increments for each
set of corresponding hypothetical elastic and actual
elastic–plastic strains and stress increments at the notch
tip can be shown graphically in Figure 7. The area of
dotted rectangles represents the total strain energy
increment of the hypothetical elastic notch-tip input
stresses, while the area of the hatched rectangles repre-
sents the total strain energy density of the actual
elastic–plastic material response at the notch tip.

Consequently, a combination of four equations from
the elastic–plastic constitutive equation (25) and three
equations from the equivalence of increments of the
total distortional strain energy density, equation (30),
yields the required set of seven independent equations
necessary to completely define elastic–plastic notch-tip
strain and stress responses for a notched component
subjected to multiaxial nonproportional cyclic loads.
The final set of equations written as a set of seven
simultaneous equations, equation (31), from which all
unknown deviatoric strain, Deaij, and stress, DSa

ij, incre-
ments can be calculated, based on the linear hypotheti-
cal elastic notch-tip stress history, that is, increments
Dse

ij and Deeij, are known from the linear elastic FEA
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Since the equation set (31) is linear, the solution of the
equations requires the Gaussian elimination approach.
For each increment of the external load, represented by
the increments of pseudo-elastic deviatoric stresses DSe

ij,
the deviatoric elastic–plastic notch-tip strain and stress
increments Deaij and DSa

ij are computed from equation
(31). The calculated deviatoric stress increments DSa

ij

can subsequently be converted into the actual stress
increments Dsa

ij using equation (32)

DSa
22 =Dsa

22 �
1

3
Dsa

22 +Dsa
33

� �

DSa
33 =Dsa

33 �
1

3
Dsa

22 +Dsa
33

� �
DSa

23 =Dsa
23

ð32Þ

The deviatoric and the actual stress components Sa
ij

and sa
ij at the end of given load increment are deter-

mined from equations (33) and (34)

San
ij =Sao

ij +
Xn�1
k=1

DSak
ij +DSan

ij ð33Þ

san
ij =sao

ij +
Xn�1
k=1

Dsak
ij +Dsan

ij ð34Þ

where n denotes the load increment number.
The actual strain increments Deaij can finally be deter-

mined from equation (25). Before the solution of plasti-
city equations, loading/unloading conditions must be

Figure 7. Graphical representation of the incremental Neuber
rule.

236 Journal of Strain Analysis 48(4)

 at SWETS WISE ONLINE CONTENT on June 11, 2013sdj.sagepub.comDownloaded from 

http://sdj.sagepub.com/


checked. At the beginning of initial loading cycle, it is
assumed that all strains/stresses are elastic, and the
notch-tip stress–strain response is equal to the known
elastic solution, equation (9)

sa
ij =se

ij

eaij = eeij
ð35Þ

When the elastic loading reached the initial yield sur-
face, subsequent load increment may result in elastic
unloading, tangential (neutral) loading and elastic–
plastic (active) loading. The mode of loading is deter-
mined based on the loading criterion. When the stress
increment moves inward from the yield surface, elastic
unloading will take place, that is, the inner product of
tensors dS, ∂F=∂S, satisfies the condition

∂F

∂Sij
dSij \ 0 ð36Þ

If the stress increment is tangential to the yield sur-
face, the neutral loading will occur, that is, the inner
product of tensors dS, ∂F=∂S, satisfies the condition

∂F

∂Sij
dSij =0 ð37Þ

Since the computer implementation of the neutral
loading is virtually impossible to determine, this load-
ing criterion is regarded as an elastic unloading. The
relevant constitutive relations for the elastic unloading
and tangential loading are described based on Hooke’s
law, equation (9). When the current state of stress incre-
ments moves out from the yield surface, the elastic–
plastic loading will take place, that is, the inner product
of tensors dS, ∂F=∂S, satisfies the condition

∂F

∂Sij
dSij . 0 ð38Þ

The elastic–plastic loading condition states that the
projection of the stress increment onto the normal of
the yield surface must be greater than zero. The rele-
vant constitutive relations for the elastic–plastic loading
are described based on Hooke’s law and Prandtl–Reuss
equation (17).

Substituting the yield surface equation (11) for kine-
matic hardening into these loading criteria, the loading
mode criterion LC, in terms of finite increments can be
written for the purpose of numerical implementation as
follows

LC=
Xj=2, 3

i=2, 3

(Sa
ij � an

ij)Dse
ij ð39Þ

The loading mode criterion LC, for the incremental
Neuber method states that elastic unloading or the
elastic–plastic loading takes place as

LC40 Elastic Unloading

LC. 0 Elastic�Plastic Loading
ð40Þ

The coupled constitutive governing and Neuber’s
incremental equations discussed before are related with
the Garud cyclic plasticity model to compute the actual
notch-tip stress–strain response of a notched compo-
nent subjected to proportional and nonproportional
multiaxial cyclic loading. After the notch stress
increments are determined, the translation of the yield
surface is updated by employing the multisurface hard-
ening model proposed by Garud.21

Cyclic plasticity model

In order to estimate the elasto-plastic stress and strain
responses at critical notch location for a notched com-
ponent subjected to the multiaxial cyclic loading, a cyc-
lic plasticity model has to be related with the equation
set, equation (31). In several past decades, many plasti-
city models have been developed to model the material
behavior using different levels of complexity from sim-
ple to complicated solutions. Modeling complex mate-
rial behavior such as cyclic hardening/softening,
ratcheting and nonproportional hardening requires
extensive material testing to determine material con-
stants required for the modeling of complex material
behaviors. It is intended in this article to focus on a
plasticity model for its simplicity and efficiency to char-
acterize the material stress–strain responses with a rea-
sonable accuracy. Such a plasticity model is considered
to be suitable for the multiaxial stress–strain notch
analysis. The differences in the plasticity models are
generally based on the translation rule that governs the
movement of the yield surface. One of the most popu-
lar cyclic plasticity models was proposed by Mroz.23

Mroz defined a field of plastic moduli in stress space
for better approximation of the stress–strain curve and
generalization of the plastic modulus in multiaxial case.
Each surface is represented by its center coordinates akij,
a yield stress sk

yo and a plastic modulus Ep(k)
t . If the von

Mises criterion is used to represent the surface, the
yield surface is defined as

Fk Sij, aij
� �

=
3

2
Sij � akij

� �
Sij � akij

� �
� sk

yo2=0

ð41Þ

Garud21 showed a possibility of intersecting yield
surfaces for Mroz model under certain loading; there-
fore, Garud proposed an improved translation rule that
prevents any intersections of plasticity surfaces. Garud
suggested that the movement of the stress surface
depends not only on the current state of stress but also
on the direction of stress increment. Garud postulated
that increases in stress induce the evolution of plastic
deformation, and the surfaces are subject to transla-
tion, keeping constant shape and size without rotation
in the stress space. The assumed direction of movement
provides locations of the current state of stress on the
surface at the new location and eliminates the possibil-
ity of intersection between adjacent surfaces. The
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principle idea of the Garud translation rule is demon-
strated in the following steps.

It is assumed that an applied load results in the cur-
rent stress state settled at the point S and the two yield
surfaces F1 and F2 with the corresponding yield limits
RF1 and RF2 have been moved in the stress space, so
that their centers have been located to the points aF1ij
and aF2ij as it has been arbitrarily assumed and illu-
strated in Figure 8.

Based on the applied load path, the current stress
increment induces the plastic strain increment, and it is
forwarded outside the surface F1. According to the con-
sistency condition, the yield surface must follow the
stress state evolution, and the updated stress state
Sij+DSij must satisfy the updated yield function
F1(Sij+DSij � aF1ij � DaF1ij )� RF1 =0. During the plas-
tic strain evolution the yield surface with a fixed size
RF1 translates without rotation in the stress space.
Taking into account this assumption that the consis-
tency condition is satisfied by the condition as the sur-
face centered at the point Sij+DSij corresponding to
the updated stress state

F1½(aF1ij +DaF1ij )� (Sij+DSij)� � RF1 =0 ð42Þ

Thus, the translation rule of the yield surface must
be defined. The details of the yield surface translation
rule according to Garud’s proposition are discussed in
the following. The translation is associated with the
applied load path that generates a plastic strain
evolution.

In order to translate the yield surface according to
the Garud rule, the following steps should be
performed.

(a) Extend the current stress increment to intersect
the next inactive yield surface F2 at the point A2

as it is presented in Figure 8.

In the index notation, the following equation
describes the present step

Sij + x � DSij � aF2ij

��� ���=RF2 ð43Þ

where the unknown coordinates of the point A2 are
expressed as

SA2
ij =Sij + x � DSij ð44Þ

Find a normal vector on the next surface at the point
of intersection

nA2ij =

ffiffiffi
3

2

r
SA2
ij � aF2ij
RF2

ð45Þ

(b) Determine a point A1 on the active surface F1

with the same normal vector.

The two operations are described in the index notation
in the following form

nA2ij = nA1ij =

ffiffiffi
3

2

r
SA1
ij � aF1ij
RF1

SA1
ij =

RF1

RF2
SA2
ij � aF2ij

� �
+ aF1ij

ð46Þ

(c) Connect the conjugate points A1 and A2 to find
the direction of translation of the yield surface
F1, as shown in Figure 8 (current yield surface
moves in the direction of the connection between
two normal vectors)

(A1A2)ij =SA2
ij � SA1

ij ð47Þ

(d) Translate the surface F1 from point aF1ij to (aF1ij )9
in the direction of the vector (A1 A2) till the stress
increment DSij is found on the translated surface,
as presented in Figure 8.

In terms of the index notation, the following equa-
tion can be defined

Sij +DSij � aF1ij � DaF1ij

��� ���=RF1 ð48Þ

in which the components DaF1ij of the translation vector
are expressed

DaF1ij = y SA2
ij � SA1

ij

� �
ð49Þ

Thus, the updated coordinates of the center of the
yield surface F1 are given as

(aF1ij )9= aF1ij +DaF1ij ð50Þ

The yield surface movement is determined by calcu-
lating the scalar parameter y defined by the consistency
condition represented by equation (48). Barkey14 and

Figure 8. A graphical representation of the Garud cyclic
plasticity model.
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Singh17 utilized Mroz’s multisurface plasticity model
for the notch-tip stress and strain calculations.
However, it is found that Mroz and Garud’s plasticity
model produces identical stress–strain predictions when
a number of plasticity surfaces exceeded a certain value
and a loading increment is infinitesimal. Otherwise, for
the finite loading increment, the intersection of plasti-
city surfaces occurs in the Mroz model, and the Garud
model generates more accurate stress–strain results
than the Mroz model.

Numerical implementation

The elastic–plastic stress–strain model consists of two
parts, namely, the Garud cyclic plasticity model and
the multiaxial Neuber notch correction rule to compute
the actual elastic–plastic stress–strain response at
notches using the FE linear elastic stress data. In order
to implement equations defined in this article for a
notched component subjected to multiaxial cyclic
loads, a general numerical algorithm has been devel-
oped. The flowchart of the algorithm is shown in
Figure 1. The algorithm starts with the linear elastic
FEA results of a notch component for unit loads (a
macro written in APDL is used to output linear elastic
solution for each unit load). In the next step, two sepa-
rate computer programs written in Fortran 90 are used
performing the elastic–plastic stress–strain analysis; the
first computer program is used to superimpose linear
elastic stress histories at notch region of the FE model
subjected to multiaxial loads and the second computer
program is used to implement the notch stress and
strain analysis using increments of linear elastic stress
histories (output from the first program).

For the implementation of the first program, the lin-
ear elastic FE results for each unit load are multiplied
by the corresponding load history to compute elastic
stress history for that applied load history, and then the
elastic stress histories for all applied load histories are
superimposed to obtain the combined time histories of
linear elastic stresses in accordance with equations (5)–
(7). The resultant elastic stress history for each node at
the critical notch region is divided into small increments
of stresses for numerical implementation of elastic–
plastic stress–strain analysis (Figure 4).

The second program computes the actual elastic–
plastic stress and strain responses at notch areas. In the
beginning of the program, loading criterion conditions
must be checked. The yield surfaces are initially cen-
tered at the origin (no loading) and all stresses are
assumed to be elastic, the stress–strain solution being
determined by equation (9). When the elastic loading
reached the initial yield surface, unloading criterion,
equation (40), is used to determine elastic unloading/
tangential loading and elastic–plastic loading during
state of stress increment. If the elastic–plastic loading
takes place, the actual elastic–plastic strain and stress
increments are calculated using equation (31). A set of

seven equations (three notch correction equations from
Neuber’s rule and four constitutive equations) is solved
simultaneously to determine the actual elastic–plastic
strain and stress increments. Then, the active surfaces
are translated according to equations (42)–(50). If stres-
ses exceed the outer yield surface as governed by equa-
tion (43), the stress increment is bisectioned, and then
stresses are updated to the point where new stress state
lies on the yield surface. The current state of the active
surface is also updated. The elastic–plastic stress–strain
calculation is repeated for the remaining portion of
stress increments. If the stresses after the load incre-
ment remain on the current active yield surface, the
stresses are updated and the active surface and any inte-
rior surfaces are translated. The procedure is repeated
until the last elastic stress increment is reached.

One critical part of the actual stress–strain calcula-
tion is based on the cyclic plasticity model. The cyclic
plasticity model is used to determine the active yield
surface, which is necessary to define the parameter dl

in the governing equation (25). In other words, the
plasticity model determines which piece of the stress–
strain curve (the slope of the actual stress–strain curve)
has to be utilized for given stress/load increment Dsi to
define the plastic modulus Dseq=Depeq. The plasticity
models are generally used for calculating stress or strain
increments that result from given stress–strain elements.
In the case of the notch analysis, neither stresses nor
strains are direct inputs to the plasticity model. The
input is provided in the form of the total deviatoric
strain energy density increments, and both the actual
deviatoric stress and strain increments DSa

ij and Deaij are
unknowns, and these unknown stress and strain incre-
ments are simultaneously calculated by solving the
equation set, equation (31). After calculating the devia-
toric stress increments DSa

ij, the plasticity surfaces are
translated as shown in Figure 8. The calculated deviato-
ric stress increments DSa

ij are subsequently converted
into the actual stress increments Dsa

ij using equation
(32).

The process is repeated for each subsequent incre-
ment of the ‘‘elastic’’ input Dse

ij. The cyclic plasticity
model assumes a stable material response such that no
transient hardening effects of the nonproportional
hardening are taken into account.

Results and discussion

In order to predict the fatigue failure of notched com-
ponents under the multiaxial cyclic loadings, it is essen-
tial to provide a good understanding of how external
loads relate to the state of stress and strain at the criti-
cal location and material constitutive behavior. To
establish the prediction capability of the notch stress
and strain analysis model presented in this investiga-
tion, calculated elastic–plastic notch strains and stresses
obtained from the elasto-plastic stress–strain model are
compared to the experimental strain and stress data of
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SAE 1070 steel notched bar for six different nonpro-
portional load paths.14 Pseudo-elastic stress histories
for each load path were calculated using linear elastic
FE stress results. Calculated elastic stress histories are
then used as input to the analytical elasto-plastic notch
analysis model to compute actual elastic–plastic strains
and stresses at the critical notch area.

Barkey14 performed experiments on circumferential
notched shafts subjected to various nonproportional
load paths. The notched shafts were subjected to cyclic
tension and torsional load histories under conditions of
load controls by using Instron and MTS tension–
torsion biaxial test frames. Strain gauges were mounted
on the notch root for strain measurements. The experi-
mented notch shafts were a cylindrical bar with a cir-
cumferential notch similar to that shown in Figure 5.
Each cylindrical specimen was machined from SAE
1070 steel stack to the proper geometry, then heat
treated to give uniform material properties. The actual
radius of the cylindrical specimen was R=25.4mm,
and notch dimensions of the cylindrical specimen were
r/t=1 and R/t=2. The FEA and experimental stress
concentration factors are listed in Table 1. These stress
concentration factors are relatively mild and would
exist on typical notched components such as those
found in many ground vehicle applications. The ratio
of the measured notch-tip hoop stress to the axial stress
under tensile axial loading was se

33=se
22 =0:184.

The FE model for the analyzed notched shaft is
shown in Figure 9. The geometry of the notched shaft
was modeled in ANSYS FE code and then meshed
using three-dimensional (3D) hexagonal (brick) solid
elements, and the area near the notch root was care-
fully refined as shown in Figure 9 to obtain accurate
pseudo-elastic stress tensors at the notch location. The
pseudo-elastic stress se

ij tensors obtained from the FE
model are based on the cylindrical coordinate system
that is defined as: y axis is the primary axial axis, z axis
is the tangent to the notch surface and x axis is perpen-
dicular to the notch. The coordinate system x-y-z
defined for the FE model is interchangeably used as
1-2-3 coordinate system for the stress and strain ten-
sors. Linear elastic tensors (nodal stresses on the criti-
cal notch area) for the applied load paths were read
and converted (using the computer program) to a for-
mat readable by the elastic–plastic stress–strain model.
Linear elastic stress results from two unit load cases
(axial and torsion) were combined with actual axial
and torsion load paths using the principle of superposi-
tion to obtain increments of pseudo-elastic stress his-
tories. The increments of hypothetical ‘‘elastic’’ stress
components se

22, se
33 and se

23 were used as input for the
analytical elastic–plastic stress–strain model.

The material for the notched bar was SAE 1070 steel
with a cyclic stress–strain curve (Figure 10) approxi-
mated by the Ramberg–Osgood relation. The material
properties were given as E=210MPa, n=0.3,
SY=242MPa, n#=0.199 and K#=1736MPa.

Pseudo-elastic notch stresses, se
22–se

23, for clockwise
and counterclockwise box-shaped cyclic stress paths
are shown in Figures 11 and 12, respectively. The
clockwise/counterclockwise box-shaped load paths
were repeated more than 100 cycles while recording the
strains at the notch tip. The box path indicates a high
degree of nonproportionality loading. This load path
was designed to show regions that axial and shear
responses are uncoupled (elastic response) and where
they are coupled (elastic–plastic response). Therefore,
the box-shaped load path provides a critical test for the
proposed stress–strain model for notch-tip strain and
stress calculations. The maximum nominal tensile and
torsion stresses were sn=296MPa and tn=193MPa,
respectively. The corresponding pseudo-elastic notch
stresses were se

22 =417:3MPa and se
23 =221:9MPa,

respectively. Comparison of the measured and calcu-
lated notch strain responses for the clockwise and
counterclockwise box-shaped load paths is shown in

Figure 9. FEA model for SAE 1070 steel notched specimen.

Figure 10. SAE 1070 cyclic stress–strain curve.

Table 1. FEA and experimental stress concentration factors of
SAE 1070 notched bar.

se
22=sn se

33=sn se
23=sn

FEA 1.42 0.30 1.15
Experiment 1.41 0.26 1.15

FEA: finite element analysis.
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Figures 13 and 14, respectively. It can be noted that the
agreement between the calculated and measured strain
responses are qualitatively and quantitatively good.
The strain paths show deviation from the box-shaped
load paths at the onset of local plasticity for both the

experiment and the model. It can also be seen from
Figures 13 and 14 that the proposed elastic–plastic
stress–strain model predicts the elastic unloading at
each corner of the box (the axial and shear strains are
uncoupled) and followed by the elastic–plastic response
to the next corner (the axial and shear strains are
coupled). Figures 13 and 14 also indicate that the
strains ranges are predicted as approximately 5%–15%
smaller than experimental ones. These underestima-
tions in strain ranges might result in nonconservative
fatigue life predictions.

Several nonproportional cyclic loading paths during
which ratios of the frequency of applied loads were
unequal were applied to the notched-bar specimen. The
maximum nominal stresses were sn=296MPa and
tn=193MPa. Nonproportional load paths from
unequal frequencies of applied loads are a common
type of loadings experienced by many machine compo-
nents. Four of those load paths at unequal frequencies
of tensile to torsional load paths in the ratio of 3:1, 5:1,
1:3 and 1:5 are analyzed here. Three cycles of tensile
load were applied in the same time period as one cycle
of torsional load (Figure 15). Five cycles of tensile load
were applied in the same time period as one cycle of
torsional load (Figure 16). Three cycles of torsional
load were applied in the same time period as one cycle
of tensile load (Figure 17). Five cycles of torsional load
were applied in the same time period as one cycle of
tensile load (Figure 18). Axial and shear strain histories
obtained from the model and experiments are plotted
in Figures 19–22 for the tensile to torsional frequency
ratios of 3:1, 5:1, 1:3 and 1:5, respectively. As seen from
these figures that there are slight offsets between the
measured strain paths and the calculated strain paths,
which were obtained from the stabilized cyclic stress–
strain curve. The offsets might be attributed to the fact
that the measured strain paths are not symmetric with
respect to the center of coordinates during the first

Figure 12. Box cyclic stress–load path—counterclockwise.

Figure 13. Experimental and calculated strain paths in the
notch tip induced by the box input loading path—clockwise.

Figure 14. Experimental and calculated strain paths in the
notch tip induced by the box input loading path—
counterclockwise.

Figure 11. Box cyclic stress–load path—clockwise.
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cycle, which are always slightly different from the sub-
sequent cyclically stabilized material response, might
cause the shift of the strain responses. In spite of this
offset, strain responses computed by the elastic–plastic
stress–strain model reasonably agree well with the
experiment results in terms of the general trend and
numerical strain values.

Conclusion

In this article, the simple analytical multiaxial notch
analysis model, which is based on the Garud cyclic
plasticity model integrated with the multiaxial Neuber
correction rule, has been developed to estimate the
elastic–plastic notch-tip material behavior of the notch
components subjected to the multiaxial nonpropor-
tional loadings using linear elastic FE stress solution.

In order to determine the predictive accuracy of the
multiaxial elasto-plastic notch analysis model, the
model was validated against the experimental results of
SAE 1070 steel notched shaft obtained by Barkey.
Based on the comparison between the experimental
and computed strain histories for six different nonpro-
portional load paths, the elastic–plastic stress–strain
model predicted notch strains with reasonable accuracy
using linear elastic FE stress histories.

The implementation of the incremental strain energy
density equations in the deviatoric stress space and the
utilization of the Garud plasticity model provided more
accurate notch-tip stress–strain calculations than previ-
ously suggested strain energy density approaches by
Moftakhar et al.12 Barkey14 and Singh.17

Figure 16. Unequal frequency (ratio 5:1) tension–torsion
stress/loading path.

Figure 17. Unequal frequency (ratio 1:3) tension–torsion
stress/loading path.

Figure 18. Unequal frequency (ratio 1:5) tension–torsion
stress/loading path.

Figure 15. Unequal frequency (ratio 3:1) tension–torsion
stress/loading path.

Figure 19. Experimental and calculated strain paths in the
notch tip induced by the unequal frequency (ratio 3:1) tension–
torsion input loading path.
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The multiaxial elasto-plastic stress–strain model
developed in this article provides a more efficient and

logical analytical approach to estimate notch-root
elastic–plastic stress and strain responses for the notch
component under the multiaxial nonproportional load-
ing. For this reason, the multiaxial notch analysis
model may be employed to perform fatigue life estima-
tion for the notched components subject to complex
multiaxial loadings. The effect of changes in material,
geometry and loads on the fatigue life can then be
assessed in a short time frame in practical engineering
applications; thus, the design of notched components
can be evaluated and optimized for the service life in
the early design phase.
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