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Transient liquid phase (TLP) bonding has been em-
ployed in a range of applications, since it produces
joints that have microstructural and hence mechanical
properties similar to those properties of the base mate-
rials. However, the process generally takes long oper-
ational time (from hours to days) since it is controlled
by the solute diffusion in solids. Therefore, quantita-
tive prediction of the process kinetics, especially the
completion times for different stages (namely heating,
dissolution, isothermal solidification and homogeniza-
tion) in TLP-bonding is very desirable. For those who
are interested in the process descriptions and applica-
tions in different industries, and the kinetic modeling
in general (both analytical and numerical), two detailed
reviews [1, 2] are suggested. Examples of the use of nu-
merical and analytical models in determining optimum
joining conditions (e.g., bonding temperature and filler
metal composition) can be also found in Refs. [1–3].
This communication will focus on the analytical solu-
tions for the isothermal solidification stage during TLP-
bonding. Although numerical methods provide more
accurate prediction of the process kinetics during TLP-
bonding [2, 3], there is still interest in a quick esti-
mation of the kinetics for certain stages, especially for
the isothermal solidification stage. The completion time
required for the isothermal solidification stage is gener-
ally much longer that the completion time for the pre-
vious stages and therefore, a reasonably good estima-
tion of the completion time for isothermal solidification
may be used as an approximation for the whole process
[1, 2]. This readily explains why much research has
been carried out on this particular aspect of the TLP-
bonding process.

When the isothermal solidification stage starts, the
liquid phase is at its maximum width (Wmax). The so-
lute build-up in the solid (base metal) is small (Fig. 1)
and is, generally, ignored in the analytical modeling of
the isothermal solidification stage [2]. The liquid zone
shrinks as a result of solute diffusion into the base metal
until the joint completely solidifies. It has been pointed
out that solute distribution in the liquid can be consid-
ered uniform during almost all the isothermal solidi-
fication stage [3, 4]; therefore, solute diffusion in the
liquid can be ignored. In addition, the base metal can
be assumed to be semi-infinite because solute diffusion
in the solid is relatively slow. These assumptions make
the analytical modeling possible for the isothermal so-
lidification stage [2, 3].

There are many analytical solutions proposed to pre-
dict the completion time for isothermal solidification

(e.g., Refs [5–12]); however, a close examination of
these solutions indicates almost all of them can be
classified into two categories. One type has treated
the system as two semi-infinite phases with a cou-
pled diffusion-controlled moving solid/liquid interface
(Fig. 1), which will be called “two-phase” solutions in
this work. The other type has treated the system as a sin-
gle semi-infinite phase (the base metal) with a constant
solute concentration (CαL) at the surface of the base
metal (Fig. 1), which will be called “single-phase” solu-
tions. This treatment effectively eliminates the trouble
of dealing with the liquid phase or, more importantly,
dealing with the MIGRATING solid/liquid interface.
Both types of solutions are used extensively in prac-
tice. We will examine the derivation procedures of these
two types of solutions to study the difference between
them.

A typical example of the “single-phase” solutions
can be found in a paper by Tuah-Poku et al. [12] in a
study on TLP-bonding of a Ag/Cu/Ag sandwich joint,
which can be also derived from the classical solutions
for Fick’s equation (e.g., solutions for semi-infinite
media in Ref. [13]). An error function solution is first
employed to describe the solute distribution in the semi-
infinite base metal with a surface on which the solute

Figure 1 Schematic showing solute distribution during the isothermal
solidification stage in TLP-bonding, and the two analytical models used
to simulate the process.

0261–8028 C© 2001 Kluwer Academic Publishers 841



concentration was maintained at CαL (Fig. 1)

C(x, t) = CαL + (CM − CαL) erf

(
x√
4Dt

)
, (1)

where CαL is the solute concentration at the surface,
CM is the initial solute concentration in the base metal,
D is the solute diffusivity in the base metal and t is the
solidification time. The total solute amount M that has
entered the base metal at time t can be calculated from
the relation

M(t) = 2(CαL − CM)

√
Dt

π
. (2)

If the amount of solute diffused into the base metal
during the heating and dissolution stages is ignored,
the total amount of solute diffused into the base metal
when the isothermal solidification is complete equals
the original solute content of the filler metal, i.e.

CFW0 = 4(CαL − CM)

√
Dt

π
(3)

where CF is the original solute concentration in the filler
metal and W0 is the initial width of the filler metal.
The completion time for isothermal solidification can
therefore be calculated using the relation

t = π

16D

(
CFW0

CαL − CM

)2

, (4)

Similar treatments of this problem have been reported
by others (e.g., Ikawa et al. [5], Nakao et al. [6] and
Onzawa et al. [7]).

A typical example of the “two-phase” solutions was
presented by Lesoult [8]. His derivation is similar to
that described by Danckwerts [14], in which a general
solution for unsteady state linear heat conduction or
diffusion is given. A general error function solution is
assumed in the solid phase (Fig. 1)

C(x, t) = a1 + a2 erf

(
x√
4Dt

)
, (5)

where a1 and a2 are constants determined by the specific
boundary conditions. When x →∝

C(∞, t) = a1 + a2 = CM, (6)

and at the moving solid/liquid interface, i.e., x = X (t)

C(X (t), t) = a1 + a2 erf

(
X (t)√

4Dt

)
= CαL, (7)

where CαL is the solute concentration of the solid phase
at the interface (Fig. 1). Since Equation 7 has to be
satisfied for all values of t, X (t) must be proportional
to t1/2, i.e.,

X (t) = k
√

4Dt, (8)

where k is a constant. The mass balance at the interface
produces the relation

(CLα − CαL)
dX(t)

dt
= D

(
∂C(x, t)

∂x

)
x=X (t)

(9)

where CLα is the solute concentration of the liquid phase
at the moving solid/liquid interface. Solving Equa-
tions 5–9 produces

k(1 + erf(k))
√

π

exp(−k2)
= CαL − CM

CLα − CαL
. (10)

Similar solutions were also derived by others (e.g.,
Sakamoto et al. [9], and Ramirez and Liu [10]). The
completion time for isothermal solidification during
TLP bonding, from Equation 8, can be calculated using
the relation

t = W 2
max

16k2 D
, (11)

where Wmax is the maximum liquid width calculated
using the mass balance method [12].

A study on numerical modeling of the TLP-bonding
process has been pointed out that Equation 11 provides
a good approximation for the completion time for the
isothermal solidification stage [3]. However, no work
has been done previously to study the prediction accu-
racy of Equation 4 although the equation is also used ex-
tensively in practice. From the above discussion, it may
be postulated that the “single-phase” solution will be
less accurate because more assumptions are involved in
deriving Equation 4. This suspicion is further strength-
ened by an examination of a published paper [12], in
which the estimation of the completion time required
for isothermal solidification using the “single-phase”
solution to be about 1200 h; however, the actual exper-
imental result was about 200 h. While other solidifi-
cation mechanisms and experimental errors were sug-
gested for the discrepancy [1, 12, 15], it is believed that
part of the discrepancy might be due to the error when
using Equation 4. On the other hand, the “single-phase”
solution has an advantage over the “two-phase” solu-
tion because the latter requires a numerical solution of
Equation 10. Therefore, it is important to quantify the
estimation error that may be caused when using the
“single-phase” solution compared to the “two-phase”
solution, and to provide a general guideline for the use
of the solutions. In the present work, a graphical anal-
ysis is used to study the estimation error when using
Equation 4 to approximate Equation 11. A discussion
of the fundamental reason for the differences between
these two solutions is also provided.

The error caused by using Equation 4 to approximate
Equation 11 can be calculated by

Error =
π

16D

(
CLα Wmax

CαL−CM

)2 − W 2
max

16k2 D

W 2
max

16k2 D

=
{
πk2

(
CLα

CαL − CM

)2

− 1

}
× 100%. (12)
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Since k is a function of CLα , CαL and CM, and has to
be solved numerically using Equation 10, there is no
simple way to illustrate the effect of variables (CLα ,
CαL and CM) on the difference. For example, increas-
ing CLα will reduce the value of k [8] and, hence, re-
duce the error calculated using Equation 12; however,
reducing CLα will also increase the value of the term
CLα/(CLα–CLα) in Equation 12 and, hence, increase
the error. Therefore, it is impossible to judge from this
analysis how reducing CLα would influence the differ-
ence between two equations.

To study the effect of CLα , CαL and CM, Equation 12
is solved and plotted in Fig. 2 using MathCad R© (com-

Figure 2 The effect of solute concentrations (CαL and CLα) on the es-
timation error calculated by Equation 13: (a) when CM = 0; (b) when
CM = 0.1 (the error will be above 10% if CαL is above 8% when CLα is
at 60% as pointed by an arrow); and (c) when CM = 1.0. The concentra-
tion gridlines and the difference contours were indicated in the surface
plots.

mercial mathematics software). It becomes clear in
Fig. 2 that the possible error caused when using
Equation 4 is influenced by all variables: decreasing
CαL and CM, and increasing CLα reduces the error. It
follows that the Equation 4 is only a good approxima-
tion of Equation 11 when CM and CαL are very small
and CLα is relatively large. Plots like those concen-
tration gridlines in Fig. 2 can be used to evaluate the
estimation error when using Equation 4 to approximate
Equation 11 for a certain metallurgical system, or to
determine if Equation 4 could be used to approximate
Equation 11 if a certain error level is allowed. For ex-
ample, when an error of 10% is allowed, the “single-
phase” solution can be used only if CαL is below 8%
when CLα is at 60% and CM is at 0.1% (Fig. 2(b)); or
the error will be above 10% if CαL is above 8% at when
CLα is at 60% and CM is at 0.1%.

In the study on TLP-bonding of Ag/Cu/Ag, the
completion time required for isothermal solidification
estimated by Equation 4 was about 1200 h [12];
however, the actual completion time by experimen-
tation was about 200 h. The reason for this large
discrepancy was considered to be due to the non-planar
solid/liquid interface (e.g., the solidification process
was influenced by ledge-type migration and grain
boundary grooving, both are likely to speed up the
advancement of the solid/liquid interface) [12]. It is
very clear from the present work that, at least, part of
the discrepancy might come from the error when using
Equation 4. With the data of CαL = 8%, CLα = 18%
and CM = 0 [12], the difference between Equations 4
and 11 is about fifty percent (Fig. 3). In other words,
Equation 4 overestimates the completion time required
for isothermal solidification by fifty percent, which
can be also seen by solving Equations 4 and 11
directly with the data of CαL = 8%, CLα = 18%
and CM = 0, Wmax = 79 × 10−4 cm and D =
4.6 × 10−10 cm2/s [11], which results in by 1156 h
Equation 4 and 770 h by Equation 11. Therefore, the
use of Equation 11 can reduce the estimation error
from 1200 h versus 200 h to 770 h versus 200 h. In
this connection, a faster solidification rate has been
observed due to the presence of base metal grain
boundaries, and has also been suggested due to the
squeezed out liquid metal during the process [1, 15],

Figure 3 The error caused by using Equation 4 is about 50% (pointed
by an arrow) for CαL = 8%, CLα = 18%, and CM = 0. The concentration
gridlines and the difference contours were indicated in the surface plots.
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which will also contribute to the difference between
experimental data and calculated results.

Comparing the derivation procedures for Equations 4
and 11 can provide some insight into the differences be-
tween the two equations. The “two-phase” solution has
employed Equation 9 to describe the mass balance at
the solid/liquid and a general error function to des-
cribe the solute distribution in the solid. On the other
hand, the “single-phase” solution has replaced the
solid/liquid interface with a stationary surface with a
constant concentration CαL, and assumed that the so-
lute distribution is given by Equation 1 (which is only
exact for a stationary interface). Since the liquid/solid
interface migrates during TLP bonding, it is possible to
determine when this assumption on a stationary surface
can be applied. Solving Equations 5–7, we obtain

C(x, t) = CM − CM − CαL

1 − erf(k)
+ CM − CαL

1 − erf(k)
erf

(
x√
4Dt

)
,

(13)

for the solute distribution in the solid in the “two-phase”
model, where k is the factor related to the solution dis-
tribution in Equation 10. When k → 0, erf(k) → 0 and
1 − erf(k) → 1, Equation 13 becomes

C(x, t) = CαL + (CM − CαL) erf

(
x√
4Dt)

)
. (14)

This is identical to Equation 1. Therefore the differ-
ence between Equations 4 and 11 comes from the as-
sumption used to derive Equation 4 that the interface is
stationary. The analysis of Fig. 2 indicates Equation 4
is a good approximation of Equation 11 when CM and
CαL are very small and CLα is relatively large. It is
interesting to note that a relatively small CM and CαL
compared with CLα will result in a very small k [8]
and hence a very slow solidification rate judging from
Equation 8; therefore, the migrating solid/liquid inter-
face can be approximated by a “stationary” interface.
The numerical method used in the present work (i.e.,

the graphical presentations of Fig. 2) provide an easy
way to quantify the conditions, in terms of CLα, CαL
and CM, under which the “single-phase” solution can
be used to approximate the “two-phase” solution.

In summary, the estimation error of Equation 4 (one
of the two popular analytical solutions) for the comple-
tion time required for isothermal solidification during
TLP-bonding is analyzed. This work indicates that the
overestimation of Equation 4 can be very large depend-
ing on the solute concentrations at the moving inter-
face and initial solute concentration in the base mate-
rial. This estimation error comes from the assumptions
used to derive Equation 4 that the solid/liquid interface
is stationary.
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