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Abstraet A fast and accurale fully implicit fiNk difference model has teen developed for the 
simulation of diffusionsonuolled. two-phase, moving interface problems. The computed results 
are in good agreement with experimental values produced during transient liquid-phase bonding 
of nickel, and during solution veatment of thin, multiple layers of n and 6 brass. The present 
results are compared with the models proposed by other workers. 

1. Introduction 

Diffusion controlled moving boundary problems occur in a wide range of metallurgical 
situations []]-in the solid-state (during growth and subsequent dissolution of a second 
phase in a solution treatment [2],  during growth of intermediate layers in thermal barrier 
coatings [3]): and in a solid-liquid situation (during growth or/and shrinkage of the liquid 
phase in transient liquid phase (TLP) bonding [4,5] and in liquid phase sintering [61). 
Although a number of investigators have modelled the growth of unstable phases [7-131, 
long calculation times are involved because of the explicit formulae used This is an 
especially severe problem when an attempt is made to model a complex process such as 
transient liquid phase bonding (because the process time is extremely long compared with 
the c~lculation time step needed for stability of the numerical solution). As an example, 
computations of microsegregation during binary alloy casting took several days to perform 
using computer workstations [ 141. 

In the present study, fully implicit, finite difference modelling is used to analyse 
diffusion-controlled, two-phase, moving interface problems, with the aim of decreasing the 
calculation time involved and increasing the accuracy of the final output. The validity of the 
computed results are compared directly with experimental results produced during transient- 
liquid phase bonding of single-crystal nickel, and solution treatment of thin, multilayer (Y 

and ,3 brass diffusion couples [SI. 

1.1. Transient liquid phase bonding of nickel 
TLP bonding is commonly used during the repair of aeroengine turbine blades. This 
joining process involves a series of steps, namely, base metal dissolution, liquid phase 
isothermal solidification, and solute homogenization [4,5]. The growth and shrinkage 
of the transitory liquid phase is determined by diffusion-controlled, solid-liquid interface 
migration. In the present study, detailed numerical modelling of TLP bonding is carried out 
by treating dissolution, isothermal solidification and homogenization as sequential steps. 
The calculation results are compared with the experimental results produced during TLP 
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bonding of single-clystal nickel using Ni-19 at.% P filler metal. A detailed description of the 
experimental set-up during TLP bonding has been presented elsewhere [IS] and consequently, 
only a brief description of the experimental procedure will be indicated here. 25 fim thick 
Ni-19 at.% P filler metal was clamped between the singlecrystal nickel components and 
the joining operation was carried out at 1150 "C in a torr vacuum. After a known 
holding time, the test specimens were quenched in an oil bath and the width of the liquid 
zone during isothermal solidification was evaluated using optical microscopy. The liquid 
width at the bonding temperature was calculated from the measured eutectic width using 
the procedure indicated by Nakao et a1 [16]. 

1.2. Solution treatment of (I and brass diffusion couples 

When an (I and p phase aggregate is solution-treated at a temperature where only (I is stable, 
there will be a time-dependent transformation to the single-phase (I stmcture. However, if 
there is a large flux in the @ layer (due to large variations in solubility with temperature 
and/or to a large interdiffusion coefficient at the solution temperature) it is possible for the 
(I/,!? interface to move initially so that the content of the p phase increases [8]. Finally, 
the p phase dissolves when the rapid loss of the supersaturation in the p phase occurs, 
and the final structure approaches the end point defined by the equilibrium phase diagram. 
This effect has been examined experimentally during solution treatment of thin, multiple 
layers of (I and ,3 brass diffusion couples by Heckel et a1 [8], and has been modelled by 
Tanzilli and Heckel [7]. In the present paper, the results produced using fully implicit, finite 
difference modelling are compared directly with Heckel and Tanzilli's experimental results 
and modelling output. The computation results are also compared with the values produced 
using Pabi's numerical model for simulating two-phase, diffusion-controlled dissolution [9]. 
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2. Problem formulation 

Figure I shows a schematic illustration of diffusioncontrolled, two-phase, moving interface 
problems. Figure l(a) shows a planar interface situation where constant-size zones of 
the solute-rich second phase are dispersed uniformly throughout the matrix. When this 
assembly is held at the solution temperature, the second phase grows and then dissolves 
[81. Figure I(h) illustrates the situation during TLP bonding, when the liquid phase gows 
and then disappears at the bonding temperature. 

The basic assumptions during numerical modelling are: (1) the moving interface remains 
planar throughout the processing period; (2) the diffusion coefficient, molar volume and 
activity coefficient of the solute are independent of composition, while the molar volume 
in the different phases are also equal; (3) local equilibrium exists at the moving interface; 
and (4) there is negligible liquid flow due to convection and stirring (in the liquid phase) 
and there is no effect of latent heat on the temperature distribution and on movement of the 
solid-liquid interface. 

Figure 2 shows the solute concentration, c(x, t ) ,  and the moving interface location, X ( t ) .  
The second-phase region is at 0 < x < X ( t )  and the matrix region is at X ( t )  < x < L/2.  
The width of the second phase is w ( t )  = 2 X ( t ) .  The goveming equations which determine 
solute diffusion field are: 
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Figure 1. (a )  Schemalic illustraling modelling of the U and f l  brass solution treatment (after 
[9]): (b )  schematic illustrating TLP bonding of nickel. 

10) 

Figure 2. (a) Concentration profile produced by interface movement The dashed lines show 
the siluation at I = 0 and the solid lines show the situation at I > 0; (b)  the numerical method 
employed to analyse movement of the interface. 

x -  
l a )  

Where the subscripts p and m indicate the second and matrix phases respectively, and D is 
the diffusion coefficient. These are subject to the following boundary conditions, 

(3) 

The initial conditions are (from figure 2) 

(4) 



where CM is the initial solute concentration in the base metal. At the moving interface 

cp(X(t) .  t )  = CXP (7) 

c m ( X ( t ) ,  t )  = CXM (8) 

where C,, is the solute concentration of the matrix at the moving interface, and because 
of the conservation of mass at the moving interface, the interface movement is determined 
by the relation: 

3. Numerical analysis 

The approach taken involves using the finite difference approximation to obtain discrete 
forms of differential equations (l), (2) and (9). with finite boundary and initial conditions. 
As a first step, an implicit finite difference method was employed when approximating (1) 
and ( 2 )  in order to decrease the calculation time (this overcomes the stability restriction on 
the maximum time step). Equation (9) was solved using the explicit method in 17-14] and 
the accuracy of the solution decreased when large time steps were employed. In the present 
paper, (9) was solved using an implicit method. As a result, a fully implicit scheme has 
been developed which handles diffusion controlled, moving interface problems. 

3.1. Approximating the diffusion equations 

The space domain is divided into H equally-spaced intervals of length Ax, namely, 
x j  = ( j  - 1)Ax. j = I ,  2, 3 ,..., H + 1, where j represents some mesh point, and 
Ax = L / 2 H .  The interface lies between the nodes j = k and k + 1, and p = 
( X ( t ) - ( k -  l ) A x ] / A x ,  where 0 6 p < 1 and k = 1 ,2 ,3 , .  . . (see figure 2(b)). The time step 
varies with the interface velocity at a constant interface displacement At = EAx/(dX/dc),  
where E is a constant. Since the interface moves very quickly in the initial period and then 
slows down, this treatment ensures that the time step will be small enough (in the initial 
stage) that the calculation accuracy will be acceptable. The finite difference expression for 
( I )  and ( 2 )  is: 

where (6'c)j = cj+l - 2cj + cj-1. for the nodes j = 2, 3, .  . ., H; except for the nodes 
near the moving interface. Using the zero-flux boundary conditions in (3) and (4), at the 
boundary nodes j = I and H + I ,  one can obtain, 

(6%) ] = 2(c* - e,) 

(62c),+, = 2(C" - CH+I). 
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Near the moving interface 1171: 

Equations (IOH14) comprise two sets of equations, one (from j = I to k) for the second- 
phase region, and the other (from j = k + 1 to H )  for the base-metal region. However, 
(13) and (14) have singularities at p = 0 in (13) and p = 1 in (14). This singular behaviour 
is handled using the following approach: when p < f ,  the equation set extends from 
j = 1 to k - 1 for the second-phase region, and ck can be calculated using the finite- 
difference expression (assuming that the concentration on both sides of the moving interface 
are described by quadratic relations) 

When p f .  the equation set extends from j = k + 2 to H for the base-metal region, 

Ck+2 -- CXM 

(szc)k+2 = 2((2 - p)(3 - p )  (2 - p )  

and ck+L is given as: 

6' in (IO) is a weighted constant, and the solution is unconditionally stable and convergent 
when f < 6' < I .  However, for 1 < 6' < 4, we must employ the relation: 

This stability restriction on the maximum time step requires an enormous number of 
calculation cycles during problem solution. In this work, the B value is taken as 
$ - ( A X ) ~ / I ~ D A ~ ,  where 6' is taken as 0 for all values of B < 0 at the initial stage, 
when the velocity of the moving interface is very fast and the time step must be small). 
This special scheme has a truncation error of O(Alz + Ax4) [18]. ?his is smaller than that 
at 8 = 0 (for an explicit scheme), 6' = 1 (for an implicit scheme) and even 6' = 0.5 (using 
the Crank-Nicolson scheme [17]). The solution is also stable. Another advantage of the 
implicit scheme is that there are no stability restrictions regarding time-step selection. This 
means that the calculation time can be decreased without affecting the solution stability. 
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3.2. Apprnximaring the moving interface 
Rearranging (9) gives 
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= f [ X ( t ) ,  tl. (20) 

(21) 
(22) 

The modified Euler method (implicit scheme) is applied to solve (20). namely 

X'"(r + At) = X(r) + Arf[X(t), t ]  

X'""'(I + At) = X ( r )  + ( A t / Z ) ( f [ X ( t ) ,  t ]  + f [ X ' " ' ( t  + A t ) ,  t + At]} 

where n = 0, I ,  2,. . ., and the iteration at each time step is performed until: 

< 10-6. I X("+t'(t + At) - XCn1(t + A t )  I X l n l ( r  + At) 
This implicit scheme for (20) improves the calculation accuracy, the error is O(At3) [I91 
and much larger time steps are therefore allowed. 

The treatment applied to ( 1 3 )  and (14) can be used to approximate the derivatives in 
(20). When p > f 

(2-3 
( 3  - P) 

and when p < 

1 (1 + P)Ck-Z (2 + P)CX-l + - 
2 + P  I + P  (1 + P ) ( 2  + P) 

%I (27) 
= 1 ( (2f - 3 ) c X M  + (2 - P)ck+t - (1 - P h + Z )  

ax AX ( I  - P ) ( ~ - P )  (1 -P) (2 - P) 
3.3. Initiating the solution 
Since the numerical solution cannot be initiated directly using the initial conditions (in (5) 
and (6)) an approximate analytical solution for a very small time step is used as the starting 
point for the finite difference scheme, i.e. 

X(At) = f l +  2 P f i .  (28) 
In (21). P is calculated using (A12) in the appendix and is a constant which depends on the 
material properties (on the solute diffusivity and solubility values). 

The numerical computation proceeds as follows. 

(i) The initial movement of the interface is calculated using (28). 
(ii) The new solute concentration distribution at each nodal pint, after the initial 

interface movement, is calculated using the discrete forms of (I) and (2). 
(iii) The new moving interface position is calculated starting from the previous position, 

using the discrete form of (9). 
(iv) The redistribution of solute from the previous concentration at each nodal point is 

calculated using the discrete forms of (1) and (2). 
(v) Steps (iii) and (iv) are repeated until the process is completed. 
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4. Results and discussion 

The normalized thickness of the second phase ( w f l ) ,  where o is the width of the second 
phase and I is its width initially, is plotted as a function of dimensionless time (Dt/I*) .  The 
optimum calculation conditions that produced satisfactory results were evaluated by a trial 
and error procedure. Different mesh size and E values were selected and tested until no 
major changes in results were produced when finer Ax and E values were substituted, The 
effectiveness of the computations was evaluated by comparing the calculated values with 
the experimental results produced during solution treatment of CY and p brass, and during 
TLP bonding of single-crystal nickel. The parameters employed in the calculations are listed 
in  table I .  

Table I. Input parameters fa numerical modelling. 

Curve CM CXM Cxp Cp D, DP 1 L Ax E 
no. (a%) (at.%) car%) (at.%) (pm* s-') (pmz s-I) @m) @m) (pm) 
28 0.0 0.166 10.223 19.0 18.0 500.0 25.0 6025.0 1.0 0.01 
3b 29.1 32.5 36.9 39.4 5.0 lw.o 381.0 1134.0 10.0 0.1 
4-a' 0.0 0.4 0.9 1.0 0.0603 0.0603 0.44 1.321 0.01 0.1 
4bd 0.0 0.1 0.6 1.0 0.0603 0.0603 0.44 18.033 0.01 0.1 
4-cc 0.0 0.1 0.9 1.0 0.0603 0.0603 0.44 18.033 0.01 0.1 

': Alloy system. NI-P [16.20]. 
b: Alloy system, e-brass/@-brass [SI. 
5 :  Alloy system, hypothetical [9]. 
*: Alloy system, hypothetical [SI. 

Alloy system, hypothetical [9]. 

Experimental Data 
Calculabon Re~ulis 

0.0 
4 

D U I 2  

Figure 3. Comparison of the calculated and experimental results during n p  bonding of single- 
crystal nickel. 

4.1. Comparison of calculated results with experimental values produced during TLP bonding 
of nickel 

Figure 3 compares the output of the computer model with the experimental results produced 
during TLP bonding of single-crystal nickel base metal. The experimental values are in good 
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agreement with the computed results, bearing in mind the difficulties in obtaining an accurate 
diffusion coefficient value for phosphorus in the liquid phase, and the m r s  caused by the 
assumption that the diffusion coefficients are independent of composition. It is important 
to point out that the excellent correspondence between calculated and experimental results 
occurs only when a single-crystal nickel base metal is employed during TLP bonding. During 
modelling, it was assumed that there was no effect of grain boundary regions on movement 
of the solid-liquid interface. When fine-grained nickel base metal is employed during TLP 
bonding, there is a marked effect of grain boundaries on the rate of completion of the 
isothermal solidification stage (the rate of isothermal solidification increases when the grain 
size of the base metal decreases [ 15,211). Faster isothermal solidification occurs since liquid 
penetration at grain boundaries in the nickel base metal increases the area at the solid-liquid 
interface and promotes solute diffusion into the base metal. This liquid penetration feature 
has been modelled recently by Ikeuchi et al [22] and depends on the grain boundary energy, 
and on the energy balance between the grain boundary and the solid-liquid interface. 
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TH m 
Pabi [9] 
Present Work 
Experimental Data [SI 

D t / l  

1 

Figure 4. Comparison of the calculated and expimental results during solution @ament of 
Ihin. multilayer m and p brass diffusion wuples (using the experimental resulls presented in 
181). 

4.2. Comparison of calculated and experimental results during solution treatment of u and 
6 brass diffusion couples 

Figure 4 compares the output of our model with the experimental results [SI and model 
calculations produced by Tanzilli and Heckel [7] and Pabi [9]. Our computed results show 
a better tit with the experimental results than the TH model (Tanzilli and Heckel) and Pabi’s 
model, although some deviation is apparent late in the solution process. The difference 
between the calculated and experimental results may be attributed to errors in ascribing 
solubility and diffusion coefficient values, and m experiment errors. In addition, the TH 
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model indicates a larger amount of transient growth and Pabi’s model [9] indicates faster 
solution kinetics late in the solution process. 

The output of the different models can also be compared by applying the hypothetical 
input values suggested by Pabi 191, namely: 

(i) when the interface flux to the matrix exceeds that from the dissolving phase, there 
is no second-phase growth (this is curve (a) in figure 5); 

(ii) when (DJD,) and (Cp -C,yp)/(C,y~ - CM) are both unity, the interface movement 
is zero for a short time period and then the second phase dissolves monotonically (this is 
curve (c) in figure 5); 

(iii) when the flux in the second phase exceeds that in the matrix, the second phase 
grows and then dissolves (this is curve (b) in figure 5). 

D t / I 2  
Figure S. Comparison of the output of the differen1 computabonal models (TH-Tmzilli and 
Heckel’s model [7] and Pabi’s model (91). 

The output of our model closely corresponds with that produced using Pabi’s model 
(in curves (a) and (c)). However, the TH model indicates an erroneous transient growth 
in curve (c)  because of errors in the slope calculation (due to the unequal grid size in the 
different phases) 191. When transient second-phase growth occurs (curve (b)), our model 
produces a better prediction than the other models; this is also apparent in figure 4. 

4.3. Calculation time 

The CPU times involved in these computations were compared at 0 = 0 (in the explicit 
scheme) and 0 = - (Ax)* /12DAt  (in the implicit scheme) using a Silicon Graphics IRIS 
4.0.1 mini-computer. The CPU times were 400 and 7.9 s respectively (for curve a in figure 
5). In the explicit case. the time step was limited to 8.0 x lo4 s and about 7.0 x lo4 cycles 
were required to complete the calculations. Using the implicit method, the time steps ranged 



514 

from 1.85 x to 0.285 sand about 400 cycles were needed to complete the calculations. 
Although this difference in CPU time does not appear considerable, it is extremely important 
when "LP bonding of nickel is modelled. When TLp bonding is modelled, the fully implicit 
scheme required three minutes of CPU time, the calculation time steps range from 8.6 x 

to 70 s, and the number of calculation cycles is around 3500. However, when the 
explicit scheme is used, the time step must be less than s, the total process time is 
around 9.0 x I@ s and 10' calculation cycles are required during modelling. 
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5. Summary 

A fast and accurate, fully implicit finite difference model has been developed which 
simulates diffusion-controlled, two-phase, moving-interface problems. The computed results 
are in good agreement with the experimental results produced during TLP bonding ofsingle- 
crystal nickel, and during the solution treatment of thin, multilayer CY and p brass diffusion 
couples. The model developed in this study produces results which compare well with the 
output of the numerical models proposed by Tanzilli and Heckel [7] and Pabi 191. 
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Appendix 

The analytical solution for a diffusion problem which involves two phases separated by a 
moving planar interface has been given by Danckwerts [23]. For semi-infinite media, where 
two phases meet at the moving interface X (t) 

When the error function solution is applied to each phase, 

cp(x, r )  = A I  + A * e r f ( x / Z m  

c d x ,  I )  = A3 + Aqerf(x/2&). (A4) 

A I ,  Az. A3 and A4 are constants. Using the appropriate boundary conditions, we obtain 

cp(00, I )  

c~( -M,  t )  = A3 + A4 = c - ~ .  

A I  + A2 = C, 
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At the moving interfaces, we have 

c,(x. I) = A ,  + ~ * e f i ( ~ / 2 m  = cXM 
c,(X, t) = A j  + A q e r f ( X / 2 , @ )  = Cxp. 

(-47) 

(-48) 
Since (A7) and (A8) have to be satisfied for all values of 2, X must be proportional to fi, 
i.e. 

x = 2f3Ji. (-49) 
Substituting (AI HA9)  in the equation governing interface movement, 

and we can derive 

x exp -- = O .  ( 3 
At the very beginning of the dissolution process, the liquid and solid phases can be 
approximated as infinite mediums, i.e. c-, = Cp and c, = CM and (A1 I) becomes: 

xexp  -- = O .  ( 3 
After calculating f3 from (A1 I), (A9) traces the movement of the interface. 

Nomenclature 
AI, A2. A3, A4 
c a n d C  
CP 

CXP 

D 
I 
P 
t 
X 

CM 

CXM 

X 

A 
W 

B 
Subscripts 
P 
m 
i 

consrants 
solute concentration (at.%) 
initial solute concentration in second phase (at.%) 
initial solute concentration in base metal (at.%) 
solute concentration of second phase at the moving interface (at.%) 
solute concentration of matrix at the moving intelface (at%) 
diffusion coefficient (pmZ s-l) 
initial width of second phase (Mm) 

time variable (s) 
space variable (pm) 
moving interface position (pm) 
width of second phase (pm) 
increment of variables 
constant 

( X ( r )  - (k  - I)Ax]/Ax 

indicates second phase 
indicates matrix phase 
current mesh point 
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