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Abstract
The problem in dissimilar material joining (e.g., Al/steel) is the degradation of joint mechanical properties by formation of the
hard and brittle interfacial intermetallic compounds. In the present study, in order to improve the joint mechanical properties,
alloy elements Si and Zn are added in the form of Al-Si and Zn-Al filler metals, respectively. The effects of alloy elements on the
joints are investigated in terms of interfacial microstructure and mechanical properties. The results have shown that element Si is
able to suppress the growth of interfacial reaction layer, which leads to the improvement in the fracture load, while element Zn is
capable of reducing the brittleness of reaction layer, and it consequently enhances the fracture load.
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1 Introduction

Many welding studies have currently focused on dissimilar
material welding. Dissimilar material joints have been used
in vast applications due to their merits of weight reduction,
energy efficiency, cost reduction, and optimization of material
use. An increasing need in the automotive industry can be
noted for dissimilar material joining of aluminum alloy and
steel, because of the demands for the reduction of overall
weight and the decrease in fuel consumption and carbon emis-
sion [1–3].

The joining of aluminum to steel is a great challenge due to
the large differences in thermophysical properties between

these two materials and especially the formation of inherently
hard and brittle Fe-Al intermetallic compounds at elevated
temperatures [4, 5]. In order to address this problem, many
efforts have been made to control the formation and growth of
Fe-Al IMCs in Al/steel joining in the past decades, such as
optimizing process parameters [6, 7], applying advanced join-
ing technologies [8, 9], and adopting alloy elements [10–22].
For instance, Si [10–15], Zn [16–19], Cu [20, 21], and Mg
[22] are used as alloy elements in the forms of coating, inter-
layer, and filler metal, for manipulating the morphology and
properties of the interfacial Fe-Al IMCs. However, a compar-
ative study about influence of the alloy elements on the mi-
crostructure and mechanical properties of Al/steel joint is still
lacking.

In this work, pure Al, AlSi12, and ZnAl22 filler metals were
applied for Al/steel joining by using diode laser welding/
brazing technology. The present study aims to investigate
the influence of alloy elements on the microstructure and me-
chanical properties of laser dissimilar Al/steel joint.

2 Experimental

A diode laser was used to join 1.0-mm DP980 steel and 1.5-
mm 5754 aluminum alloy in a lap joint configuration. The
chemical composition of DP980 steel was 0.15Cr-2.1Mn-
0.35Mo (wt.%); 5754 aluminum alloy was 2.6Mg-0.4Si-
0.5Mn-0.4Fe (wt.%). 1100 pure Al, AlSi12, and ZnAl22 filler
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metals with the diameters of 1.6 mm were used. A powder
brazing flux, Superior No. 20, was applied.

Base materials were machined as rectangular strips of 50 ×
60 mm2. Specimens were sheared parallel to the rolling direc-
tion. The steel sheets were cleaned in acetone and then ground to
1000 grit using SiC abrasive paper and again ultrasonically
cleaned in acetone. The aluminum alloy sheets went through a
very strict two-step cleaning process, which was shown in our
previous study [23].

An integrated Panasonic six-axis robot and a 4 kW
Nuvonyx diode laser systemwere used for laser welding/braz-
ing. A 1 × 12-mm2 rectangular laser beam intensity profile
was obtained at the focal point. The filler metal was placed
on the surface of the steel sheet. To limit oxidation, shielding
gas (99.99% Ar) was applied with a flow rate of 15 L/min
from a 6-mm-diameter soft copper tube. A shim was placed
below the aluminum sheet to minimize the gap between the
faying surfaces. The experimental setup of laser welding/
brazing is shown in Fig. 1a. The process parameters were
1.0–2.8 kW laser power, 0.2–1.0 m/min travel speed, 0-mm
defocusing amount, and 0-mm deviation distance towards ei-
ther side of base materials.

After the laser welding/brazing, to measure the mechanical
properties of the joints, rectangular specimens were made
from the joints and subjected to tensile-shear tests at room

temperature with a crosshead speed of 1 mm/min. Shims were
clamped to each end of the specimens to keep the joint inter-
face parallel to the loading direction, as shown in Fig. 1b. The
joint strength was presented as fracture load with the unit of
newton (N) as the geometries of the tensile samples were not
identical because of various fusion zone (FZ) geometries and
complex stresses [24].

The specimens were cut across the joints to obtain cross
sections to study the macrostructure and microstructure.
Keller’s reagent was used to reveal the microstructure of the
sectioned joints. They were then observed using an Olympus
BX51M optical microscope (OM). The microstructure and
fracture morphology were analyzed using a JEOL JSM 6460
scanning electron microscope (SEM). The composition was
determined using Oxford INCA energy-dispersive X-ray spec-
trometer (EDS). The FZ/steel interfacial phases were confirmed
using a JEOL 2010F transmission electron microscope (TEM).

3 Results and discussion

3.1 Weld appearance and OM analysis

Figure 2a–c shows typical weld appearances of the laser joints
with different filler metals. During laser irradiation, filler met-

Fig. 1 a Schematic of laser
welding/brazing of Al to steel: a
laser welding/brazing process, b
specimen for tensile-shear test

Fig. 2 Weld appearances and cross-sectional views of laser joints with different filler metals: a–c weld appereances, d–f cross sectional views
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al melted, wetted, and spread on the steel surface, then solid-
ified to form the FZ. As shown in Fig. 2a, when pure Al filler
metal was used, non-uniform FZ was observed especially at
the both ends of the specimen. In contrast, using Al-Si and Zn-
Al filler metals resulted in uniform FZs with good wetting on
both base materials (Fig. 2b, c). Figure 2d–f presents typical
cross-sectional views of the laser joints with different filler
metals. Comparing Fig. 2d to e and f, it was obvious that the
FZ widths of latter ones were much larger than that of the
former one, which indicated better wetting on the steel sub-
strate when using Al-Si and Zn-Al filler metals.

3.2 SEM analysis

Figure 3 shows SEM images of typically interfacial microstruc-
ture of laser Al/steel joints with different filler metals. In the
case of pure Al filler metal, the interfacial reaction layer was
mainly composed of two phases, i.e., needle-like phase adja-
cent to FZ and lamellar phase adjacent to steel (Fig. 3a). Based
on the EDS analysis, the needle-like phase had the chemical
composition of 72.6Al-27.4Fe (at. %), while the lamellar struc-
ture phase had the chemical composition of 78.3Al-21.7Fe (at.
%). Thus, the needle-like phase and lamellar phase were iden-
tified as FeAl3 and Fe2Al5, respectively. Besides,
microcracking was observed in Fe2Al5 layer. Figure 3b pre-
sents the SEM image of laser Al/steel joint with Al-Si filler
metal. An island-shaped phase at the FZ side and a bumpy

phase at the steel side were observed. Based on the EDS anal-
ysis, the chemical composition of the island-shaped phase was
74.7Al-8.7Si-16.6Fe (at. %), while the chemical composition
of the bumpy phase was 70.9Al-5.5Si-23.6Fe (at. %).
Therefore, the island-shaped and bumpy phases were identified
as Al7.2Fe1.8Si and Fe(Al,Si)3, respectively. Figure 3c shows
the backscattered electron (BSE) image of typically interfacial
microstructure of laser Al/steel joint with Zn-Al filler metal.
The reaction layer consisted of a dark layered structure, a light
dispersed structure, and a gray stripy structure. The EDS anal-
ysis showed that the layered structure contained 64.3Al-
30.3Fe-5.4Zn (at. %), while the dispersed structure contained
8.7Al-6.0Fe-85.3Zn (at. %). According to the Fe-Al-Zn ternary
phase diagram, the possible phases of layered and dispersed
structures were Fe2Al5-xZnx and FeZn10, respectively. It is not-
ed that the gray stripy structure is too small to be accurately
measured by SEM-EDS (the inset in Fig. 3c), and this structure
will be characterized by TEM analysis.

3.3 TEM analysis

Figure 4 shows TEM analysis of the laser joint with Al-Si
filler metal. In the bright filed (BF) image, some dark
Fe(Al,Si)3 particles were formed inside a hexagonal
Al7.2Fe1.8Si. Figure 4b, c shows the selected area diffraction
patterns (SADPs), which represent the incident beams parallel

to 1211
� �

Al7:2Fe1:8Si
and 021

� �
Fe Al;Sið Þ3 zone axes.

Fig. 3 SEM image of FZ/steel interfacial region in the laser Al/steel joints with different filler metals: a pure Al, b Al-Si, c Zn-Al

Fig. 4 TEM analysis of the laser joint with Al-Si filler metal: a BF image, b and c SADPs of Al7.2Fe1.8Si and Fe(Al,Si)3
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Figure 5 displays the TEM analysis of the laser joint with
Zn-Al filler metal. Figure 5b, c presents the SADPs of the
interfacial phases, which represent the incident beams

112
� �

Fe2Al5−xZnx and [0001]FeZn10 zone axes. The gray stripy

structures in the BSE image (Fig. 3c) presented to be a light
lath structures in BF image (Fig. 5a). The SADPs of this

structure showed a strong amorphous halo (Fig. 5d).
Besides, based on the TEM-EDS analysis, it contained
56.6Al-1.0Fe-42.4Zn (at. %), which was reasonably deter-
mined to be an Al-rich amorphous phase.

3.4 Fracture load and fracture behavior

The fracture load vs the variety of filler metal and joint
failure mode is displayed in Fig. 6. When pure Al filler
metal was used, the fracture load was 727 N and the joint
failed at the interfacial region. When Al-Si filler metal was
used, the fracture load increased to 1085 N and the joint
failed near the FZ. With the similar failure location, the
fracture load slightly increased to 1233 N when Zn-Al
filler metal was applied.

Figure 7 compiles the failure joint with pure Al filler metal
and fracture surface morphologies. As shown in Fig. 7a, the
fracture occurred at the FZ/steel interface. Figure 7b, c dis-
plays a mass of river patterns and tearing ridges on the fracture
surfaces, indicating a cleavage brittle failure. Based on the
EDS analysis, Fe2Al5 was detected on both sides of the frac-
ture surfaces. It suggested that the fracture occurred inside
Fe2Al5 layer which was due to the formation of microcracking
in this region (Fig. 3a).

Fig. 5 TEM analysis of the laser joint with Zn-Al filler metal: a BF image, b, c, and d SADPs of FeZn10, Fe2Al5-xZnx and Al-rich amorphous phase,
respectively

Fig. 6 Fracture load vs the variety of filler metal and joint failure mode
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Figure 8 presents the failure joint with Al-Si filler metal and
fracture surface morphologies. The fracture located at the FZ/Al
interface as shown in Fig. 8a. A mixture of smooth planes and
river patterns were seen on the fracture surfaces which was the
characteristic of brittle cleavage failure (Fig. 8b, c). Based on the
EDS analysis, α-Al, Al-Si eutectic, and Al5FeSi were detected,
which indicated that the fracture mainly occurred in the FZ.

Figure 9 shows the failure joint with Zn-Al filler metal and
fracture surface morphologies. Similar to the case of Al-Si
filler metal, the fracture was observed near the FZ/Al interface
(Fig. 9a). Figure 9b, c displays the ductile failure with a large
amount of uniform dimples. Based on the EDS analysis, α-Al

containing a few amount of Mg was detected, suggesting an
Al heat-affected zone (HAZ) fracture.

3.5 Influence of alloy elements

The changes of fracture load and fracture behavior can be
correlated to the change of interfacial microstructure. In the
case of pure Al filler metal, the reaction layer is as thick as
12 μm (Fig. 3a). Besides, the microhardness of FeAl3 and
Fe2Al5 are up to 892 and 1013 HV, respectively [4]. These
combined factors significantly embrittle the joint and lead to
low fracture load and the interfacial failure. In the case of Al-

Fig. 7 Failure joint with pure Al filler metal and fracture surface morphologies: a failure joint, b and c fracture surfaces at the FZ side and the steel side,
respectively

Fig. 8 Failure joint with Al-Si filler metal and fracture surface morphologies: a failure joint, b and c fracture surfaces at the FZ side and the Al side,
respectively

Fig. 9 Failure joint with Zn-Al filler metal and fracture surface morphologies: a failure joint, b and c fracture surface at the FZ side and the Al side,
respectively
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Si filler metal, the microhardness values of Al7.2Fe1.8Si and
Fe(Al,Si)3 are 956 and 883 HV, respectively [23], which are
similar to the case of pure Al filler metal. However, the thick-
ness of reaction layer reduces to 8 μm (Fig. 3b). Thus, it
suggests that alloy element Si is able to suppress the growth
of reaction layer. With the thinned reaction layer, the fracture
load is thus improved. In the case of Zn-Al filler metal, the
thickness of reaction layer is increased to 38 μm (Fig. 2c).
Surprisingly, it is opposed to many previous findings that the
thinner the reaction layer indicates the higher fracture load
[10, 11]. It is noted that the nanohardness values of Fe2Al5-
xZnx and FeZn10 are 3.05 and 11.52 GPa, respectively, which
are converted to 311 and 1175 HV [25]. Apparently, the aver-
age hardness (brittleness) of the reaction layer is much lower
than that of with pure Al filler metal. Thus, it infers that the
reduction in brittleness of the reaction layer is responsible for
the enhancement in the fracture load.

4 Conclusion

Dissimilar Al/steel joints were successfully produced by laser
welding/brazing using pure Al, Al-Si, and Zn-Al filler metals.
By comparing the laser joints with different filler metals, the
influence of alloy elements Si and Zn on microstructure and
mechanical properties was investigated. The major conclu-
sions can be summarized as follows:

1. For the pure Al filler metal, a 12-μm-thick reaction layer
consisted of FeAl3 and Fe2Al5 is formed at the FZ/steel
interface. Microcracking is observed in the layer of
Fe2Al5. The joint fracture load is 727 N, and joint fails
at the Fe2Al5 layer.

2. For the Al-Si filler metal, Al7.2Fe1.8Si and Fe(Al,Si)3 re-
action layers with the total thickness of 8 μm are observed
at the interfacial region. The joint fracture load is 1085 N,
and the failure location is at the FZ.

3. For the Zn-Al filler metal, the reaction layer consists of
Fe2Al5-xZnx, FeZn10, and small amount of Al-rich amor-
phous phase. Thickness of the reaction layer is 38 μm.
The joint fracture load is 1233 N and joint fails at the Al
HAZ.

4. Element Si is able to suppress the growth of interfacial
reaction layer, which leads to the fracture load improve-
ment, while element Zn is capable of reducing the brittle-
ness of reaction products, and it consequently enhances
the fracture load.
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