CO-OPERATIVE EDUCATION ANALYTICS: SATISFACTION & RELATIONSHIPS AMONG PROGRAMS

Presenter: Yuheng Helen Jiang

Authors: Yuheng Helen Jiang, Sally Lee (Satisfaction)
Lukasz Golab (Supervisor)
Department of Management Sciences
September 22, 2015
Who we are...

- **Professor Lukasz Golab**
 - Assistant Professor in Management Sciences, cross appointed to Computer Science
 - BSc in Computer Science from the University of Toronto (2001)
 - PhD in Computer Science from the University of Waterloo (2006)
 - **Research Interests**: big data; applications of big data on energy and education

- **Yuheng Helen Jiang**
 - BASc. In Management Engineering from the University of Waterloo (2013)
 - Accomplished 6 co-op terms using the Jobmine system
 - (almost) MASc in Management Sciences from the University of Waterloo (2015)
 - **Research Interests**: applications of data mining on energy and education
Agenda

- **Satisfaction**
 - **Objective**: determine the factors affecting student and employer success and satisfaction with the co-op experience

- **Relationships among academic programs**
 - *Master thesis*: On Competition for Undergraduate Co-op Placements: A Graph Mining Approach
 - **Objective**: improve the co-op process by characterizing the relationships and extent of competition for co-op placements among students from various academic programs

- **Future work**
SATISFACTION

Title: Analyzing student and employer satisfaction with cooperative education through multiple data sources
Satisfaction: Data

- 3 years (Winter 2009 – Fall 2011) of
 - employers’ evaluations of students (19 sub-categories 1-4/ not applicable & overall evaluation 1-5)
 - students’ evaluations of employers (overall evaluation 1-10)
- Engineering students only
- Other factors:
 - Work term number
 - Length of co-op terms: 4 months or 8 months
 - Timing of the first work term: after 1 or 2 terms
 - Location: abroad, domestic
 - How to find a co-op job: regular process, self-arranged, return (work term status)
Satisfaction: Key Finding 1

- **Overall:** Students are generally willing to learn new skills, but may not have much leadership experience.

Figure 2: Average and standard deviations of the scores of the 19 sub-categories of employers’ evaluations of students.
Satisfaction: Key Finding 2

- **Overtime:** students with more work experience receive higher scores

Figure 3: Percentage of co-op students in each evaluation category from outstanding to unsatisfactory and average of employer’s evaluation over first to sixth work terms
Satisfaction: Key Finding 3

- 50% of evaluations are **not applicable**: conflict management and leadership

- Over 6 terms:
 - integration of prior learning, setting goals, and leadership decreased significantly

- Returning students:
 - conflict management, leadership and integration of prior learning decreased significantly
Keywords in job titles and employer names

First year

Table 2: Top 10 keywords from employer names and job titles for first-year engineering students

<table>
<thead>
<tr>
<th>Employer Name Keywords</th>
<th>Job Title Keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>University</td>
<td>Engineering</td>
</tr>
<tr>
<td>Ontario</td>
<td>Assistant</td>
</tr>
<tr>
<td>Toronto</td>
<td>Developer</td>
</tr>
<tr>
<td>General</td>
<td>Software</td>
</tr>
<tr>
<td>Research</td>
<td>Junior</td>
</tr>
<tr>
<td>System</td>
<td>Architectural</td>
</tr>
<tr>
<td>Engineering</td>
<td>Web</td>
</tr>
<tr>
<td>Canadian</td>
<td>Technical</td>
</tr>
<tr>
<td>City</td>
<td>Research</td>
</tr>
<tr>
<td>Environment</td>
<td>IT</td>
</tr>
</tbody>
</table>
Satisfaction: Key Finding 5

- **Effect of work term length**
 - Nearly 70% of students stayed 8-month work terms with the same employer.
 - 4-month with two positions:
 - Students were rated higher on their ability to learn, quality of work, quantity of work, creativity, problem solving and reliability.
 - 8-month with one position:
 - Students were rated higher in goal setting, judgment, conflict management, initiative and leadership.
 - N/A% decreased in goal setting and integration of prior learning.
 - Students rated their employer 10% lower.
Satisfaction: Key Finding 6

- **Timing of first work term**
 - Students’ evaluation of employers
 - After 1 term > After 2 terms
 - Employers’ evaluation of students
 - No significant difference
Satisfaction: Key Finding 7

- **International vs. Domestic**
 - 10% positions were outside of North America
 - Keywords in job titles
 - International: trainee, intern
 - Domestic: co-op
 - First term working abroad
 - More self-arranged positions
 - Students were rated worse, and less satisfied
 - Upper years
 - Students were rated better, and more satisfied
Satisfaction: Conclusion

- Students’ perspective
 - Expect N/A ratings in some categories
 - Stay with the same employer?
 - Work abroad?

- Employers’ perspective
 - N/A option exists

- Institutions’ perspective
 - When to start the first work term?
 - International positions?
 - Data collection
RELATIONSHIPS AMONG ACADEMIC PROGRAMS

Title: On Competition for Undergraduate Co-op Placements: A Graph Mining Approach
Relationship: Data Overview

- One term of interview data
 - 16,855 student-job interview pairs
 - 2,890 jobs
 - 4,194 students from 93 academic programs

- Job
 - Job title, advertised programs, advertised seniority

- Student
 - Academic program, academic year
Relationship: Graph Definition
Relationship: Graph Definition (Cont’d)

Figure 4.1: Full program graph
Six degrees of separation

Programs are REALLY connected!
Relationship: Two graphs

- Full program graph vs. Senior program graph

- Finding:
 - Senior students compete for jobs with students from fewer programs (less edges)
 - Relationships that do exist are stronger (thicker edges)
Unclear differences among academic programs
- Similar programs: clusters

Increasing need for multi-disciplinary and well-rounded education [9,10,18,71,119]
- Multi-disciplinary programs: outliers

Example of jobs for promotion
- Competing programs: fan-out metric
Figure 4.17: Hierarchy of partition results of senior program graph
Relationship: Multi-disciplinary programs

- Management Engineering (senior): 5th highest entropy

Figure 4.22 & 4.23: Word cloud for job titles of jobs that interviewed junior/senior Management Engineering students
Relationship: Multi-disciplinary programs

Question: well-rounded students or sets of specialized students?

Figure 4.36: Cumulative percentage of students over number of clusters of direct competitors (7 clusters)
16 programs do not have any jobs that interviewed only their students.

8 programs have more than 30 percent of the jobs only interviewed their students.

Figure 4.24: Level of competition of programs in the senior program graph in descending order.
Similar programs
- Academic programs did not always align well with the groups of closely connected programs
- Clusters can be used to create job categories and academic specializations

Multi-disciplinary programs
- Identification and verification

Competing programs
- Attract more employers that offer jobs to programs that face high competition
Future Work

- Develop recommender systems
 - Recommend jobs to students
 - Recommend students to employers
- Temporal analysis
 - What has changed over the years?
 - How does co-op behavior relate to key events or social factors?
- Ranking
 - How do employers and students play the ranking “game”?
- Collaboration!
THANK YOU!

QUESTIONS?

Contact:

Helen Jiang: y29jiang@uwaterloo.ca
helen.yuhengjiang@gmail.com

Lukasz Golab: lgolab@uwaterloo.ca