
FMCW Radar System

Mostafa Alizadeh

Jul 09, 2019

PRELIMINARY ON USING MMWAVE RADARS

1 Brief introduction to TI radar 3

2 FMCW Radar introduction 5
2.1 FMCW radar basics . 5

2.1.1 Radar equation . 7
2.2 Range detection . 8
2.3 Doppler or speed detection . 8
2.4 Angle of arrival detection . 9
2.5 High-resolution spectral estimation . 11
2.6 Object detection with CFAR . 11
2.7 References . 11

3 Radar calibration 13
3.1 References . 13

4 Notes on parallel processing 15

5 How to use radar application 17
5.1 Dependencies . 17
5.2 Range detection . 17

6 Radar package 19
6.1 RadarFcnLib module . 19

6.1.1 Tracking UPDATES: . 20
6.2 params module . 24

7 Application package 25
7.1 Module contents . 25

8 Error handling 27

9 Processing module 29
9.1 Processing module . 29

10 Example of using radar API 33

11 Glossaries 35

12 Copyright 37

13 Indices and tables 39

i

Python Module Index 41

ii

FMCW Radar System

The radar application is in the suppport of sensor community to expedite developement stages of sensing applications.
The application is developed based on TI radars for real-time processing and demonstration.

PRELIMINARY ON USING MMWAVE RADARS 1

FMCW Radar System

2 PRELIMINARY ON USING MMWAVE RADARS

CHAPTER

ONE

BRIEF INTRODUCTION TO TI RADAR

Here you should explain the main features of the TI radar . . .

3

FMCW Radar System

4 Chapter 1. Brief introduction to TI radar

CHAPTER

TWO

FMCW RADAR INTRODUCTION

TI mmwave radars are frequency modulated continuous wave (FMCW) radars such that the frequency is swept linearly.
FMCW radars have unique advantages, which cannot be presented in other radars at once. Those are:

• Being a mm-wave radar: the high attenuation in mmwave frequencies provides a high isolation between the
co-located operating radars even if they are separated in a few meters. Indeed, tiny displacements in mm are
comparable to the wavelength thus they can be detected. This high sensitivity is required to detect the chest wall
movement, which is in mm order.

• Discriminating range or localizing: because the radar can distinguish the reflections from different ranges,
potentially it can be used for multi-subject vital signs detection. This feature is recognized as the main advantage
of an FMCW radar in1. Indeed, high propagation attenuation reduces the possibility of having an echo signal,
which is bounced off multiple reflectors. Most probably, the echo signal is reflected off a single object if the
environment is not rich scattering. In that area, the received signal at particular range experienced a line of sight
wireless channel. In contrast, CW radars suffer from multipath fading because they collect all reflections from
all objects at all visible ranges in a one sinusoid signal.

• Being robust against thermal noise: FM signals are more robust against noise in comparison to AM signals.
Also, in FMCW radars the vital sign information is encoded in the received phase similar to FM signals. Thus,
FMCW radar is less affected by the noise in comparison to impulse radars.

2.1 FMCW radar basics

In any radar, the electromagnetic wave is sent into the environment containing various objects. Then the echo of the
wave is captured at a receiver. A simplified block diagram of such a system is shown in Fig. 1 in which both the
transmitter and the receiver are at the same location. Each chirp at the output of the FMCW generator is a sinusoid
signal whose frequency is swept from fmin to fmax (Fig. 2). Here the frequency is swept linearly with a positive slope
of K and a duration of 𝑇𝑟 implying that the sweeping bandwidth is 𝑓𝑚𝑎𝑥𝑓𝑚𝑖𝑛 = 𝐾𝑇𝑟. The received signal at the
output port of the receiver antenna is amplified and correlated with the transmit signal, which results in a signal called
beat signal. The beat signal contains information about the objects in the scene. Particularly, the delay in the reflected
signal is translated to an instantaneous frequency difference between the transmitted and the received chirps.

1 S. Wang, A. Pohl, T. Jaeschke, M. Czaplik, M. Köny, S. Leonhardt, and N. Pohl, “A novel ultra-wideband 80 ghz fmcw radar system for
contactless monitoring of vital signs,” in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), Aug 2015, pp. 4978–4981.

5

FMCW Radar System

Fig. 1

Fig. 2

Assume that the complex chirp signal is:

𝑠(𝑡) = 𝐴𝑡 exp
(︀
𝑗(2𝜋𝑓𝑚𝑖𝑛𝑡+ 𝜋𝐾𝑡2)

)︀
, 0 < 𝑡 < 𝑇𝑟 (1)

𝑓𝑚𝑖𝑛 is the start frequency (and 𝑚𝑎𝑥 is the corresponding wavelength) and At is the magnitude related to the transmit
power. Suppose that there is only a single small object situated at the distance of R0 to the radar but it is moving around
R0, which results in a time-varying distance to the radar. Let us denote this time-varying distance by𝑅(𝑡) = 𝑅0+𝑥(𝑡)
and x(t) is a function represents the distance variations around R0. Furthermore, the reflected wave off the object at
the receiver is the delayed version of s(t) with a delay of 𝑡𝑑 = 2𝑅(𝑡)/𝑐, which is the round-trip time of the wave. c is
the light speed throughout the whole paper. Consequently, the IF signal for only a single chirp duration will be:

𝑦(𝑡) = 𝑠(𝑡)𝑠*(𝑡− 𝑡𝑑)

= 𝐴𝑡𝐴𝑟 exp (𝑗(𝜑(𝑡) − 𝜑(𝑡− 𝑡𝑑))) , 𝑡𝑑 < 𝑡 < 𝑇𝑟, (2)

The thermal noise and other channel considerations are ignored for simplifications, but 𝐴𝑟 has a relationship to 𝐴𝑡 by

6 Chapter 2. FMCW Radar introduction

FMCW Radar System

the radar equation2. The beat signal, 𝑦(𝑡), can be expressed as follows:

𝑦(𝑡) = 𝐴𝑡𝐴𝑟 exp
(︀
𝑗(2𝜋𝑓𝑚𝑖𝑛𝑡𝑑 + 2𝜋𝐾𝑡𝑑𝑡− 𝜋𝐾𝑡2𝑑)

)︀
≈ 𝐴𝑡𝐴𝑟 exp (𝑗(2𝜋𝑓𝑚𝑖𝑛𝑡𝑑 + 2𝜋𝐾𝑡𝑑𝑡)

= 𝐴𝑡𝐴𝑟 exp (𝑗(𝜓(𝑡) + 𝜔𝑏𝑡)) , 𝑡𝑑 < 𝑡 < 𝑇𝑟

𝑦(𝑡) ≈ 𝐴𝑡𝐴𝑟 exp (𝑗(𝜓(𝑡) + 𝜔𝑏𝑡)) , 𝑡𝑑 < 𝑡 < 𝑇𝑟 (3)

𝜓(𝑡) = 4𝜋
𝑅0 + 𝑥(𝑡)

𝜆𝑚𝑎𝑥
, 𝜔𝑏 = 4𝜋

𝐾𝑅0

𝑐
, (4)

the second approximate equality in eq3 is obtained by ignoring the third term in the phase, which is very small. The
third term is negligible because K is in 1012𝐻𝑧/𝑠 order while 𝑡𝑑 is in 1ns thus the term is in the order of 10−6.
Equation (eq4) obtained after replacing 𝑡𝑑 to (eq3) and ignoring the 𝑥(𝑡)𝑡 term because t is in 1𝜇𝑠 and x(t) is almost
constant for one chirp as we will see later. Furthermore, 𝜓(𝑡) varies with x(t) relative to 𝜆𝑚𝑎𝑥. So, the phase variations
in the scale of the maximum wavelength can greatly change the beat signal phase. For example, a radar operating at 6
GHz is 10 times less sensitive in comparison to a 60 GHz radar. In addition, x(t) is almost constant within one chirp
because subjects are not moving more than 1 mm per chirp equivalent to 1𝑚𝑚/1𝜇𝑠 = 103𝑚/𝑠.

2.1.1 Radar equation

If the 𝑃𝑡 is nominal transmit power and the target is at a distance of R, then the received power is related to the transmit
power of a radar by the following:

𝑃𝑟 =
𝑃𝑡𝐺𝑡𝐺𝑟𝜎𝜆

2

(4𝜋)3𝑅4
, (5)

where 𝐺𝑡, and 𝐺𝑟 are the transmit and the receive antenna gains, respectively. 𝜎 is the RCS of the target. Also, 𝜆 is
the wavelength of the travelling wave. For physiological motion, the area under which the chest moves determines the
RCS. Equation eq5 is known as the radar equation. We assume that the room temperature is 300 Kelvin (or about
25 Celsius) and the transmit chirp has a sweeping bandwidth of 4 GHz, then the noise power at the output terminal of
the receiver antenna is 𝑃𝑛 = 10 𝑙𝑜𝑔10(𝐾𝑇𝑏𝑠) ≈ −103 𝑑𝐵 in which K is Boltzmann’s constant*0. In addition, if the
receiver NF is NF dB and the minimum SNR required at the based band is denoted by 𝑆𝑁𝑅𝑚𝑖𝑛, then the minimum
received signal power at the output port of Rx antenna will be 𝑃𝑟,𝑚𝑖𝑛 = 𝑁𝐹 + 𝑃𝑛 + 𝑆𝑁𝑅𝑚𝑖𝑛 in which NF is the
noise figure and all the variables are in dB. By using eq5, which relates 𝑃𝑟 to the target range, the maximum range
versus minimum required SNR at the based band can be obtained:

𝑅𝑚𝑎𝑥 =
4

√︃
𝑃𝑡𝐺𝑡𝐺𝑟𝜎𝜆2

𝑃𝑟,𝑚𝑖𝑛(4𝜋)3
, 𝑃𝑟,𝑚𝑖𝑛 = 𝑁𝐹 + 𝑃𝑛 + 𝑆𝑁𝑅𝑚𝑖𝑛, (6)

2 C. A. Balanis, Modern Antenna Handbook. John Wiley & Sons, Incorporated, google-Books-ID: Q9OgkQEACAAJ.
0 𝐾 = 4.138× 10−23 𝐽/𝐾. Do not confuse this K with the chirp slope.

2.1. FMCW radar basics 7

FMCW Radar System

Fig. 3: Maximum range of a target versus minimum required SNR at the based band. The gain of Tx/Rx antennas are
the same as G.

In figure Fig. 3, 𝑅𝑚𝑎𝑥 is plotted versus minimum SNR with values annotated. In fact, 𝜎 = 0.39𝑚2 is an approximate
value for a human as mentioned in3. The transmit power of 12 dBm is the output power of AWR1642/AWR1443 chips
(see table ref{TIParams}).

2.2 Range detection

From eq3 and eq4, 𝜓(𝑡) can be approximated by sampling x(t):

𝜓(𝑡) = 4𝜋
𝑅0 + 𝑥(𝑡0)

𝜆𝑚𝑎𝑥
, 𝜔𝑏 = 4𝜋

𝐾𝑅0

𝑐
, (7)

where 𝑡0 is any time in [𝑡𝑑, 𝑇𝑟]. This equation is used to detect the range of a subject,𝑅0. To this end, an FFT is applied
over samples of a chirp to obtain the spectrum of the beat signal, which has peaks corresponding to the subjects at
different ranges. This FFT reveals range information so it is called range FFT. Each range FFT bin represents a
particular distance with an associated phase similar to 𝜓(𝑡). Furthermore, as we mentioned before, there can be a very
small shift in 𝜔𝑏 due to residual delays incurred by the PA and the LNA. Although the little frequency shift exists, it
diminishes after the radar warms up.

2.3 Doppler or speed detection

From eq3, eq4, x(t) can be any function of time depending on the moving trajectory of the target with respect to the
radar. Assuming a radial movement†0, so 𝑥(𝑡) = 𝑣𝑡 where v is the radial velocity. By substituting it to eq4 then to
eq3, we have:

3 Amy Diane Droitcour. Non-Contact Measurement of Heart and Respiration Rates with a Single-Chip Microwave Doppler Radar. 2006.
0 Radial movement is a movement along the radial axis of a spherical coordinates with the radar at the centre.

8 Chapter 2. FMCW Radar introduction

FMCW Radar System

𝑦(𝑡) ≈ 𝐴𝑡𝐴𝑟 exp

(︂
𝑗

(︂
4𝜋

𝑅0

𝜆𝑚𝑎𝑥
+ 4𝜋𝐾

𝑅0

𝑐
𝑡+ 4𝜋𝐾

𝑣

𝑐
𝑡2 + 4𝜋

𝑣

𝜆𝑚𝑎𝑥
𝑡

)︂)︂
(8)

the first term in the exponent is constant, the second term is for the range, and the third term is very small due to the
order of t. The last term in the exponent is desired since it is linear in time and is the function of v. Though, if we take
the range FFT and look to specific range, we observe a signal like eq8 with only the last term in the exponent. Thus,
by taking the second FFT on a range bin across a sequence of chirps, we obtain the spectrum of the range containing
peaks corresponding to the target velocities‡0.

2.4 Angle of arrival detection

In a typical FMCW radar, the received signal from l’th receiver antenna and the k’th target can be expressed as:

𝑥𝑘𝑙(𝑡𝑓 , 𝑡𝑠) = 𝑏𝑘𝑙 exp (−𝑗 (2𝜋𝑓𝑏𝑡𝑓 + 𝜏𝑘𝑙 + 𝜉𝑘𝑙 + ∆𝜓𝑘𝑙(𝑡𝑓 , 𝑡𝑠))) (9)

where 𝑏𝑘𝑙 relates to the received power from the l’th virtual receiver and the k’th target, which depends on the target’s
RCS and range, and the antenna gain in the direction from the wave is scattered and received at the antenna. 𝑓𝑏 is
beat frequency corresponding to the range of the target. 𝜏𝑘𝑙 is phase shift due to angle of arrivals and is a function of
𝜃𝑘 and 𝜑𝑘 corresponding to the azimuth and elevation angles (see Fig. 4). 𝜉𝑘𝑙 is the constant phase representing the
phase difference between the virtual receivers for k’th target due to manufacturing differences of the receiver channels
and the angle of arrivals (or antenna pattern in the direction of the received wave) as well. Note that 𝜉𝑘𝑙 is different
than 𝜏𝑘𝑙 as it is not a particular function of the arrival angles, but we can say something about 𝜏𝑘𝑙 in terms of 𝜃𝑘 and
𝜑𝑘. Also, 𝜓𝑘𝑙(𝑡𝑓 , 𝑡𝑠) is the residual phase noise4. Also, we did not included the thermal additive noise in eq9. The
previous equation can be written in a matrix-vector form containing all the signal received by all virtual receivers if
we ignore the residual phase noise. So,

𝑥𝑘(𝑡𝑓 , 𝑡𝑠) = Γ𝑘𝑎𝑘(𝜃𝑘, 𝜑𝑘)𝑠𝑘(𝑡𝑓) + 𝑒𝑘(𝑡𝑓 , 𝑡𝑠) (10)

in which 𝑎𝑘(𝜃𝑘, 𝜑𝑘) is known as steering vector and Γ𝑘 is a diagonal matrix containing the complex coefficients of
𝑏𝑘𝑙𝑒𝑥𝑝(−𝑗𝜉𝑘𝑙). 𝑠𝑘(𝑡𝑓) has only range information if the targets are stationary. In fact, if they are moving, 𝑠𝑘(𝑡𝑓) will
be depending on the target’s range and the velocity . If we assume that Γ𝑘 is the same for all k, then the received vector
from all virtual antennas and all targets are:

𝑥(𝑡𝑓 , 𝑡𝑠) =

𝐾∑︁
𝑘=1

(Γ𝑎𝑘(𝜃𝑘, 𝜑𝑘)𝑠𝑘(𝑡𝑓) + 𝑒𝑘(𝑡𝑓 , 𝑡𝑠)) = Γ𝐴𝑠(𝑡𝑓) + 𝑒(𝑡𝑓 , 𝑡𝑠) (11)

where matrix A is:

𝐴 = [𝑎(𝜃1, 𝜑1),𝑎(𝜃2, 𝜑2), · · · ,𝑎(𝜃𝐾 , 𝜑𝐾)] (12)

and 𝑠(𝑡𝑓) is:

0 The spectrum of the range bin should be scaled by 𝜆𝑚𝑎𝑥/2 to convert the frequency to the actual m/s (see eq8).
4 M. C. Budge and M. P. Burt, “Range correlation effects in radars,” in The Record of the 1993 IEEE National Radar Conference, 1993, pp.

212–216.

2.4. Angle of arrival detection 9

FMCW Radar System

𝑥(𝑡𝑓) = [𝑠1(𝑡𝑓), 𝑠𝐾(𝑡𝑓), · · · , 𝑠𝐾(𝑡𝑓)]𝑇 (13)

and K is the number of targets and the noise vector has elements which are the accumulation the noises from each
antennas. If there is coupling between the antenna elements, then a matrix C should be multiplied to the left of Γ to
account the coupling.

As previously mentioned, the steering vector has a specific relationship to the angle of arrivals. Fig. 4 helps to derive
the relationship. The antennas are shown by the solid black dots. They are separated by dx and dy along x-axis and
z-axis, respectively. The red arrows are along the direction at which the wave is received by the radar. It makes an
angle of 𝜑 with xy plane and 𝜃 with y-axis in xy plane. The relative phase difference between the signal received from
l’th receiver to the first receiver on the origin can be expressed as below if the antenna is on the x-axis:

− 2𝜋

𝜆𝑚𝑎𝑥
𝑙𝑑𝑥 sin(𝜃) cos(𝜑) (14)

and this is the following if the antenna is shifted up in z direction:

− 2𝜋

𝜆𝑚𝑎𝑥
𝑙𝑥𝑑𝑥 sin(𝜃) cos(𝜑) +

2𝜋

𝜆𝑚𝑎𝑥
𝑙𝑧𝑑𝑦 sin(𝜑) (15)

where 𝑙𝑥, 𝑙𝑧 are the shifts to the negative x and positive z, respectively. By knowing the antenna array configuration,
we can obtain the steering vector 𝑎𝑘(𝜃𝑘, 𝜑𝑘).

10 Chapter 2. FMCW Radar introduction

FMCW Radar System

Fig. 4: Steering vector construction based on the array configuration

2.5 High-resolution spectral estimation

2.6 Object detection with CFAR

2.7 References

2.5. High-resolution spectral estimation 11

FMCW Radar System

12 Chapter 2. FMCW Radar introduction

CHAPTER

THREE

RADAR CALIBRATION

3.1 References

13

FMCW Radar System

14 Chapter 3. Radar calibration

CHAPTER

FOUR

NOTES ON PARALLEL PROCESSING

Gilles Kahn provided clear semantics of process interaction which facilitates well-structured programming of dy-
namically evolving networks of processes. - At any given point, a process can be either enabled or blocked waiting for
data on only one of its input channels: it cannot wait for data from more than one channel. - A proper schecduling
property should :

• infinite running loop

• avoid deadlock1

• control the buffer sizes to be limited

• achieve maximum throughput by managing the memories

1 In concurrent computing, a deadlock is a state in which each member of a group is waiting for another member, including itself, to take action,
such as sending a message or more commonly releasing a lock.

15

FMCW Radar System

16 Chapter 4. Notes on parallel processing

CHAPTER

FIVE

HOW TO USE RADAR APPLICATION

First of all we need to import necessary libraries:

import socket

5.1 Dependencies

• numpy

• pyqtgraph

• PyQt5

• . . .

5.2 Range detection

The following is an examplef for plotting range profiles in real-time:

import socket

UDP_IP = '192.168.33.30'
UDP_port = 4098
UDP_buff_size = 65000

DCASock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, socket.IPPROTO_IP)
DCASock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
setting the socket buffer size
DCASock.setsockopt(socket.SOL_SOCKET, socket.SO_RCVBUF, UDP_buff_size)
DCASock.bind((UDP_IP,UDP_port))

17

FMCW Radar System

18 Chapter 5. How to use radar application

CHAPTER

SIX

RADAR PACKAGE

6.1 RadarFcnLib module

This module is intended for defining all radar functions from configuring, controling, running the radar, and reading
DCA1000 packets down to obtaining different maps and higher layer of signal processing. Each function is compared
against the Matlab outputs or it is tested within Python by a sample data.

19

FMCW Radar System

6.1.1 Tracking UPDATES:

Date Description
March-
6-
2019

Function annotations are added.

March-
6-
2019

Unnecessary initial variables are removed in unpackDCApayload.

March-
6-
2019

Timers are commented in readADCbits. These are for tracking the execution time.

March-
10-
2019

packetReorderZeroFilling considers the cases where zero filling process fills the buffer more
than one round.

March-
10-
2019

readADCbits assumes that the received byte stream is flattened in contrast to what was assumed before.

March-
12-
2019

readADCbits should do np.reshape by F order otherwise the samples of each channel will be inter-
leaved.

March-
12-
2019

FormingVirtualChans should do np.reshape by F order otherwise the samples of each channel will
be interleaved.

May-
02-
2019

The table is added.

May-
04-
2019

DCA1000_CMD_RESPONSE_SEQ added.

Jun-
01-
2019

build_uis function added.

Jun-
07-
2019

SockBuf input is removed from packetReorderZeroFilling.

Jun-
22-
2019

DataExport input is removed from packetReorderZeroFilling and instead the function returns
the export buffer. This is not mmeory efficient since it requires twice memory as before: one is for export
buffer and the other for Q buffer outside the function.

Author Mostafa Alizadeh

radar.RadarFcnLib.AveRemove(a: numpy.array, retAve: bool, retAveRm: bool)
This function takes in a 3 dimensional array [x,y,z] as input and takes the average along the second dimension so
the average array size would be [x,1,z]. When the average is taken, it will only create a matrix with dimension
[x,z] as dimension y has been shrunk into one row. This matrix will be re-sized to return the dimensions [x,1,z]
which would then be subtracted from the initial Array A to return the removed average array. The new averaged
removed matrix will be returned.

Parameters

• a (np.array) – 3D input array

• retAve (bool) – whether or not return the average value

• retAveRm (bool) – whether or not return the removed average array

20 Chapter 6. Radar package

https://uwaterloo.ca/scholar/m5alizad

FMCW Radar System

Returns based on retAve and retAve returns are determined

radar.RadarFcnLib.CFAR2D()

radar.RadarFcnLib.DCA1000_CMD_RESPONSE_SEQ(CMD_SEQ: list, DCA1000Sock: socket.socket,
DestAddr: ())

Sends and receives a sequence of message-reponses to and from the DCA1000
board. All the DCA1000 commands are supported except RESET_AR_DEV_CMD_CODE,
PLAYBACK_START_CMD_CODE, PLAYBACK_STOP_CMD_CODE, SYSTEM_ERROR_CMD_CODE,
CONFIG_DATA_MODE_AR_DEV_CMD_CODE, INIT_FPGA_PLAYBACK_CMD_CODE. The function
sends a set of predefined commands which set default parameters for the DCA1000. The followings are the the
default values for different parameters:

• CONFIG_FPGA_GEN_CMD_CODE:

Parameter Default value
Raw data mode 1
Device AWR1243
Capture LVDS
Stream over Ethernet
ADC bits 16 bits
Timer info. in seconds

• CONFIG_EEPROM_CMD_CODE:

Parameter Default value
FPGA MAC Addr. 12:90:78:56:34:12
Config. Port # 4098

• CONFIG_PACKET_DATA_CMD_CODE:

Parameter Default value
Eth. packet size 1472
Eth. Packet delay 25 ns

To start recording from the board, you should send the following sequence of commands:

1. SYSTEM_CONNECT_CMD_CODE

2. CONFIG_FPGA_GEN_CMD_CODE

3. CONFIG_PACKET_DATA_CMD_CODE

4. RECORD_START_CMD_CODE

To stop recording send RECORD_STOP_CMD_CODE command. For the input arguments and the outputs see
parameters.

Parameters

• CMD_SEQ (list[int]) – The list of commands to be sent in order.

• DCA1000Sock (socket.socket) – The socket which is bound to the (System IP, con-
figuration port). It is used for both send and receive of the commands and responses.

• DestAddr (tuple[int,int]) – FPGA (IP, port) address.

6.1. RadarFcnLib module 21

FMCW Radar System

Returns A list of true and false indicating whether a message is submitted correctly or not. :rtype:
list[int]

radar.RadarFcnLib.FFTrmNegativeFreqs(InMat: numpy.array, Nfft: int = None)

Takes FFT over columns of the input array (3D, 2D, or 1D array) and removes the negative frequen-
cies. FFT is applied on the first axis.

TODO: Add windowing as an option.

Parameters

• InMat (np.array) – Input array.

• Nfft (int) – FFT size. If it is None then the FFT size is equal to the size of the columns,
otherwise it is Nfft. However, the size along axis=0 should be an integer multiple of 2.

Returns A NumPy array containing the FFT of the input array with removed negative frequencies.

radar.RadarFcnLib.FormingVirtualChans(Inmat: numpy.array, NumTxAnt: int, NumChirpSmps:
int)

The Inmat is reshaped to a 3D array whose the 3rd dimension index is the virtual channel index. The input
should have columns corresponding to each actual Rx channel samples. The 2D array made of the first two
dimensions of the output 3D array contains chirp samples of a virtual channel.

Parameters Inmat (np.array) – A matrix corresponding to the received data from actual Rx
channels. Columns of the matrix should contain Rx channel data. It is assumed that the Inmat is
a NumPy 2D array. Note that the order of Rx channels are from the first to the last column.

Returns A 3D array with NumVirtualChan = NumTxAnt * Inmat.shape[1].

radar.RadarFcnLib.build_uis(SRC: str = ’.’, DEST: str = ’.’)
Building all ‘.ui’ files in the SRC directory and put the results in DEST directory.

Parameters

• SRC (str) – source directory.

• DEST (str) – destination directory.

radar.RadarFcnLib.packetReorderZeroFilling(seqNum_: int, SeqNum: int, ByteCount: int,
ByteCnt_: int, PayBits: bytearray, BufPt:
int, RxBufSize: int, ExportLen: int, ByteBuf:
bytearray, ZeroBytes: bytearray)

The function does packet reordering and zero filling for the received packets in PayBits. In fact, it checks
whether the sequence numbers in PayBits are in order or not. If it is not, it will add appropriate amount of zero
bytes to the buffer i.e. ByteBuf. After filling the buffer or when it is “almost” full, it puts the first ExportLen
bytes to DataExport queue. Consider that buffers should be mutable object to make changes on them such that
they will be available outside the function.

Parameters

• seqNum (int) – The previous received sequence number.

• SeqNum (int) – The current received sequence number.

• ByteCount (int) – The current byte count from DCA1000.

• ByteCnt (int) – The previous bytecount from DCA1000.

• PayBits (bytearray) – Payload bits received from DCA1000.

• BufPt (int) – A pointer to the current position of ByteBuf to fill the buffer.

22 Chapter 6. Radar package

FMCW Radar System

• RxBufSize (int) – The size of the buffer.

• ExportLen (int) – The size of the output buffer

• ByteBuf (bytearray) – The input buffer.

• ZeroBytes (bytearray) – The zero-bytes array is a pre-allocated memory to reduce
the memory usage by avoiding re/allocating of the zero-byte memory.

Returns The updated position of the buffer pointer and the DataExport buffer.

radar.RadarFcnLib.readADCbits(ADCbits: bytearray, NumADCBits: int, isReal: bool)
Reads ADC bits from input and output uint samples i.e. 2-byte samples with little-endian order. This is a
duplication of Matlab function provided by TI. It returns a matrix having columns with the received samples of
each Rx channel.

Parameters

• ADCbits (bytearray) – Input list of bits read from the DCA1000 packets

• NumADCBits (int) – Number of ADC bits within each real/imaginary sample (# bits of
ADCs).

• isReal (bool) – An indication whether or not ADC has real or complex samples.

Returns Returns the output matrix.

radar.RadarFcnLib.readStoredDCA1000(FileNames: [], RxBufSize: int, DataExport:
queue.Queue)

Reads the binary files stored by mmave studio before packer reordering and zero filling. This function is good
for offline analysis. The input FileNames is a list of binary file names to do packet reordering and zero filling
on them in order.

Parameters

• FileNames – a list of file names in a correct sequence to read the binary DCA packets
saved by mmwave sutdio.

• RxBufSize (int) – Buffer size for packetReorderZeroFilling.

• DataExport (queue.Queue) – The thread queue for exporting reordered data.

Returns True if it was successful, otherwise False.

radar.RadarFcnLib.rmAntCoupling(VirChans: numpy.array, MAxCalibRngIdx: int, AveLen: int)
Calculates the antenna coupling for the close ranges determined by MAxCalibRngIdx. Computes the average
for the first bunch of samples with length AveLen. Also note that, it takes the average on the complex samples
not on magnitude or phase separately.

Parameters

• VirChans (np.array) – Input 3D array which comes normally from the output of
FFTrmNegativeFreqs()

• MAxCalibRngIdx (int) – Zero indexing of the maximum range index such that the
antenna coupling effect will be calculated for the ranges up to that range index.

• AveLen (int) – Averaging length.

Returns The antenna coupling compensation array, which can be used later for removing the antenna
coupling signature.

radar.RadarFcnLib.tst_dll()

6.1. RadarFcnLib module 23

FMCW Radar System

radar.RadarFcnLib.unpackDCApayload(fHand)
Takes a file handler and returns the ADC bits. The file is a binary file stored by mmwave studio in the format
mentioned in the TI user guide of “DCA1000EVM Data Capture Card” section 5.3.

Parameters fHand – File handler

return Sequence numbers in a list.

Returns Payload sizes in a list

Returns ADC bits in a binary sequence

6.2 params module

All the radar constant values.

24 Chapter 6. Radar package

http://www.ti.com/lit/ug/spruij4/spruij4.pdf

CHAPTER

SEVEN

APPLICATION PACKAGE

class app.mainForm1.Ui_plots
Bases: object

The main UI form.

retranslateUi(plots)

setupUi(plots)

7.1 Module contents

25

FMCW Radar System

26 Chapter 7. Application package

CHAPTER

EIGHT

ERROR HANDLING

The radar application has three layers: 1. mmwavelink layer: the mmwavelink is the interface to the radar chip for
programming, configuring, and monitoring the radar. It has four different errors:

• mmwave app: if an exception raised at this stage, the error raised due to the following reasons:

– The radar and the SPI board (see Glossaries) are not connected

– The radar and the SPI board are connected but they are not recognized by the host

• Profile config: profile configuration parameters are wrong

• Chirp config: chirp configuration parameters are wrong

• Frame config: FMCW frame configuration parameters are wrong

2. baseband layer: the baseband signal processing includes deriving range-slowtime map, range-Doppler map,
range-azimuth map, and 3D point cloud. This layer has the following errors: TODO

• Reading packets: . . .

3. application layer:

exception Errors.DopplerErr(msg)
Bases: Errors.basebandErr

exception Errors.FormingVirChanErr(msg)
Bases: Errors.basebandErr

exception Errors.IOError
Bases: Errors.basebandErr

exception Errors.PortConnection(msg)
Bases: Errors.basebandErr

exception Errors.RangeErr(msg)
Bases: Errors.basebandErr

exception Errors.WorkerReturn(msg)
Bases: Errors.basebandErr

exception Errors.appErr(msg)
Bases: Exception

exception Errors.basebandErr(msg)
Bases: Exception

exception Errors.chirpConfErr(msg)
Bases: Errors.mmwavelinkErr

27

../html/Glossaries.html

FMCW Radar System

exception Errors.frameConfigErr(msg)
Bases: Errors.mmwavelinkErr

exception Errors.mmwAppErr(msg)
Bases: Errors.mmwavelinkErr

exception Errors.mmwavelinkErr(msg)
Bases: Exception

exception Errors.packetorderingErr(msg)
Bases: Errors.basebandErr

exception Errors.profConfErr(msg)
Bases: Errors.mmwavelinkErr

exception Errors.readingADCbitsErr(msg)
Bases: Errors.basebandErr

exception Errors.readingDCA1000Err(msg)
Bases: Errors.basebandErr

28 Chapter 8. Error handling

CHAPTER

NINE

PROCESSING MODULE

9.1 Processing module

This module contians all processing classes derived from the base class. The base class has mechanisms to handle the
data passing between each processing block.

class processing.base_processing
Bases: object

The abstract class for all signal processing ecosystem.

class processing.p_source_block(BlockName: str, NPorts: int)
Bases: processing.process_blocks

The process block source which is passing generated data down to the process

run()
Method to be run in sub-process; can be overridden in sub-class

worker()

class processing.process_blocks(name)
Bases: processing.base_processing, multiprocessing.context.Process

This is to derive all multiprocessed blocks to achieve full parallelism. TODO: setting daemon returns error:

assert self._popen is None, ‘process has already started’ AttributeError: ‘DCAReader’ object has no
attribute ‘_popen’

delay_calc()

run()
Method to be run in sub-process; can be overridden in sub-class

worker()

class processing.t_general_block(BlockName: str, NInPorts: int, NOutPorts: int)
Bases: processing.thread_blocks

All threaded general blocks should be derived from this class. Initializing parameters are:

Parameters

• BlockName (str) – name of the processing block

• NInPorts (int) – number of output queues

• NOutPorts (int) – number of output queues

29

FMCW Radar System

run()
Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object passed
to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

worker()

class processing.t_sink_block(BlockName: str, NInPorts: int)
Bases: processing.thread_blocks

All threaded sink blocks should be derived from this class. Initializing parameters are:

Parameters

• BlockName (str) – name of the processing block

• NInPorts (int) – number of output queues

run()
Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object passed
to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

worker()

class processing.t_source_block(BlockName: str, NPorts: int)
Bases: processing.thread_blocks

All threaded source blocks should be derived from this class. Initializing parameters are:

Parameters

• BlockName (str) – Name of the processing block

• NQs (int) – Number of output queues

run()
Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object passed
to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

worker()

class processing.thread_blocks(name)
Bases: processing.base_processing, threading.Thread

This is to derive multithreaded blocks.

delay_calc()

run()
Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object passed
to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

worker()

30 Chapter 9. Processing module

FMCW Radar System

class processing.threaded_process_blocks(ProcName: str)
Bases: processing.process_blocks, processing.thread_blocks

Multithreaded processes . . .

get_threads(ListThreads)

run()
Method to be run in sub-process; can be overridden in sub-class

worker()

class processing.top_block
Bases: processing.top_flow

All signal processing blocks in the flowgraph should be connected by this class. It manages for the correct flow
connection of the graph from the source set to the sink set. It manages the IOs between the blocks.

add_Qs(blck1: processing.base_processing, port1, blck2: processing.base_processing, port2)

connect(block1, port1: int, block2, port2: int)

cpu_trace()

print_arcs()

print_nodes()

throughput_calc()

update_A(A_)

class processing.top_flow
Bases: processing.base_processing

The signal processing flowgraph parent class which handles the signal flow in the graph.

connect()

flow_start()

flow_stop()

get_A()

get_cpu_usage()

handle_A()

mem_available()

mem_used()

num_cores()

set_A(A_)

class processing.tp_source_block(ProcName: str, NPortsIn: int, NPortsOut: int)
Bases: processing.thread_blocks

A source for threaded process which takes a list of input multiprocess.Queue() to collect data from other pro-
cesses and pass them down to the threads in the process by output queue.Queue().

run()
Method representing the thread’s activity.

9.1. Processing module 31

FMCW Radar System

You may override this method in a subclass. The standard run() method invokes the callable object passed
to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

worker()

32 Chapter 9. Processing module

CHAPTER

TEN

EXAMPLE OF USING RADAR API

The following video shows the example:

33

FMCW Radar System

34 Chapter 10. Example of using radar API

CHAPTER

ELEVEN

GLOSSARIES

SPI board a board with a SPI connection to a radar chipset.
RCS is a hypothetical area required to intercept the power density at the target

such that if the total reflected power is scattered isotropically, the power
density at the Rx is achieved.

NF Noise figure is defined as the ratio between the input SNR to the output
SNR of a circuit component.

35

FMCW Radar System

36 Chapter 11. Glossaries

CHAPTER

TWELVE

COPYRIGHT

Copyright 2019, Mostafa Alizadeh

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “FMCW radar application”), to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

37

FMCW Radar System

38 Chapter 12. Copyright

CHAPTER

THIRTEEN

INDICES AND TABLES

• genindex

• modindex

• search

39

FMCW Radar System

40 Chapter 13. Indices and tables

PYTHON MODULE INDEX

a
app.mainForm1, 25

e
Errors, 25

p
processing, 29

r
radar.params, 24
radar.RadarFcnLib, 19

41

	Brief introduction to TI radar
	FMCW Radar introduction
	FMCW radar basics
	Radar equation

	Range detection
	Doppler or speed detection
	Angle of arrival detection
	High-resolution spectral estimation
	Object detection with CFAR
	References

	Radar calibration
	References

	Notes on parallel processing
	How to use radar application
	Dependencies
	Range detection

	Radar package
	RadarFcnLib module
	Tracking UPDATES:

	params module

	Application package
	Module contents

	Error handling
	Processing module
	Processing module

	Example of using radar API
	Glossaries
	Copyright
	Indices and tables
	Python Module Index

