Statistics: A Vital Tool in Research

R. Jeanette O’Hara Hines

Dept. of Statistics and Actuarial Sci.
Director of the SCS

Steps involved in scientific research:

PPDAC

is a systematic framework for solving
problems and for acquiring knowledge

Problem

Plan

Data

Analysis
Conclusion

Problem: a clear statement of what you are

trying to learn, of what questions

you want to answer

- Are 'clickers' an effective teaching tool?
- Do 'case studies' help students learn
concepts better?
- Is a proposed 'blended' method of teaching effective?

Understanding the Problem

Need to formulate the problem well

What is your research 'hypothesis'?

What conclusions are you trying to draw?

About what group of things or people do
you want the conclusions to apply?

What will you measure?

What is the question you are trying to

answer?

Some of the above questions will be
answered in detail in the Plan.

Plan: the procedures you will use to carry
out the study; how you measure and collect data

There is a lot of work involved at this step, and you may have to go back to the Problem statement to clarify or to revise it.

Statistical planning is already needed at the
'Planning' stage:
-how will the info needed be obtained?
-how will you measure to get the info?

- how will the data be collected?
- what and who will be measured?
- what statistical tools are needed to
examine data?
- will data gathered and conclusions
reached answer questions?

Is study 'observational'?

- an 'observational' study is one in which
the researcher just observes and records
the info. Association only; cannot establish
'causation'. Surveys are often observational studies

Or will an experiment be used?

- a simple experiment is a study in which
the researcher deliberately manipulates
variables (like teaching style/method,
learning environment), randomly assigns
objects/subjects to treatments and then
records the resulting info. Can establish
'causation'.

Unit: basic element on which measurements

are made; sampling or experimental unit

Target pop ${ }^{n}$: well-defined set of units about which you want to draw conclusions

Study pop ${ }^{\text {n }}$: well-defined set of units about which you can draw conclusions

Sample: subset or part of study population
selected in some manner

Variable: quantity or characteristic

 measured on each unitTypes of variables

Categorical

Yes/No; Male/Female

Learning style; Area of study

Ordered Categorical

Age category; Education level; Strongly
agree to strongly disagree; Income level

Numeric

Age; Weight; Income; Test score

Pop ${ }^{\text {n }}$ attribute: a characteristic of a variable

in the study pop ${ }^{\text {n }}$; for example, the percent
of yeses, the average test score, the spread
of test scores

For a survey:
What group ('target' population) do you want to survey? What group ('study'
population) can you actually survey? How
will you get a 'sample' from this latter group?

What questions do you want to ask? Are
they clear and will they measure the info
you want?

Pre-test your questionnaire, and do it again.

Think about the responses you might get

 and whether they will address your questions in the Problem statement.
Data: the data are collected according to

the Plan

Analysis: the data are summarized and analyzed to answer the questions
posed

Examples of some data collected,

summarized and analyzed

1-way Tables

Gender

Male	Female	Total
$\mathbf{1 0 2}(\mathbf{3 5 . 5 \%})$	$\mathbf{1 8 5 (6 4 . 5 \%)}$	$\mathbf{2 8 7}$

Score on a 1-7 ordinal scale (say, strongly agree to strongly disagree)

1	2	3	4	5	6	7	Total
1	0	1	58	141	80	6	287

2-way Tables

	Yes	No	Total
Male	48	54	102
Female	75	110	185
Total	123	164	287

Research Question:

Is there an association between Gender and

Yes/No question? Do Females have a higher or lower chance of saying Yes
compared to Males?

Statistical Statements or Hypotheses:

Null Hypothesis: There is no association
between Gender and Yes/No question

Alternative Hypothesis: There is an
association between Gender and Yes/No
question

Test: Chi-square test
Results: $\chi^{2}=1.14$ with 1 df; $P=0.29$

Note: $P=P$-value $=$ measure $(0$ to 1$)$ of
agreement of data with null hypothesis
P large (say >0.10) \rightarrow no evidence that data disagree with null hypothesis
P small (say <0.05) \rightarrow evidence that data disagree with null hypothesis; alternative more reasonable

Statistical conclusion: No evidence of an association between Gender and Yes/No question

OR

No evidence that Females have a higher or lower chance of saying Yes compared to

Males

	Yes	No	Total
Male	$\mathbf{4 7 . 1 \%}$	52.9%	102
Female	$\mathbf{4 0 . 5 \%}$	59.5%	185
Total	123	164	287

Another example

Null Hypothesis: There is no association between Gender and 1-7 ordinal scale question

Alternative Hypothesis: There is an
association between Gender and 1-7 ordinal
scale question OR Males have a different
distribution of ' $\mathbf{1 - 7}$ ' scores than Females

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	Total
\mathbf{M}	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2 1}$	$\mathbf{4 7}$	$\mathbf{3 1}$	$\mathbf{1}$	$\mathbf{1 0 2}$
\mathbf{F}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{3 7}$	$\mathbf{9 4}$	$\mathbf{4 9}$	$\mathbf{5}$	$\mathbf{1 8 5}$
\mathbf{T}	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{5 8}$	$\mathbf{1 4 1}$	$\mathbf{8 0}$	$\mathbf{6}$	$\mathbf{2 8 7}$

	$\mathbf{1 - 4}$	$\mathbf{5}$	$\mathbf{6 - 7}$	Total
M	23	47	32	$\mathbf{1 0 2}$
F	37	$\mathbf{9 4}$	$\mathbf{5 4}$	$\mathbf{1 8 5}$
Total	$\mathbf{6 0}$	141	$\mathbf{8 6}$	$\mathbf{2 8 7}$

Test: Chi-square test
Results: $\chi^{2}=0.61$ with 2 df; $P=0.74$

Statistical conclusion: No evidence of an
association between Gender and '1-7'
ordinal scale question
OR

No evidence that Females and Males have a
different distribution of ' 1 -7' scores

Cell Percentages

	$1-4$	5	$6-7$	Total
\mathbf{M}	22.5	46.1	31.4	102
\mathbf{F}	20.0	50.8	29.2	185
Total	60	141	86	287

Another way to analyze data, using 1-7

A non-parametric t-test (Mann-Whitney)
tests for a difference in MEDIANS between
M and F. Scores are replaced by ranks (1 to
287) with ties adjusted for.

Median Score:

Males: 5.0
Females: 5.0

Null hypothesis: the median score for the
females is the same as that for Males

Results: $\mathrm{P}=\mathbf{0 . 8 8} \rightarrow$ no evidence of a
difference in median score between males
and females

Another example

Duration (of something) measured in

 months ranges from 1 to 99 (?).You are interested in testing if 'average' duration differs between Females and

Males

Null hypothesis: the 'average' duration for
the Females is the same as that for Males

Different possible tests - which one is best?

1. parametric t-test (assumes approximate normality of variable [duration] in each group)
2. non-parametric \mathbf{t}-test (loss of power if 1 more appropriate) and tests for difference in median

Gender 1, $\mathbf{n}=102$

Gender 2, $\mathbf{n}=185$

Variable $=$ Duration (in months)

Gender
 1
 2

Mean

Median

SD
26.5

102
185

2-sample t-tests

parametric t-test

$$
\text { pooled variance: } \quad \mathbf{P}=0.03
$$

separate variance: $P=0.06$
non-parametric t-test (Mann-Whitney)

$$
\mathbf{P}=0.20
$$

Which one do you use and what is your
conclusion?

Could also log duration and run parametric

 t-test.

Variable $=\log$ Duration

Gender
 1
 2

Mean
1.81
1.34

SD
1.34
1.19
n
102
185
t-test
pooled variance: $P=0.12$
separate variance: $\mathbf{P}=\mathbf{0 . 1 3}$

Interested in testing if two variables are
related \rightarrow correlation (perhaps simple
linear regression if prediction equation needed)

Is score linearly related to age? $\mathbf{n}=18$
Null hypothesis: score and age are NOT
linearly related

correlation $r=0.79$ with $16 \mathrm{df} ; \mathbf{P}=\mathbf{0 . 0 0 0}$

Conclusion: there is a strongly significant
correlation between score and age

Note: strongly significant does NOT mean
strongly correlated

How significant is determined by n; how
strongly correlated is determined by \mathbf{r}^{2}

Here $\mathbf{r}^{2}=0.79^{2}=0.62$ OR 62\%

Just Females $\mathbf{n}=\mathbf{1 4}$

$$
\begin{aligned}
& \mathrm{r}=0.51 \text { with } 12 \mathrm{df} \quad \mathrm{P}=0.07 \\
& \mathbf{r}^{2}=0.26 \text { OR } 26 \%
\end{aligned}
$$

Conclusions: Conclusions are drawn about

what has been learned

You summarize the statistical results in the study terminology

Other commonly used statistical tools:
comparing the averages of more than 2
groups - ANOVA
relating a single response variable to two or more covariates/explanatory variables multiple regression

For more statistical help, please come and see one of us at the Statistical Consulting Service
http://www.stats.uwaterloo.ca/stats_navigation/Consulting/S
tatConsulting.shtml
OR search 'Statistical Consulting' on UW website

Example: Blended Learning Survey

Problem: to measure the pre- and post-

 attitudes of students to the 'blended' mode of course delivery for future use of such coursesblended approach to learning involves
integrated face-to-face and online
environments

Plan: Prepare surveys and pre-test them.
Ask students in Pharm 220 to complete pre-
and post- surveys on-line. Surveys measure attitudes about 'blended' mode of course delivery. Students are encouraged to fill out surveys but are not obligated to. E-mails and in class announcements and reminders to fill out survey are given. Students told that study has approval from the Office of Research Ethics.

Variables measured on surveys: 5-point scale questions measuring pre- and postlevels of enthusiasm for blended course,
yes/no pre- questions about having taken a
blended and fully on-line course before, 5point scale post questions measuring level of learning/understanding given by various aspects of course and level of satisfaction, some open-ended questions

The Planning stage is also where the
researchers should outline what statistical
tools they will use to analyze the incoming
data, and how statistical conclusions will
translate into practical ones.

Researchers must make sure that data
being gathered will address their intended
questions and the data is actually
analyzable.

Data: data are gathered from pre- and
post- surveys. Pre- and post-surveys for each student are matched by having the student create an identifier which he/she writes on both surveys.

Analysis:

Statistical tools
to test for pre- to post- changes in 5-point
scales - probably a non-parametric paired
comparison test such as a signed-rank test
to summarize yeses/nos for pre- questions
on blended and fully on-line courses and 5-
point post scale questions measuring level of
learning/understanding, enthusiasm - tables
or bar charts

Conclusions:

Translate statistical conclusions into
 research conclusions using the language of

the survey

Unit: an undergraduate university student

Target pop ${ }^{\text {n }}$: all undergraduate university
students

Study pop ${ }^{\text {n }}$: university students taking
Pharm $220 \rightarrow$ sample consists of volunteers
since students can choose to answer surveys
or not

Blended Learning Survey is sort of an experimental study
in which pre and post surveys are used to describe/summarize students' changes (pre to post course) in attitudes to the 'blended' form of course delivery; changes will be attributed to course delivery but could possibly be due to some other change over time that could not be controlled

