Exploring ethics and communication in a first year Engineering Biology course: A case-based debate approach

University of Waterloo Annual Teaching and Learning Conference Opportunities and New Directions

Patrick Quinlan, Katharina Hassel, and Christine Moresoli

Department of Chemical Engineering University of Waterloo

Ethical responsibility

Environmental responsibility

http://idesign.tbr.edu/dutpal/resources/academic-honesty

Academic responsibility

Social responsibility

Professional responsibility

Teaching ethics

• The age old question:

Can ethical behaviour be taught?

OND 2015 | University of Waterloo | April 30, 2015

CHE161 Engineering Biology

- Introduction to biochemistry, cell biology, genetics, and bioprocessing
- Engineering biology is rife with ethical debate:
 - Nanobiotechnology
 - Biofuels
 - Genetic susceptibility testing
 - Gene sequence patenting
 - Etc.

This presents an opportunity to involve junior engineering students in ethical discussions

Tutorial format

Expert Panel

Active Audience

Case studies

- Nanobiotechnology (AgNP)
- Biofuels, bio-based materials (LCA)
- Gene patenting
- Genetic susceptibility testing
- Transgenic animals
- Genetically modified crops
- Stem cell-based products

Deliverables

- i. Two-page written report
 - Assessed in pairs
 - Requirements:
 - (a) brief discussion of the case
 - (b) presentation of risks/benefits relating to case
 - (c) statement that clearly outlines the students' position in the debate
 - (d) arguments supporting their position
 - (e) recommendations
- ii. Participation as an expert panelist
 - Assessed individually based on participation, teamwork, and overall knowledge of the case
- iii. Participation as an audience member
 - Assessed individually based on their involvement in the discussion

Student feedback

- Anonymous end-of-term questionnaire
- Five statements rated by the students from "strongly disagree" to "strongly agree"
- Overall qualitative feedback and course recommendations also received

Qualitative feedback – W2014

"Having to articulate our findings in a short time interval helped me to think and communicate systematically."

"Each group illuminated the conversation from a different perspective, thereby enriching my total understanding"

"The variety of topics... had a few common universal questions, which were not easy to answer."

"Use topics that relate more to class" "Have a short class on ethics before commencing the presentations. This would equip the students to evaluate the technologies and their impacts more clearly."

Qualitative feedback – S2014

"I enjoyed hearing all the different opinions. It helped me formulate an opinion of my own." "All the topics link between concepts we've learned... before, the topics seemed disconnected."

"Less redundancy."

"Split panel/audience into smaller sections." "Make it less formal... no marks for asking questions... too much pressure and forces people to ask redundant questions"

CEAB graduate attributes

- 1. A knowledge base for engineering
- 2. Problem analysis
- 3. Investigation
- 4. Design
- 5. Use of engineering tools
- 6. Individual and team work

- 7. Communication skills
- 8. Professionalism
- 9. Impact of engineering on society and environment
- 10. Ethics and equity
- 11. Economics and project management

12. Life-long learning

Engineers Canada. (2013). Canadian Engineering Accreditation Board Accreditation Criteria and Procedures. Retrieved Sept 15, 2014, from http:// www.engineerscanada.ca/sites/default/files/sites/default/files/accreditation_criteria_procedures_2013.pdf

OND 2015 | University of Waterloo | April 30, 2015

Advantages and disadvantages

Keys to success

Bottom line

- Engage engineering students in ethical discussion
- Provides students with the opportunity to develop their own moral compass
- Communication and teamwork
- CEAB graduate attributes

Acknowledgments

Carolyn Lee-Parsons

Professor, Chemical Engineering, Northeastern University

Jonathan Histon

- Assistant Professor, Systems Design Engineering, University of Waterloo
- Christine Moresoli
 - Professor, Chemical Engineering, University of Waterloo
- Katharina Hassel
 - PhD Candidate, Chemical Engineering, University of Waterloo
- The students of CHE 161

References

Colby, A., & Sullivan, W. M. (2008). Ethics teaching in undergraduate engineering education. *Journal of Engineering Education*, *97* (3), 327-338.

Engineers Canada. (2013). *Canadian Engineering Accreditation Board Accreditation Criteria and Procedures.* Retrieved Sept 15, 2014, from http:// www.engineerscanada.ca/sites/default/files/sites/default/files/ accreditation_criteria_procedures_2013.pdf

Engineers Canada. (2012). *Guideline on the Code of Ethics.* Retrieved September 15, 2014, from http://www.engineerscanada.ca/sites/default/files/guideline_code_with_1.pdf

Histon, J., & Scott, S. D. (2009). Expert panels as a means of engaging students in the applications of human factors. *Proceedings of the Human Factors and Ergonomics Society Annual Meeting*, 53, pp. 474-478. San Antonio, TX.

Prince, M. (2004). Does active learning work? A review of the research. *Journal of Engineering Education*, 93 (3), 223-231.

Questions?

Supplementary information

Presentation rubric

Group number:					
Names of members:					
Discussion topic:					
Category	Minimal	Basic	Good	Excellent	Comments
Summary					
 How well has the biotechnology been summarized? 					
Major facts covered?					
Relation to course concepts					
Has the topic been connected to topics discussed in class?					
 Are quality connections made (i.e. specific)? 					
Impact of technology					
 Benefits/drawbacks clearly articulated? 					
• Examples of applications?					
Limiting factors?					
Proper citations?					
Conclusion					
 Arguments for or against the given technology? 					
Conditions or limitations?					
Responsibilities of practitioners?Recommendations?					

Report rubric

Summary of bio- related technology	 How well has the bio related technology been summarized? Are the major facts succinctly described? 		/5
Relationship to Course Concepts	 Has the bio related technology been related to the concepts discussed in class? Does the summary demonstrate insights into how the bio related technology is connected to the course's concepts? 		/5
Bio related Technology and its Impacts	 Are benefits, risks/drawbacks and other issues clearly articulated? Are examples of the application of the bio related technology presented? If no applications are presented, what are the limiting factors? Are scientific references used and properly cited (number, quality and appropriateness)? 		/5
Responsibilities of Practitioners and Recommendations	 Are the responsibilities of practitioners clearly defined? Are recommendations for the application of the bio related technology clearly identified? 		/5
		Total Mark	/20