

Disclaimer

© 2020, Workplace Safety & Prevention Services (WSPS). All rights reserved.

Copied under license from Getty Images. Further reproduction, distribution or transmission is prohibited, unless a license is obtained from WSPS and/or Getty Images, as applicable.

What Is the MSD Prevention Guideline?

- The Guideline has been written to fit into common health and safety programs and provide step-by-step instructions on what needs to be done and how to do it.
- Resources have been created to help you problem solve and improve your workplace.
- Roadmap to success

https://www.msdprevention.com/Prevent-MSD.htm

3 | 120-013-01-TGVI

Problem Statement

- Human factors and ergonomics (HFE) often competes with other safety programs most of which are compliance and/or standards driven
- Questions to ask
 - Does the presence of a machine guard result in an increase in MSD hazards?
 - Are the requirements to protect humans from robotic equipment causing MSD hazards?

Work Systems

- Think of work as a system of interconnected parts, all impacting one another trying to work in harmony towards a common goal
- That common goal may be hampered if there is some disruption in the system
- Central to that work system is the human and its relationship to machines and robots

5 | 120-013-01-TGVI

Machine Safety

- Legislation
 - Performance-based requirements
- Role of consensus standards
 - Technical and application requirements
 - Ergonomic considerations
- Complications

Machine Safety – Risk Assessment

- Hazard Focus
 - Acute versus chronic outcomes
- Risk assessment
 - May include several phases of machine's life cycle
- Trained eye to identify potential for MSDs
 - Consideration for CSA Z1004-12

7 | 120-013-01-TGV

Guard Openings and Minimum Safe Distance

- Presented in CSA Z432-16
 - Table 10.2 legacy data
 - Table 10.3 data from CAN/CSA ISO 13857

Workplace Safety & Prevention Services

Machine Design and Application Requirements

- Emergency stops
 - Accessible
 - Shrouding
- Two-hand controls
 - Height of controls
 - Spacing of buttons
- Enabling devices
 - Pressure required to activate
 - Duration of use

9 | 120-013-01-TGV

Safe Distance Calculations

- Two hand controls: Potential to release buttons and access hazard
- Interlocking doors: Ability to reach hazard before safe state is achieved

Distance = Speed x Time

 $Ds = [K \times T] + Dpf$

Where: Ds = Minimum safe distance

K = Speed of the hand (1.6 m/sec or 63 inches/second)

T = Overall stopping performance Dpf = Depth Penetration Factor

Source: CSA Z432 (2016), Safeguarding of Machinery, clause 10.11

Workplace Safety & Prevention Services

Motivation to Defeating Safeguarding – Annex G, Z432

- Improperly applied safeguarding measures
- Poor visibility of the process
- Hard to address 'minor' process issues
- Maintenance and setup activities were not part of design considerations

Workplace Safety & Prevention Services

11 | 120-013-01-TGV

Machine Design and Controls

- Control panels
 - Location and access to buttons
 - Colours of buttons
 - Glare, contrast
 - Location of labels
- Ability to detect warnings and alerts
 - Background noise

Human Performance

- Informative Annexes of CSA Z432, Z460, Z462
- Error precursors
 - Task Demands
 - Work Environment
 - Individual Capabilities
 - Human Nature

14 | 120-013-01-TGV

Robotics- Some background on robot standards

Workplace Safety & Prevention Services

Robotics – Some background on robot standards

- ISO 10218:2011 International Robot Standard
 - Is the seed document for CSA/ANSI
- ANSI/RIA R15.06-2012 (US Robot Standard) harmonized with and fully adopted ISO 10218:2011
 - ANSI publishes technical reports to assist with implementation, knowledge transfer, and clarity
- CSA Z434-14 (Canadian Robot Standard) contains 'deviations' harmonized with ISO 10218:2011 with some 'Deviations'
 - Deviations highlight some differences between CSA and ISO/ANSI
 - Assist with implementation, knowledge transfer, and clarity
 - Deviations marked with a 'DV' in the standard
- Robot Standards (ISO/ANSI/CSA) Structure
 - Part 1 Robot manufacturer requirements
 - Part 2 For Robot Integrators, Suppliers, and End-Users

16 | 120-013-01-TGV

Ergonomics and Robotic Systems Design

- Manual Load/Unload Stations:
 - A key aspect in the design of a robot cell, is the interface between the robotic equipment and the operator.
 - Robot Standard -CSA Z434-14 (ISO 10218:2011) Manual L/UL Stations Part 2, Clause 5.10.6
 - ISO Technical Report ISO/TR 20218-2:2017 Manual L/UL Stations
 - Robot cell Manual Load/Unload Station design involves both machine/robot hazard safeguarding as well as MSD hazard considerations.
 - Design challenge for both equipment engineers and ergonomists?
 - Compliance with both machine/robot standard safeguarding requirements (i.e. per CSA Z432, CSA Z434, etc.), and achieving ergonomically sound design.
 - Can manage this change using CSA Z1004 and the MSD Prevention Guidelines.

Purpose of Risk Assessments

- Evaluate potential for injury or damage to health under hazardous situations presented by machinery.
- To select appropriate risk reduction methods and monitor their effectiveness

R | 120-013-01-TGVI

Risk Assessments

- CSA Z434 requires a risk assessment be carried out on all robot systems.
- CSA standard indicates Integrator responsible for risk assessment
 - Involvement/input from the user is required
 - Ultimately the employer is responsible for health and safety
- Conducted in the design lifecycle phase of the robot cell, or prior to making modifications.
- MSD hazards should be considered during risk assessment (i.e. part load task/process hazards; line-ofsite of controls, warning lights, signage, etc.).
 - Ensures sound ergonomic design principles will be incorporated in the overall risk reduction strategy.

Risk Assessments Fundamentals

- Task based Hazards are assessed for each task
- Involves all stakeholders (e.g., Integrators, Operators, Maintenance, Ergonomist, Engineering, Health and Safety...), in order to develop a comprehensive 'Task/Hazard List'
- Hazards are initially assessed assuming no safeguards are in place

20 | 120-013-01-TG\

Manual Load/Unload Stations - Overview

- CSA Z434-14 Part 2 (ISO 10218-2:2011), Cl 5.10.6 and ISO/TR 20218-2 Overview
 - ISO 10218-2, CI 5.10.6 Normative requirements for the design of Manual L/UL Stations
 - ISO/TR 20218-2 Supplemental design guidance/information to ISO 10218-2.
 - The Robot Standard and supplemental Technical Report focus on three main areas of safety of Manual L/UL Station:
 - ➤ Preventing access to Manual L/UL hazards (i.e. fixture clamps, resistance welding guns, fixture turntables, shuttle-tables, pneumatic/hydraulic actuators, etc.).
 - > Preventing access past the Manual L/UL Station into robot cell safeguarded space.
 - Preventing the robots and human from being in the Manual L/UL area at the same time.

Manual Load/Unload Stations - Overview cont...

- CSA Z434-14 Part 2 (ISO 10218-2:2011), Cl 5.10.6 and ISO/TR 20218-2 Some General Requirements:
 - Since Manual L/UL stations act as a barrier to prevent human access into the robot cell the design requirements in the following standards are referenced:
 - ➤ ISO 14120 Design of Fixed and Moveable Guards, and
 - ➤ ISO 13857 Upper and Lower Limb Reach Safety
 - Contains tables that provide barrier guarding height, and opening size dimensional requirements.
 - ➤ Prevent upper and lower limb reach <u>A</u>round, <u>U</u>nder, <u>T</u>hrough, or <u>O</u>ver of barrier guards (i.e. sometimes referred to as <u>AUTO</u> rule)

22 | 120-013-01-TGV

Manual Load/Unload Stations – Some design considerations

- Minimum height requirement for Manual L/UL Stations is 1400mm
- For manual stations between 1000mm up to 1400mm in height additional protective measures should be taken to:
 - > Prevent operator exposure to application hazards (e.g. weld sparks, ejected parts)
 - Prevent operator access to hazards inside robot cell safeguarded space or bring hazards to a safe state before access is possible.
 - ➤ Ensure that a robot system and operator cannot access the same (shared) workspace at the same time (e.g. the Manual L/UL Station workspace)
- Barriers heights lower than 1000mm in height do not provide sufficient level of impedance.

Manual Load/Unload Stations...Importance of Ergonomics

- If sound ergonomic principles are not considered in the design phase Manual L/UL station may be designed to solely meet robot safety standard (and Technical Report) dimensional requirements.
- Resulting design of loading station may result in unnecessary MSDs
- Sound ergonomic design for equipment early in the design phase may alter the safeguarding strategy, and safeguarding devices incorporated.
 - This is true with respect to both the dimensional design of the Manual L/UL itself, and the overall process layout (i.e. process time-motion study results).
- Making changes to the equipment after MSD injuries occur is very costly.
 - Can take some time before manifesting themselves.

24 | 120-013-01-TG\

Outcomes

- Implementing machine safety/ robotics standards could have a positive impact on your MSD prevention program
 - For this to work you must look at ergonomics in the design phase
- Capturing these successes will help build your MSD prevention program even if that wasn't your original intent

Workplace Safety & Prevention Services®

Revisiting Work Systems

- There is a strong relationship between various work system elements (machine/robots) and ergonomics
- Success of any program is how well it can be understood and performed by the human
- The guideline offers a framework to manage change and ensure long term success

26 | 120-013-01-TGV

Reference for Small Business

- https://www.msdprevention. com/Quick-Start-Guide.htm
- https://www.msdprevention. com/risk-assessment/
- https://www.msdprevention. com/hazards-and-controls/

Workplace Safety & Prevention Services®

For all your health and safety solutions, contact:

Workplace Safety & Prevention Services
1 877 494 WSPS (9777)

WSPS.CA

© 2020 Workplace Safety & Prevention Services (WSPS). All rights reserved.

Copied under license from Getty Images. Further reproduction, distribution or transmission is prohibited, unless a license is obtained from WSPS and/or Getty Images, as applicable.