Healthy Office Work: Rest Breaks and Movement

Michelle M. Robertson, Ph.D., CPE

Acknowledgements: V. Ciriello, L. Schleifer; Y.H. Huang, B. Amick

Liberty Mutual Research Institute for Safety

generating knowledge to help people live safer and more secure lives

- Center for Injury Epidemiology
- Center for Physical Ergonomics
- Center for Behavioral Sciences
- Center for Disability Research

Mission:

To advance scientific, businessrelevant knowledge in workplace and highway safety, and work disability

Creating safe, healthy and productive office environments

- Complexities of office & computer environments and their impact
- Holistic Macroergonomics/Socio-technical systems approaches to prevention
- Office ergonomics intervention research
 - -1 longitudinal field study
 - -1 extended lab study
- Impact of interventions
- Take away

Problem: Unsafe working environments and poor performance

- Computer and office based work is associated with an increase in Work-Related Musculoskeletal Disorders (WMSDs) and visual discomfort (Bernard, et al., 1994; Bongers, 1993; Jmker et al., 2007; Geer, et al., 2006, Aaras, et al., 2001)
 - Lack of Job Control, High workpace, and low supervisory support associated with MSD (Bonger et al., 2009)
 - Prolonged mouse use related to increased risk of upper extremity MSD (Katz 2000, Schlossberg 2004, Jmker 2007)
 - Related physical exposure: non-neutral posture and static muscle loading; lack of movement and varying of work posture (Burgess-Limerick 1999, Fagarasanu 2004, Hagg 2000)
- Multiple contributing factors:
 - Physical workspace design
 - Technology design
 - Work organization and psychosocial factors
 - Organizational practices

Purpose of research studies

Study the effects of **ergonomic training** and **adjustable workspace design** on:

- –Musculoskeletal and visual discomfort
- -Computing behavior
- -Workspace satisfaction and comfort
- -Job & Environmental Control
- -Group effectiveness
- Ergonomics climate
- -Performance: Business process efficiency

Overall, characterize the cumulative effects of performing computer work over time

Key Construct: Environmental Control

Training and Flexible workplace design => Control over environment (and job)

Control as a function of:

- Training to enhance opportunities for control
- Availability of workspaces
- Adjustability/flexibility
- Management culture
- Conceptual underpinnings

Conceptual Model

Field Intervention Study: Training and Workplace Design

Published: Robertson et al., 2008. Applied Ergonomics 39 (2008) 482-494

Field Intervention Study Design: Workspace + Training

- Control Group: Employees who did not move into the new workspace or receive training.
- Experimental Group 1: Employees who moved/received either a <u>New experimental</u> <u>Workspace-only.</u>
- Experimental Group 2: Employees who moved into the new Workspace and received Ergonomic Training.

Time 1: 2 mos. pre-intervention Time 2: 4 mos. post-intervention

Time 3: 8-12 mos. post-intervention

Goals of Workplace Design and Training

- Increase Ergonomics
- Improve Business process
- Improve Communication, Collaboration & Group Effectiveness
- Increase Ergonomic Culture
- Enhance corporate identity

RESEARCH INSTITUTE FOR SAFETY

Methods: Assessments, Data Collection and Measures

- Interviews and Organizational, Training and Facilities Assessments
 - Human Resources, Safety, and Facility Managers
 - Senior Management Commitment & Involvement
- Web-based questionnaire
 - Workplace features, psychosocial, work organization, ergonomics climate, MSDs, collaboration and communication
- Observations:
 - Office Ergonomics Assessment (OEA) (Robertson et al., 2009)
 - Rapid Upper Limb Assessment (RULA) for computer work
- Business Process Analysis (BPA)

Office Ergonomics Training: Instructional Systems Design

	 Recognizing work-related musculoskeletal
	disorders and risk factors
	 Understanding the importance of varying work
	postures
Training	Knowing how to rearrange the workstation to
Objectives	maximize the "comfort zone",
	 Recognizing and understanding visual issues in
	the office environment and reducing visual
	discomfort
	 Understanding computing habits (rest breaks) and
	knowing how in to change work-rest patterns
	Knowing how to use the various workspaces for
	individual and group work
	Being aware of the company's existing health and
	ergonomic programs
	Knowing how to obtain ergonomic accessories
	through the company's programs

Results of Field Intervention: Training and Workspace Design

Musculoskeletal discomfort changes over time for each group

Job Control

F(4,378)=2.9, p<.001; GR2>GR1 (p<.001); GR3>GR1 (p<.001); GR3>GR2, p=.06

15

Office Ergonomics Climate

workspace + training group compared to workstation-only and control group for time 3

Employees' needs related to office ergonomics issues are listened to and acted upon

Business Process Results

Treatment Group	Process Time Saved (as a percentage of pretreatment process time)
Control	.46%
Exp. Workspace only	5.62%
Exp. Workspace + Training	10.55%

Summary of Findings

- <u>Increase</u> in office ergonomics knowledge for Trained + Workspace group
- <u>Increase</u> in job control for Trained + Workspace group
- <u>Decrease</u> in musculoskeletal discomfort for workspace + trained group
- Business Process Analysis the process cycle time was reduced for the Trained + Workspace group
- Support for our theoretical model of the relationship of the work environment (flexibility and control), and training on ergonomic and safety impacts

Extended Laboratory Intervention Study: Training and Sit/Stand Workstation Design

Published: Robertson, Ciriello, & Garabet, Applied Ergonomics 44 (2013) 73-85

Research Questions

- Will musculoskeletal and visual discomfort be <u>minimal</u> as a function of training and workspace adjustability in the Trained group?
- Will performance be <u>higher</u> for the Trained group?
- Will office ergonomics knowledge and intent to arrange office workstation set-ups <u>increase</u> for the Trained group?
- Will the alternation between sitting and standing computing postures and the amount of time standing be <u>higher</u> for the Trained group?

Study Design: Randomized Control Trial

	Pre-experimental				DayBlock 1			DayBlock 2			DayBlock 3			DayBlock 4			DayBlock 5		
Minimally Trained Control Group	Day 1	Day 2	Day 3	Day 4	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9	Day 10	Day 11	Day 12	Day 13	Day 14	Day 15
Ergonomics Trained Experimental Group	Pre-experimental Task Orientation 4 days				Free Choice			Free Choice			5 Minute Mandatory Standing			20 Minute Mandatory Standing			Free Choice		
	Day 1	Day 2	Day 3	Day 4	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9	Day 10	Day 11	Day 12	Day 13	Day 14	Day 15
	Ergonomics Training							"Ergo Reminders"											

RESEARCH INSTITUTE FOR SAFETY

Randomized schedule of 3 cognitive demand levels

Methods: Participants and Tasks

- Participants:
 - 22 healthy females
 - Basic administration computing skills
 - No significant difference between groups for age; BMI (p>.05)
- Experimental task and cognitive demand levels:
 - Simulated customer service representative job
 - Based on a job analysis the following were determined:
 - Task Complexity (cognitive demands)
 - Quality control and proficiency
 - 7 hour day; 15 days

Ergonomic Training & Experimental Set-up

Trained Group received two-phase ergonomic training

- Phase I:
 - 1.5 hr. workshop
 - Slide and video presentation
 - Case studies & de-briefing
 - Hands-on practice periods
- Phase II:

23

- Practice period & Standing
- Ergonomics reminders
- Minimally Trained Group received:
 - Brief, standard orientation of work setting
 - Manufacturer pamphlet of chair adjustments

Participant Workstation

Data Collection

Methods: Data Collection and Outcomes

• Musculoskeletal symptoms:

- Scale Range: 0-10 anchored by 8 descriptors
 - » No Pain/Discomfort, Just Noticeable Pain/Discomfort, Very Little Pain/Discomfort,Extreme Pain/discomfort

• Visual discomfort/pain rating:

- Yes/No response
- 6 symptoms (blurry, difficulty focusing, itching, aching, sensitive, & burning)

• Performance Data:

- Quantity
 - Number of faxes completed daily
- Quality Control
 - Daily accuracy score

• Administered:

- Baseline
- Hourly; 7 sessions per day
- 15 days

24

Results

Extended Laboratory Study: Training and Sit/Stand Workstation Design

Number of reported musculoskeletal discomfort for Top 7 significant body parts across all days

Reported Musculoskeletal Discomfort for Top 7 Body Parts all Daily Sessions

Visual Discomfort

Performance Results: Quantity and Quality

 No significant difference found between groups for the <u>number</u> of faxes completed

- Significant difference found between groups for <u>accuracy</u> across all 15 days
 - -Trained group exhibited higher quality scores

Behavioral changes: Varying computing postures of sitting and standing

Average Time Participants Stood per Day by Groups

Minimally Trained group did not stand at all during the experiment

Behavioral changes: Varying computing postures of sitting and standing

Minimally Trained group did not stand at all during the experiment

Research Findings Summary

- Significantly <u>greater</u> reporting of musculoskeletal symptoms for the Minimally group compared to the Trained group
- Display of musculoskeletal symptoms was <u>minimal</u> for the Trained group
- Workload was <u>equal</u> across groups; no significant difference between groups for number of faxes completed
- Performance accuracy (quality control) was significantly <u>higher</u> for the Trained group
- Significant changes in behaviors for the Trained group as reflected in standing <u>more often</u> and <u>longer</u>
- Greater <u>sense of control</u> over the work environment given the increase in ergonomic knowledge for the Trained group

Take-away: Designing office ergonomics and safety programs

- -Systems-based approach
 - Comprehensive training
 - On-going, long-term management commitment.
- Providing flexible work equipment, while important, is not sufficient
- Interesting relationship between MSDs and Visual symptoms
- -Leveraging the concept of environmental control
 - allows employees to knowledgeably exert control over their physical environment
- Employees gain a higher sense of control over their workspace
 - all levels of the company, part of a process that can have a positive impact on health, safety and performance

Generating knowledge to help people live safer, more secure lives

www.libertymutualgroup.com/researchinstitute