CRE-MSD Fatigue Conference, Dec. 4, 2012

Designing Jobs in Manufacturing: Rest Allowances

Patrick Neumann & Ryerson University, Human Factors Engineering Lab, Toronto

RYERSON UNIVERSITY Linda Rose Royal Institute of Technology, Stockholm, Sweden

ROYAL INSTITUTE OF TECHNOLOGY

Ergonomics contributes to company strategies...

ROYAL INSTITUTE OF TECHNOLOGY

How Human and System Effects are connected

Neumann, W.P. and Dul, J., 2010. Human Factors: Spanning the Gap between OM & HRM. International journal of operations & production management, 30(9): 923-950.

How Human and System Effects are connected

Workshop

How can employee fatigue affect your operational goals?

Patrick Neumann & Linda Rose, 2012

ROYAL INSTITUTE OF TECHNOLOGY

Effects of the working environment - visible and hidden effects

Concept Mapping

- Used to tap into Executives strategic thinking
- An interview process
- Concepts are linked by hand on a 'map'
- Maps are then combined for an Exec. Team (n=7)
- Results are analysed for trends and linkages
- Technique applied to a team of Engineering Managers in electronics manufacturing
- Focus on: How can HF help you reach your strategic goals?

ROYAL INSTITUTE OF TECHNOLOGY

Patrick Neumann & Linda Rose, 2012

RYERSON UNIVERSIT

RESULT: Engineering Management Team Concepts

Merged Map on Quality: Central Concepts	Score	#Concepts
Increase quality	110	198
Improve systems design	100	191
Reduce injury and/or fatigue	91	186
Increase understanding of how to do the task	87	186
Improve service to design teams	83	188
Reduce repetitive activities	78	166
Increase motivation	77	178
Improve repeatability	77	184
Improve layout of process on mfg floor	75	175
Build process from point of view of operator	74	160
Improve lessons learned (quality)	71	169

ROYAL INSTITUTE OF TECHNOLOGY

Patrick Neumann & Linda Rose, 2012

R

Reduce Injury and/or Fatigue

Patrick Neumann & Linda Rose, 2012

RYERSON

VERSI

ROYAL INSTITUTE OF TECHNOLOGY

Quotes from Engineering Managers

- *"fatigue and quality seem to go hand-in-hand, and that fatigue is not only the root cause of our quality problems, but one of the biggest factors"*
- "fatigue seems to sum it up"

IE's are used to thinking about Allowances

- Allowances account for unavoidable (normal) delays
- Allowable delays may depend on company policy
- Table 11.8

% REST =(W-5.33)/(W-1.33)

Ergo-Index: Assessing recovery need in manual work

Background

- Fatigue and Injury compromise strategic goals
- MSDs
 - Recovery
 - Load level
 - Performance

Possible to combine assessment of 'ergonomics' and production economics?

ROYAL INSTITUTE OF TECHNOLOGY Different ways to analyse work

Chiselling/drilling in concrete wall

I: No support II: With support

[Glimskär et al.]

Traditional comparison

[Glimskär et al.]

Would you invest in alternative II?

ROYAL INSTITUTE OF TECHNOLOGY

Ergo-Index rationale

Would you invest in alternative II?

ROYAL INSTITUTI OF TECHNOLOGY

Ergo-Index

A model to evaluate job tasks regarding load level, time aspects and risk of injury, to be able to choose the "best" alternative from both ergonomic and production economics aspects.

1980s: Model based on literature and experimental studies

1990-2001: Further developed

2004: Call from industry GM in North America among the users

Current project: Focus on:

- 1. Endurance time and Resumption time modelling
- 2. Repeated loading situations
- 3. Rating of Perceived Discomfort

Subjective assessment of recovery need

Quotes about use of the Ergo-Index

- "It is used both proactively (design) and reactively "
- "It is used to make determinations about recovery time in jobs and if there is insufficient recovery time then the job is changed. "

[GM]

An applied example Assembling windows at a construction site

Manually:

With robot:

At first glance:

"Heavier, but faster"

"Easier, but slower"

Manual window transportation 1(2)

Ergo-Index input data she	eet (model version 2012.1.0_English)
Working distance:	
Working height:	◯ foot-knuckle
Type of work:	Iifting Opulling Opushing
Excerted force [N]:	275
Loading time [s]	15
Give a name to this case:	Manual window transportation
RYERSON UNIVERSITY	Patrick Neumann & Linda Rose, 2012

This load level is assessed to lead to a high risk of MSD-problems!

Input data:	
Working distance [cm]:	0-40
Working height:	knuckle-shoulder
Type of work:	lifting
Excerted force [N]:	375
Loading time [s]:	15

Results	
Loading time:	15 s
Resumption time:	52 s
Total time:	67 s
Load level:	83 %

Robot window transportation 1(2)

Ergo-Index input data sheet	t (model version 2012.1.0_	English)]
Working distance:	○ 0-40 cm ○ 40-60 cm	● 60-80 cm		
Working height:	◯ foot-knuckle	shoulder-head O above head		
Type of work:	O lifting O pulling	pushing		
Excerted force [N]:	80			
Loading time [s]	20			
Give a name to this case:	Robot window transportation			
RYERSON UNIVERSITY	Patrick Neumanr	n & Linda Rose, 2012	2 Royal inst of techno	

Robot window transportation 2(2)

Patrick Neumann & Linda Rose, 2012

KTH vetenskap och konst

ROYAL INSTITUTE OF TECHNOLOGY

Ergo-Index summary

This load level is assessed to lead to a high risk of MSD-problems!

Input data:		Results	
Working distance [cm]:	0-40	Loading time:	15 s
Working height:	knuckle-shoulder	Resumption time:	52 s
Type of work:	lifting	Total time:	67 s
Excerted force [N]:	375	Load level:	83 %
Loading time [s]:	15		

Input data:		Results	
Working distance [cm]:	60-80	Loading time:	20 s
Working height:	knuckle-shoulder	Resumption time:	39 s
Type of work:	pushing	Total time:	59 s
Excerted force [N]:	80	Load level:	42 %
Loading time [s]:	20		

Ergo-Index summary

This load level is assessed to lead to a high risk of MSD-problems!

Input data:		Results	
Working distance [cm]:	0-40	Loading time:	15 s
Working height:	knuckle-shoulder	Resumption time:	52 s
Type of work:	lifting	Total time:	67 s
Excerted force [N]:	375	Load level:	83 %
Loading time [s]:	15		

Borg's CR-10 & body map

Discomfort rating: 6

RYERSON UNIVERSITY

Patrick Neumann & Linda Rose, 2012

Discomfort rating: 0.5

ROYAL INSTITUTE OF TECHNOLOGY

Perceived discomfort prediction model Example: Same load level, same loading time

Short pause in work cycle:

- → Rapid increase in discomfort
 - Probably production &

health issues

Longer pause in work cycle:

- → "Steady state" discomfort
- Probably less production & health issues

Discomfort

5 Key Points

- 1. Fatigue affects system performance
- 2. Engineering Managers 'get' that fatigue compromises quality etc.
- Engineering Directors don't think about 'ergonomics', but about fatigue
- 4. Higher loads need higher rest allowances
- 5. Rest allowance models allow you to balance fatigue & productivity concerns

Contact information

Linda Rose KTH, The Royal Institute of Technology School of Technology and Health Division of Ergonomics Stockholm Sweden E-mail: linda.rose@sth.kth.se

Patrick Neumann Ryerson University Department of Mechanical and Industrial Engineering Human Factors Engineering Lab Toronto, Ontario, Canada E-mail: pneumann@ryerson.ca

