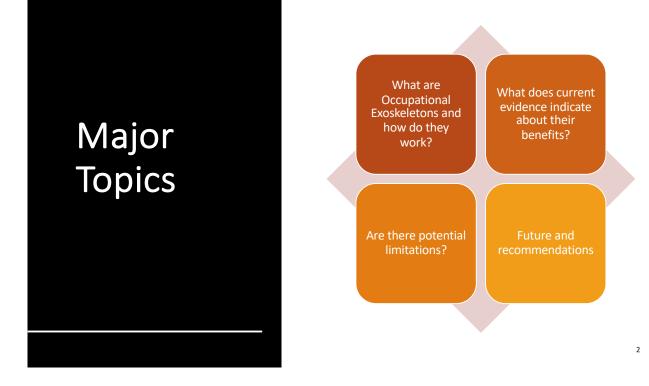
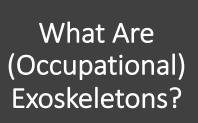
10/13/22


Evidence (and several personal opinions) regarding the benefits and potential limitations of **occupational exoskeletons**, as well as future research needs, and recommendations


Maury A. Nussbaum, PhD

Occupational Ergonomics & Biomechanics Labs Department of Industrial & Systems Engineering

nussbaum@vt.edu

"A wearable device that augments, enables, assists, and/or enhances motion, posture, or physical activity, through mechanical interaction with the body."

Exoskeleton: consisting of hard and/or rigid structures

Exosuit: majority of the structure consists of soft and/or elastic structures

ASTM F48.91 Terminology

suitx.com

eksobionics.com

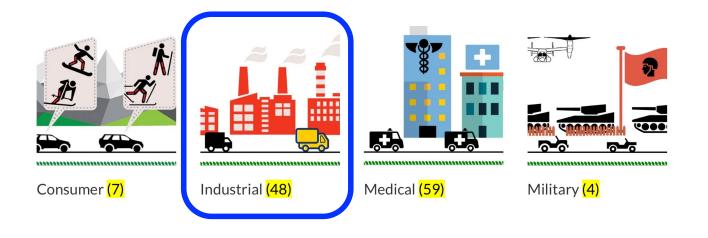
laevo-exoskeletons.com

paexo.com

4

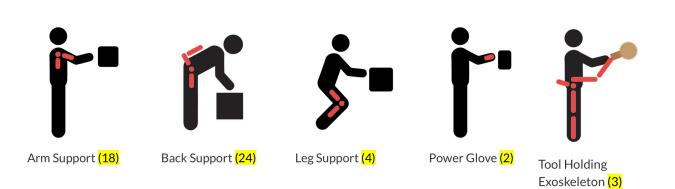
5

Cornell (1961)



GE Hardiman (1965-71)

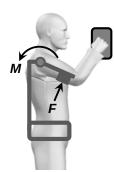
Popular Science (Nov. 1965)

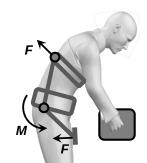

Current exoskeleton landscape

exoskeletonreport.com

7

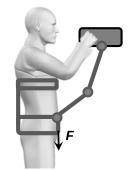
Occupational Exoskeletons


exoskeletonreport.com


Diverse technology is available

Energy Source(s)	Body Part(s)	Task(s)
Passive	Upper extremity	Lifting
Active	Back/hips	Holding
Mixed	Hand (grip)	Overhead work
	Lower extremity	Carrying
	Whole body	Tool use

Exoskeleton support mechanisms



Arm Support

Back Support

Back Support "Exosuit"

Tool Support

What are the potential benefits and limitations of exoskeletons?

·I-I·	Opportunity:	Decrease physical demands; enhance performance
ß	Risks:	Increase physical demands @other body regions; safety
	Challenges:	No practical guidelines; limited evidence overall

ASEs: Evidence from the Lab

EksoBionics EksoVest™

 Decreased shoulder muscle activity¹ and spine loads² in simulated overhead work

SuitX ShoulderX^{™3}

- Decreased shoulder muscle activity
- Effective vs. ineffective support levels
- Preferred support varied between people and tasks

Suitx.com

Eksobionics.com

12

11

^{1/2}Kim et al. 2018; ³Van Engelhoven et al., 2019

ASEs: Evidence From the Field

airpower-usa.com

Levitate Airframe[™]

- Decreased shoulder muscle activity & fatigue in manufacturing^{1,2}
- Decrease in shoulder pain among surgeons during/after an operation³
- Decrease in HR in wholesale and retail trade tasks; willingness to use⁴

¹Gillette & Stephenson, 2019; ²Gillette et al. 2022; ³Liu et al. 2018; ⁴Marino 2019

BSEs: Evidence from the Lab

Laevo^{™1,2,3,4}

- Decreased low-back muscle activity and discomfort, increased endurance, reduced energy expenditure
- · In static and dynamic tasks

SuitX BackX^{™3,4}

- Reduced low-based muscle activity
- Reduced muscle fatigue
- · Reduced energy expenditure
- · In static and dynamic tasks

¹Bosch et al. 2016; ²Koopman et al. 2019; ³Madinei et al. 2020; ⁴Alemi et al. 2020

en.laevo.nl

BSEs: Evidence From the **Field**

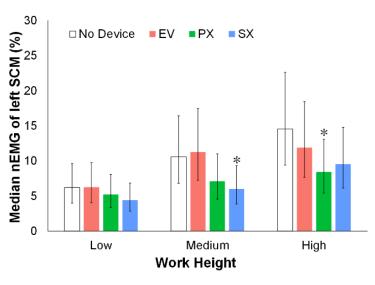
¹Marino 2019; ²Hensel & Keil (2019); ³Amandels et al. (2019); ⁴Motmans et al. (2019)

15

Efficacy vs. Effectiveness

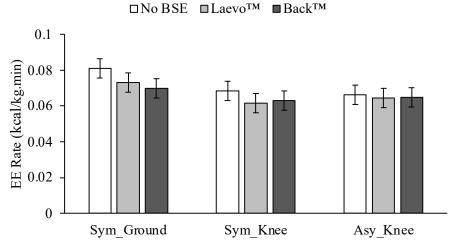
Similar tasks completed in controlled & field settings

Differences found:


- ASEs decreased upper TRP activity (up to 46%) and HR in isolated tasks
- Smaller effects in the field (<26%)
- Relative effects of the two ASEs differed between testing scenarios

De Bock et al. (2021)

Key Points: Benefits of an ASE Potential for minoror BSE depend on moderate adverse **ASEs & BSEs** the design and effects (discomfort, task demands safety) reduce exposure to Very limited injury risk Fitting diverse evidence on longworkers is critical term effects factors, but:


18

Task-specific & device-specific effects: Overhead work

Ojelade et al. (In Preparation)

Task-specific & device-specific effects: Lifting

Madinei et al. (2020)

20

Potential Problems with EXO Use Muscle "deconditioning"?

Excessive interface pressure and discomfort^{1,2}

Challenge to maintain balance; decreased ability to react to a postural perturbation^{3,4}

Physical demands at "other" body regions

Safety concerns (snags, product damage, etc.)

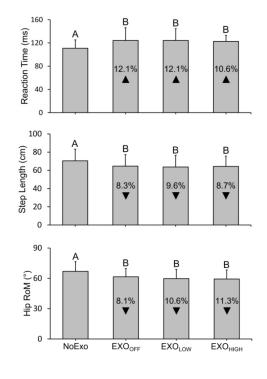
¹Madinei et al. 2020; ²Kozinc et al. 2021; ³Park et al. 2021; ⁴Steinhilber et al. 2022 ²¹

Can passive EXOs increase fall risks?

Research Focus:

- Recovery from out-of-balance situations
- Two Approaches:
 - "Tether release" with a passive **BSE**
 - Simulated slips and trips with a passive lower-extremity EXO

info.ergoscience.com


Tether Release: Effects of a BSE

- Subjects:
 - 16 young volunteers
- Task:
 - Recover balance after release
 - BSE conditions: 1) none; 2) off; 3) low; 4) high
- Measures:
 - · Maximum lean angle
 - Recovery kinematics

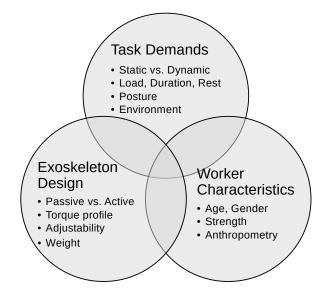
Park, J.-H. et al. (Accepted with minor revisions) Wearing a back-support exoskeleton impairs single-step balance recovery performance following a forward loss of balance, *J. Biomechanics*

BSE use **did not** affect recovery ability

- No significant difference in maximum lean angle
- Evidence for an increased postural challenge and potential fall risks
 - Increased reaction time
 - Smaller step lengths
 - Reduced hip flexion

Recovery from slip- & trip-like perturbations

• Subjects:


- 6 young volunteers
- Overview:
 - Leg-support EXO conditions: 1) none; 2) "low seat"; 3) "high seat"
 - · Range of forward and backward perturbation speeds
 - Measures: recovery; harness loads; step kinematics

Dooley et al. (in preparation)

 Recovery from slip-like perturbations was more compromised

High-seat configuration was worse than low

- Becoming clear that the effects (beneficial and otherwise) are complex.
- How should we think of EXOs? (PPE, Engineering Control, ...)
- EXO = Tool

Is the Future of Work Augmentation?

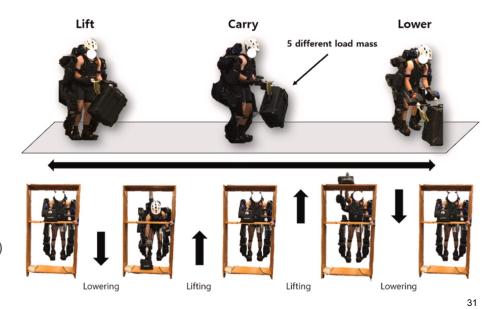
Active Exoskeletons are Emerging

CrayX

Lockheed ONYX

29

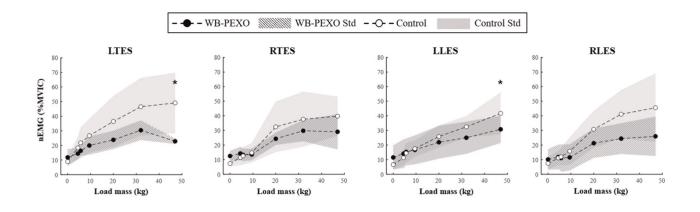
Using a complex, whole-body, active EXO


Research Questions:

- Potential benefits for common occupational tasks?
- Hard to learn to use?


Load handling with a WB-EXO

- Subjects
 - o Six volunteers
 - Extensive training (>8 hours)
- Tasks
 - Load carriage: 5 masses (4.5 – 26 kg)
 - Load transfers: 7 masses (0 – 47 kg)


Park, H. et al. (2022)

During **load carriage**, the WB-EXO reduced muscle activity for higher masses

During **load transfers**, the WB-EXO reduced muscle activity for all but the lowest masses

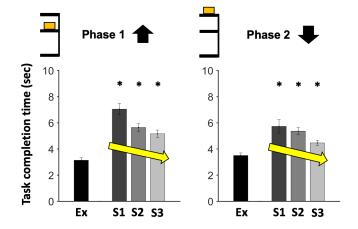
33

Learning to use a WB-EXO

- Subjects
 - Five experts (extensive experience)
 - Six novices

Tasks

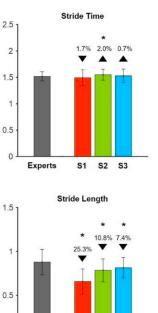
- o Walking on a linear track; load transfers
- o Experts completed one testing session
- \circ Novices completed 3 sessions over 4 days

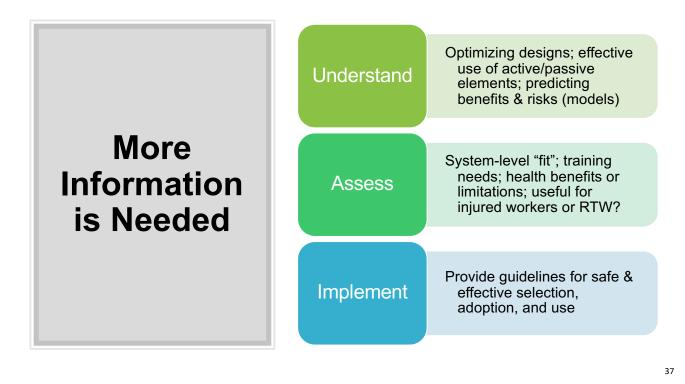

Novices had not yet adopted expert gait strategies

- Shorter steps, though converging
- Distinct behaviors remained in:
 - $\,\circ\,$ Joint kinematics (hip range-of-motion)
 - Joint torques (hip & knee)
 - Muscle activation (quadriceps)

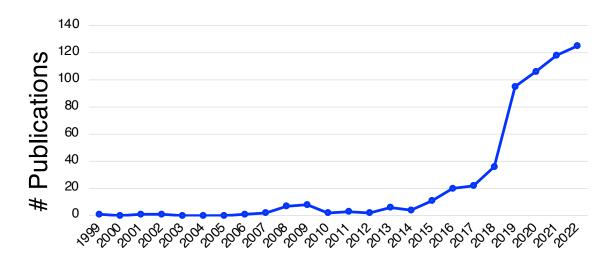
Park, H. et al. (Revision in process) Motor adaptations when learning to walk with a whole-body powered exoskeleton

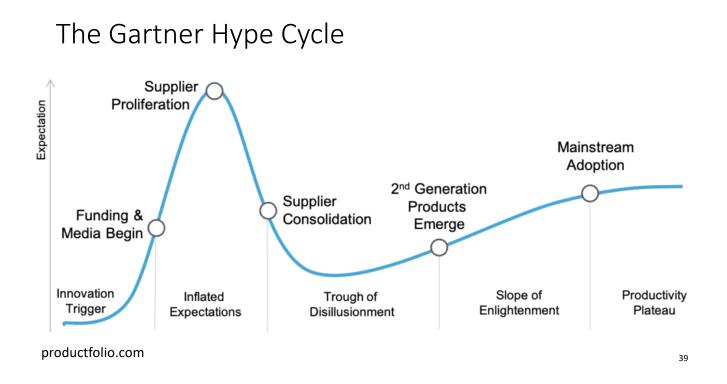
Novices had lower performance & behavioral differences in completing load transfers


- Longer task completion times
- Less shoulder flexion
- More muscle activity
- Converging to experts


0

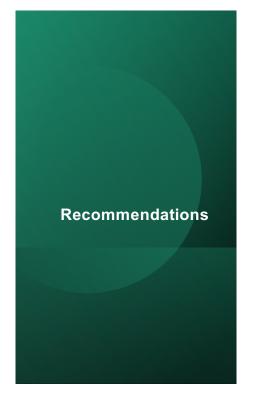
Experts


Park, H. et al. (2022) HFES Conference



S1 S2 S3

Evidence on Occupational Exoskeletons is Emerging Rapidly



The Future of Occupational Exoskeletons

The future is active, smart, and soft

41

- 1. Challenges in finding a good match between a worker, a task, and an EXO design
- 2. Be aware of potential adverse effects
- 3. Consider exploring initially on a small scale
- 4. EXO companies may suggest good use cases
- 5. Benefits may or may not be found, and may take time to realize
- 6. The technology continues to change & improve

Acknowledgements

- Some work presented here was supported Boeing, Ford, The Material Handling Institute, NIOSH, and NSF
- Any opinions expressed do not necessarily represent those of the noted sponsors

References

- Alemi, M. M., Madinei, S., Kim, S., Srinivasan, D., & Nussbaum, M. A. (2020). Effects of two passive back-support exoskeletons on muscle activity, energy expenditure, and subjective assessments during repetitive lifting. Human Factors, 62(3), 458-474.
- Amandels, S., Op het Eyndt, H., Daenen, L., & Hermans, V. (2019). Introduction and testing of a passive exoskeleton in an industrial working environment. Paper presented at the Proceedings of the 20th Congress of the International Ergonomics Association (IEA 2018), Florence, Italy.
- Bosch, T., van Eck, J., Knitel, K., & de Looze, M. (2016). The effects of a passive exoskeleton on muscle activity, discomfort and endurance time in forward bending work. Applied Ergonomics, 54, 212-217.
- De Bock, S., Ghillebert, J., Govaerts, R., Elprama, S. A., Marusic, U., Serrien, B., . . . De Pauw, K. (2021). Passive shoulder exoskeletons: More effective in the lab than in the field? IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29, 173-183.
- Gillette, J. C., & Stephenson, M. L. (2019). Electromyographic assessment of a shoulder support exoskeleton during on-site job tasks. IISE Transactions on Occupational Ergonomics and Human Factors, 7(3/4), 302-310.
- Hensel, R., & Keil, M. (2019). Subjective evaluation of a passive industrial exoskeleton for lower-back support: A field study in the automotive sector. IISE Transactions on Occupational Ergonomics and Human Factors, 7(3/4), 213-221.
- Kim, S., Nussbaum, M. A., Esfahani, M. I. M., Alemi, M. M., Alabdulkarim, S., & Rashedi, E. (2018). Assessing the influence of a passive, upper extremity exoskeletal vest for tasks requiring arm elevation: Part I - "Expected" effects on discomfort, shoulder muscle activity, and work task performance. *Applied Ergonomics*, 70, 315-322.
- Kim, S., Nussbaum, M. A., Esfahani, M. I. M., Alemi, M. M., Jia, B., & Rashedi, E. (2018). Assessing the influence of a passive, upper extremity exoskeletal vest for tasks requiring arm elevation: Part II - "Unexpected" effects on shoulder motion, balance, and spine loading. *Applied Ergonomics*, 70, 323-330.
- Koopman, A. S., Kingma, I., Faber, G. S., de Looze, M. P., & van Dieën, J. H. (2019). Effects of a passive exoskeleton on the mechanical loading of the low back in static holding tasks. Journal of Biomechanics, 83, 97-103.
- Kozinc, Ž., Baltrusch, S., Houdijk, H., & Šarabon, N. (2021). Short-term effects of a passive spinal exoskeleton on functional performance, discomfort and user satisfaction in patients with low back pain. Journal of Occupational Rehabilitation, 31(1), 142-152.

References

Liu, S., Hemming, D., Luo, R. B., Reynolds, J., Delong, J. C., Sandler, B. J., . . . Horgan, S. (2018). Solving the surgeon ergonomic crisis with surgical exosuit. Surgical Endoscopy, 32(1), 236-244.

Marino, M. (2019). Impacts of using passive back assist and shoulder assist exoskeletons in a wholesale and retail trade sector environment. IISE Transactions on Occupational Ergonomics and Human Factors, 7(3/4), 281-290.

- Madinei, S., Alemi, M. M., Kim, S., Srinivasan, D., & Nussbaum, M. A. (2020). Biomechanical evaluation of passive back-support exoskeletons in a precision manual assembly task: "Expected" effects on trunk muscle activity, perceived exertion, and task performance. Human Factors, 62(3), 441-457.
- Madinei, S., Alemi, M. M., Kim, S., Srinivasan, D., & Nussbaum, M. A. (2020). Biomechanical assessment of two back-support exoskeletons in symmetric and asymmetric repetitive lifting with moderate postural demands. Applied Ergonomics, 88, 103156.

Motmans, R., Debaets, T., & Chrispeels, S. (2019). Effect of a passive exoskeleton on muscle activity and posture during order picking. Paper presented at the Proceedings of the 20th Congress of the International Ergonomics Association (IEA 2018), Florence, Italy.

- Park, J.-H., Kim, S., Nussbaum, M. A., & Srinivasan, D. (2021). Effects of two passive back-support exoskeletons on postural balance during quiet stance and functional limits of stability. Journal of Electromyography and Kinesiology, 57, 102516.
- Park, J.-H., Kim, S., Nussbaum, M. A., & Srinivasan, D. (2022). Effects of back-support exoskeleton use on gait performance and stability during level walking. Gait & Posture, 92, 181-190.
- Steinhilber, B., Seibt, R., Rieger, M. A., & Luger, T. (2022). Postural control when using an industrial lower limb exoskeleton: Impact of reaching for a working tool and external perturbation. Human Factors, 64(4), 635-648.
- Van Engelhoven, L., Poon, N., Kazerooni, H., Rempel, D., Barr, A., & Harris-Adamson, C. (2019). Experimental evaluation of a shoulder-support exoskeleton for overhead work: Influences of peak torque amplitude, task, and tool mass. *IISE Transactions on* Occupational Ergonomics and Human Factors, 7(3/4), 250-263.