Effects of an arm-support exoskeleton on perceived work intensity, discomfort, usability, acceptance, and health outcomes: Results from an 18-month field study in automotive assembly

Maury A. Nussbaum, PhD Sunwook Kim, PhD Occupational Ergonomics & Biomechanics Labs

Marty Smets Global Manufacturing Tech Dev

A Team Effort

Ford EXO Governance Team

Marty Smets | TS (Ford PI) Julie Brazier | TS Patty Racco | TS Brad Sochacki | FTD Engineer Glenn Harrington | NJCHS Carlo Bishop | NJCHS Robb Miller | NJCHS Sean Coughlin | NJCHS

Virginia Tech Research Team

Dr. Maury Nussbaum (VT PI) Dr. Sunwook Kim Dr. Shyam Ranganathan (now @Clemson)

A Quick Overview

- What: Field trial to assess the protective benefits of a wearable arm-support exoskeleton (ASE)
- Context: Ford Assembly plants in the US, work requiring prolonged/repetitive arm elevation ("overhead" work)
- Study Design: 18-month prospective trial
- **Sample**: workers given ASEs + others as a control group
- Diverse Outcome Measures: subjective responses, medical visits

Overhead work is a major risk factor for shoulder MSDs^{1,2}

Overhead work **defined as** any work performed with the hands above the acromion or $>60^{\circ}$ shoulder flexion or abduction³

Overhead work is often an unavoidable part of job tasks • e.g., for electricians, automotive

assembly workers, carpenters

 [1] Buckle & Devereux (2002)
 [2] Nordander et al. (2016)

 [3] Grieve & Dickerson (2008)

Shoulders continue to be one of the most injured body regions, and one of the costliest to return to full functionality

Lab- and field-based evidence of effects of arm-support exoskeleton (ASE) use

- Beneficial effects^{1,2,3,4}
 - Decreased activity in shoulder and neck muscle groups
 - Decreased discomfort and perceived exertion
 - Improved arm steadiness
- Concerns^{5,6,7}
 - Thermal discomfort
 - Movement restrictions
 - Discomfort at pressure points
 - User acceptance and use-intention

Gillette & Stepheson (2019)
 Smets (2019)
 Marino at al. (2019)
 Ferreira et al. (2020)

[2] Motmans et al. (2019)[4] Spada et al. (2017)[6] Amandels et al. (2019)

Study Design: Prospective & Controlled

- 1. Follow a group of workers forward in time
- 2. Two groups: provided an EXO or not (control)
- 3. Establish a "baseline" and track up to 18 months
- 4. Data collection milestones: Baseline (0), 1, 6, 12, and 18 months

ASE Used: EksoVest (Ekso Bionics, Inc.)

- Mass
 - 4.3 kg
- Assistance
 - Four support levels
- Adjustable
 - Trunk length, waist belt length, & arm cuff
- Training
 - Baseline: Ekso Bionics rep. for customized fit and EXO donning, doffing, & use
 - During the study: Local Ergo Specialists

EXO vs. Control Groups

Subjects: Operators using EXOs

Controls: Operators performing daily overhead work but NOT using EXOs

Design Aspects

- Recruitment from 7 facilities
- Candidate tasks selected based on likely ASE effectiveness
- · Participation was voluntary
- Screened for prior shoulder MSDs
- EXO use was voluntary
- No random assignment

11

11

Diverse Outcome Measures Obtained

- Worker level
 - Age, gender, stature, body mass
- Task level
 - Physical demands (tools, duty cycle, ...); quantified using revised OCRA1

Subjective responses

 Work intensity (10-point scales); Musculoskeletal symptoms (Cornell MS Discomfort Questionnaire²)

Usability Reponses

- Comfort, ROM, Safety, Performance (10-point scales)
- Open-ended responses
- Usage rates
- Health-related data
 - Medical visits

[1] Colombini et al. (2013)[2] ergo.human.cornell.edu

EXO Group only

	EXO Group					Control Group				
Facility	n	Age (years)	Body mass (kg)	Stature (m)	Job demand	n	Age (years)	Body mass (kg)	Stature (m)	Job demand
S1	10	40 (9)	93.0 (14.1)	1.76 (0.03)	22.8 (0.2; 5)	14	39 (10)	97.5 (27.9)	1.80 (0.10)	16.4 (11.0; 8)
S2	5	38 (13)	83.9 (10.0)	1.78 (0.07)	20.7 (7.0; 5)	12	45.5 (17.2)	89.6 (6.0)	1.76 (0.12)	17.6 (2.7; 4)
S3	5	25 (5)	74.4 (25.4)	1.78 (0.08)	23.8 (6.2; 3)	8	27 (6)	78.2 (9.7)	1.79 (0.09)	29.2 (2.0; 5)
M1	5	43 (6)	83.0 (22.6)	1.78 (0.10)	23.7 (3.4; 4)	10	44 (6.5)	89.6 (26.5)	1.72 (0.11)	23.1 (1.8; 8)
L1	5	31 (3)	77.1 (18.6)	1.78 (0.05)	20.8 (9.0; 5)	12	37 (6.3)	82.8 (13.3)	1.75 (0.08)	20.9 (10.3; 12)
L2	7	30 (16.5)	80.6 (19.3)	1.70 (0.14)	21.4 (9.5; 3)	12	31 (7.5)	88.5 (22.7)	1.78 (0.09)	24.7 (11.7; 8)
L3	4	46.5 (0.5)	84.0 (14.1)	1.74 (0.05)	-	15	44 (11.5)	71.4 (22.8)	1.70 (0.12)	22.8 (5.4; 9)
Overall	41	38 (15)	83.9 (21.6)	1.78 (0.1)	22.8 (7.0)	83	38 (15)	86.2 (23.5)	1.75 (0.10)	17 (8.6)

Groups were initially similar in several dimensions

10. What was your perception of overall safety when performing your job with the ve-

15

Analysis approach

- Statistical models
 - Linear mixed models
 - Adjusted for baseline, age, body mass, stature, and estimated physical demand
- Imputation used to address missing data
 - Roughly 40% missing overall
 - Imputation x200, using Multivariate
 Imputation by Chained Equation (MICE)
 in R software
 - Unbiased when data missing at random

Missing data (black) at each milestone and in each facility (control group)

Perceived work intensity was unaffected by EXO use

17

MSD scores overall did not differ significantly between groups

Discussion

- No clear effects of ASE use on perceived work intensity or MSD scores
 - These effects varied across participants and between facilities, and over time

Some facilities had exceptional patterns

- Some evidence for beneficial effects (↓ MSD scores)
- Typically, after extended use (≥6 months)
- Caution needed in interpreting results
 - Imputation approach assumed no systematic pattern in "missingness"
 - Somewhat simplistic approach to estimating physical demands
 - ASE use may have affected job demands (changing work methods)

Usability themes assessed at all milestones

- Overall fit and comfort
- Thermal comfort
- Balance
- Range of motion
- Job safety
- Job performance
- Likes/dislikes/changes
- Open-ended questions

21

Additional questions @12 and 18 months

- Feelings about the ASE (positive / neutral / negative)
 "How would you categorize your feelings about the exoskeleton based on your overall experience with it?"
- Intention to use the ASE (yes / maybe / no)

"Do you plan to continue using the exoskeleton after the study has ended"

Medical visits

- All medical visits to onsite plant nurse
 - Recorded by facility occupational health personnel
 - Followed standard health and safety & injury management process
- Analysis based on:
 - First time occupational visits (FTOVs)
 - Only if reported concern categorized as "ergonomics" related, and:
 - · associated with sprains/strains
 - occurred in upper extremity or back
 - excluded incidents involving the fingers

24

23

Usability question responses

- Generalized estimating equations (GEEs)
- Independent variables: Facility and Time
- Responses assumed to be on an interval scale¹
- Open-ended responses
 - Word frequency analysis
- Use intention
 - Decision tree to identify predictors
- Medical visits
 - Cox proportional hazards regression analysis
 - Age, body mass, stature included as covariates

[1] Wu & Leung (2017)

Usability responses typically consistent over time and across facilities

- Minor concerns about overall fit and discomfort
- Moderate-high concerns with thermal discomfort
- Minimal concerns with balance
- Minor concerns with range of motion
- Same or slightly better perceived job safety
- Slightly better job perceived job performance

25

Most frequent words in open-ended responses

Overall fit & comfort (<i>n</i> =109)	cuff, hot, rubbing, waist belt, rigid/stiff, bulky					
Balance (<i>n</i> =14)	bend forward, trunk twist, ML balance, squat					
ROM (n=83)	Reach, trunk bending/twisting, sitting/squatting, arm motion, stretching					
Job safety (<i>n</i> =46)	Snag hazard, less strain, bulky, posture, drop material					
Job performance (<i>n</i> =87)	Less pain (shoulder/arm/neck), less fatigue, arm assistance					

ASE: Likes, dislikes, and suggested changes

27

29

Medical Visits

- Across 7 facilities and 18 months
 - 41 visits in the control group
 - 6 in the EXO group
- Most common body parts reported:
 - Shoulder and wrist
- None of the included visits → DAFW

Probability of a medical visit affected by age & EXO use

- P (medical visit)
 - ↓ 5% with unitincrease in age
 - \downarrow 52% using the ASE
- Median survival duration
 - Control: ~580 days
 - EXO: not reached

31

Discussion

- Responses to thermal comfort, perceived balance, and perceived ROM consistent over time
- Responses to overall fit and discomfort and overall job safety statistically changed at Month 12
- Responses to job performance were somewhat better at Month 1 (potential novelty effect)
- Only 62% of participants indicated an ASE use-intention, though a majority (~84%) expressed positive feelings about it
- Intention-to-use was positively associated with perceived usability, comfort, and perceived benefit (performance)^{1,2,3}

Hensel & Keil (2019)
 Moyon et al. (2019)
 de Looze et al. (2016)

Challenges Experienced

- Missing data (e.g., turnover)
- Data collection
- Characterizing job demands
- Tracking EXO usage

33

Considerations for future work

- 1. Study design did not include randomization
- 2. Why were exceptional results obtained in some facilities?
- 3. Quantifying changes in work methods with ASE use
- 4. Jobs examined likely had only low-moderate risks (i.e., was there limited room for improvements?)
- 5. Are even longer-term studies needed (i.e., WMSDs vs. visits)?
- 6. How to identify relevant use-cases (and use-intention)?
- 7. Did not consider psychosocial aspects (e.g., liked/disliked attention)
- 8. ASE technologies are evolving

Acknowledgements

- This work was supported though the Ford-VT Alliance Program
- Any opinions expressed here do not necessarily represent those of Ford Motor Company

