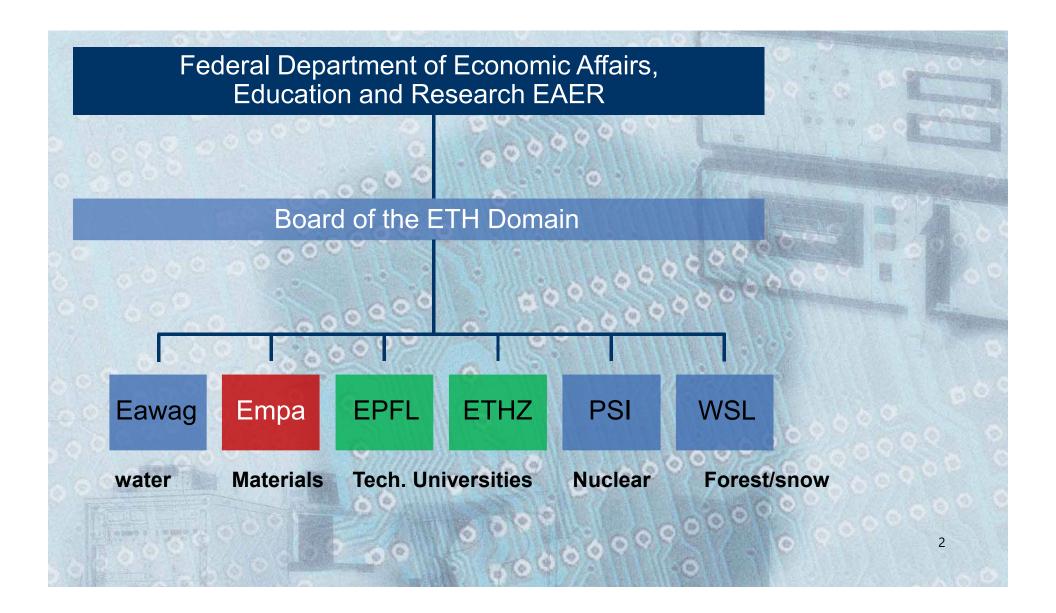


Federal Office for the Environment Federal Roads Office

Lily D. Poulikakos

October 2nd, 2019


High Performance Asphalt Materials Symposium, Waterloo, Canada

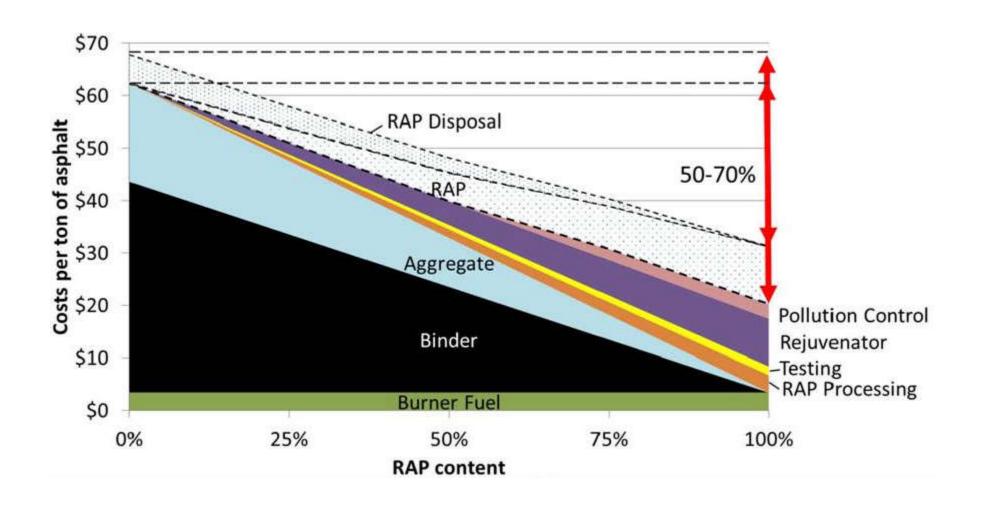
Empa within the ETH Domain

Empa in Numbers

3 Sites	Dübendorf, St. Gallen, Thun			
of which	28 Laboratories 250 Employees (860 FTE; about 30% Women) 28 Professors 40 PhD Students 40 Apprentices 200Master Students & Interns			
Budget	97 Mio. CHF Public Funding 52 Mio. CHF Third Party Means			
Scientific Output	> 500 Peer-reviewed ISI-Publications 90 Seminars & Conferences at Empa-Academy			
Third Party Projects Programmes	> 50 running Projects EU Framework 90 running SNSF Projects 80 running CTI Projects 3			

Laboratory for Road Engineering

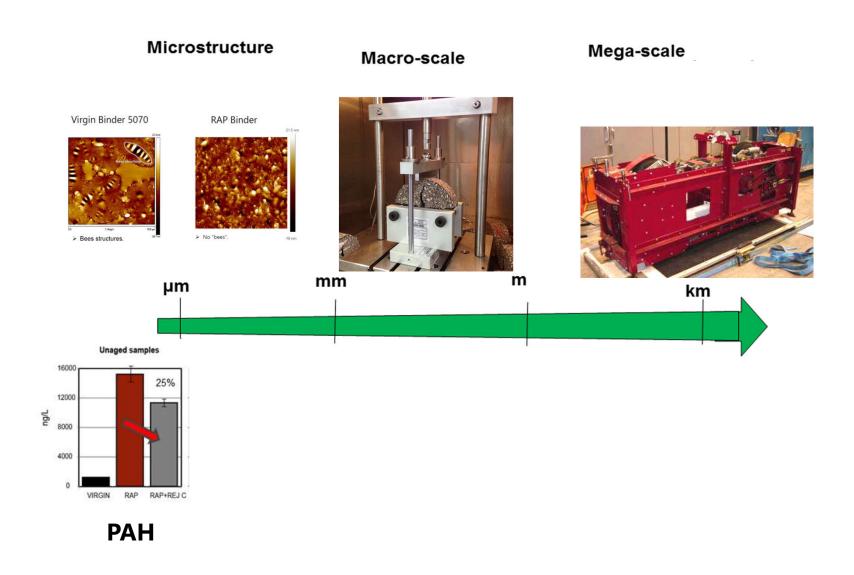
A multidisciplinary team (ca 20) consisting of engineers, chemists, post docs, PhD's, interns and technicians


Dr. Martins Zaumanis

Dr. Maria Chiara Cavalli

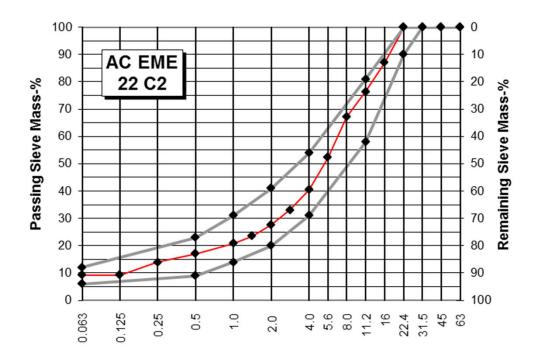
Dr. Martin Arraigada

Why use high amounts of RAP?



Zaumanis et al 2014

Multi scale evaluation of 100% RAP Mixtures PEmpa



EME: Enrobés á Module Elevé

	Binder Pen		BC M%	VC V%
AC EME C1	15/20	30	5 (≥4.6)	3.1 (36)
AC EME C2	10/20	35	5.6 (≥5.2)	2.2 (14)

- Developed in France
- Improve mechanical properties of asphalt concrete to provide high modulus, good fatigue behavior and excellent rutting resistance.
- Base and binder courses and allow reducing pavement layer thickness or increasing pavement life span.
- High content of hard (and often polymer-modified) binder, low air void content
- Application of performance-based testing requirements for fatigue, modulus and rutting resistance.

Why is 100% RAP relevant for HMAC?

Well documented in literature:

- RAP binder is aged thus naturally provides the required hard-grade binder for HMAC;
- High RAP mixtures chronically demonstrate low air voids;
- Performance-based mixture design is recommended for high-RAP mixtures because of unknown binder blending, relatively little field performance experience and potential for cracking.

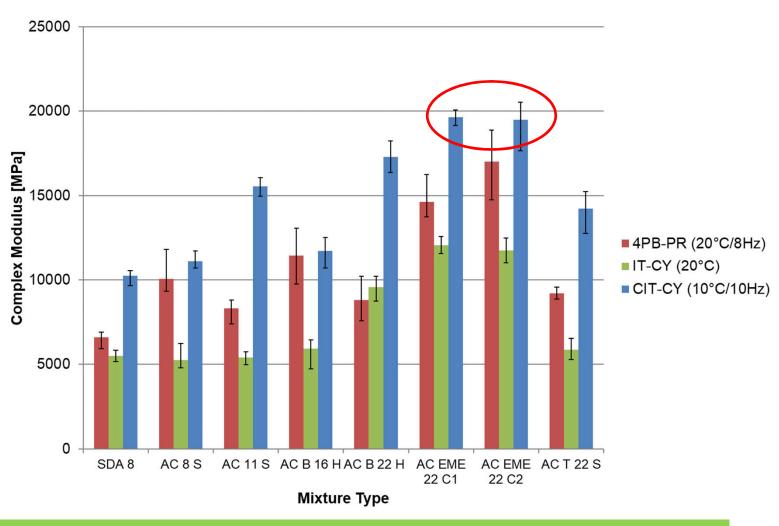
Objective: investigate the potential to design HMAC mixtures from 100% reclaimed asphalt pavement and validate the results using vehicle load simulator

Swiss Standards: Performance

2PB-TR

Minimum values from current Swiss Standards					
	Type of mix	Complex Modulus	Fatigue resistance, ε ₆ , at 10°C, 25Hz		
		S _{min} at 15°C, 10 Hz [MPa]	[micro strains, µm/m]		
F-::		[ivir a]			
Existing Swiss Standard	AC EME C1	≥ 11000	≥ 100		
[SN 640 431- 1b-NA]	AC EME C2	≥ 14000	≥ 130		

European Standards (Stiffness and Fatigue)



Type of loading	Designation	Schematic diagram
Indirect tensile test with cylindrical specimen (Pulse and sinusoidal loading form)	IT-CY and CIT-CY	
Four point bending test with prismatic specimen	4PB-PR	
Two point bending with trapezoidal specimen	2PB-TR	L P

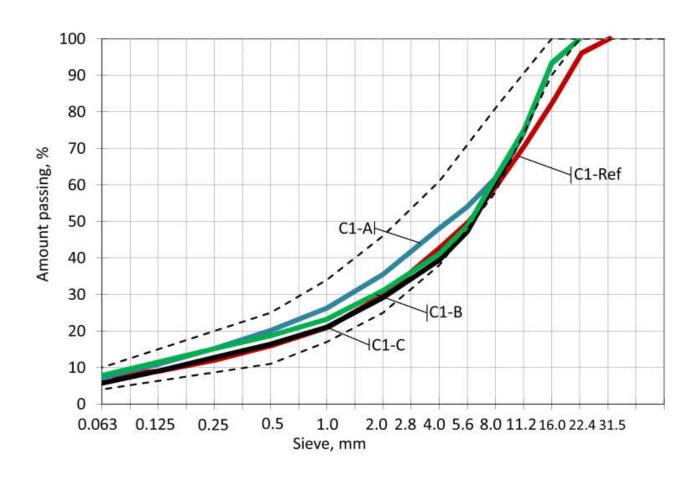
Source: EN 12697-24 und -26

Complex Modulus

L.D. Poulikakos, Standardization requirements for the Swiss annex to EN for complex modulus and resistance to fatigue. Project Nr. VSS 2014/502, (2019) FB 1660.

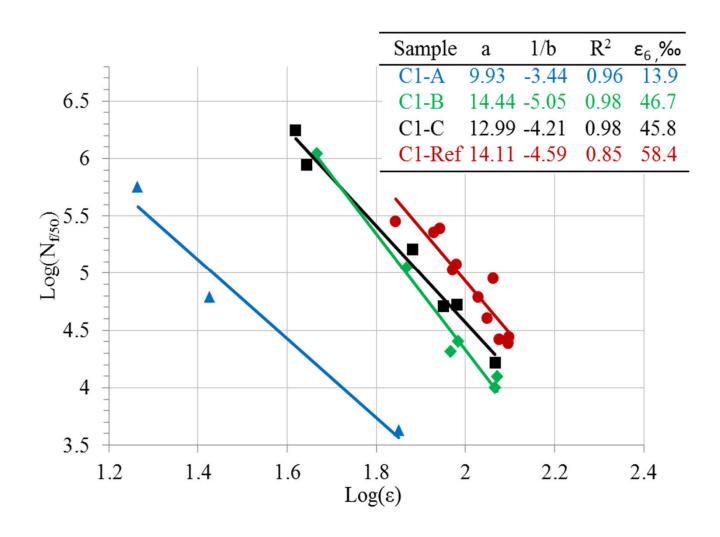
HMAC Design and Test Results

C1-A	C1-B	C1-C	Required/ Ref
-	13.3	10.5	-
-	20.5	21.0	-
32.8	-	-	-
66.5	64.8	66.3	-
-	2.6	-	-
0.7	1.75	2.1	-
0.07	-	-	-
4.70	5.14	5.58	≥4.60
16	21	21	15-25
2.87	3.11	3.57	≥2.70
2.39	2.70	2.87	-
2.2	2.0	2.0	3.0-6.0
25,151	22,646	20,850	≥19,000
13.9	46.7	45.8	≥50
-	-	6.8*	≤5.0
	- 32.8 66.5 - 0.7 0.07 4.70 16 2.87 2.39 2.2 25,151	- 13.3 - 20.5 32.8 - 66.5 64.8 - 2.6 0.7 1.75 0.07 - 4.70 5.14 16 21 2.87 3.11 2.39 2.70 2.2 2.0 25,151 22,646	- 13.3 10.5 - 20.5 21.0 32.8 66.5 64.8 66.3 - 2.6 - 0.7 1.75 2.1 0.07 4.70 5.14 5.58 16 21 21 2.87 3.11 3.57 2.39 2.70 2.87 2.2 2.0 2.0 25,151 22,646 20,850 13.9 46.7 45.8

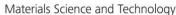

^{*}sample preparation differed from the standard method, likely resulting in by approx. 40 % higher rut depth

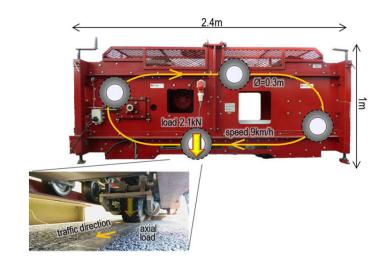
Mix design optimizations: significant increase in fatigue resistance and reduction of modulus

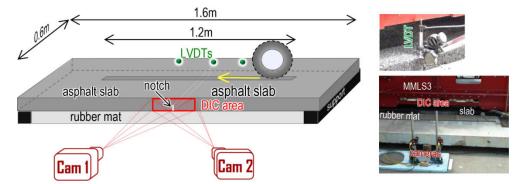
Source: Zaumanis, M., Arraigada, M., Poulikakos, L. D. Design of 100% Recycled High-Modulus Asphalt Concrete, Eurobitumen 2020, submitted

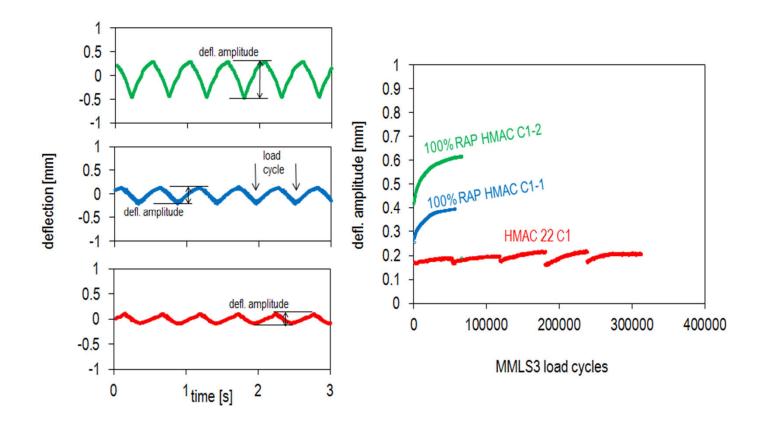

100% RAP HMAC

Fatigue Performance




Validation: MMLS3

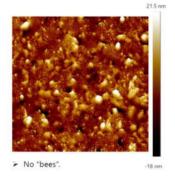


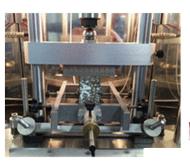

- one-third scaled accelerated pavement testing device
- testing under the loading of repetitive rolling tires.
- ❖ Slabs: 1.6mX 0.6mX 8 cm
- laboratory-mixed loose material which was shortterm aged for 4 hours at 150°C.

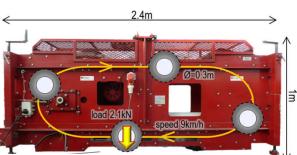
MMLS3 Traffic simulator

Summary and Conclusions

- The design principle of HMAC is a good match for using high RAP content, because of the requirement to test mixture performance instead of relying mostly on volumetric properties
- In order to improve fatigue performance, 100% recycled mixtures required higher binder content than normally found in HMAC mixtures. This is likely because of not fully activated RAP binder.
- At Lab scale could fulfil most requirements;
- MMLS3: the RAP mixture was much more brittle than the reference mixture
- Need appropriate lab-scale techniques
- Properties of RAP play a crucial role: need RAP from high performance roads for HMAC


Federal Office for the Environment Federal Roads Office


Thank you for your attention



RAP Binder

Micro scale

mm- scale

m-scale

