Information for

Yuning Li

Associate Chair Graduate Studies and Professor

Yuning LiDegrees

  • BSc, Dalian University of Technology, China
  • MSc, Dalian University of Technology, China
  • PhD, Japan Advanced Institute of Science and Technology, Japan

Research interests

Development of organic materials and nanomaterials for printed and organic optical and electronic devices

  • P-type and n-type high charge carrier mobility small molecules and p-conjugated polymers for organic field effect transistors, which have applications in RFIDs and displays
  • Environmentally stable polymer semiconductors for biological and chemical sensors in applications in smart food packaging, health care devices, wearable electronics, etc.
  • Polymer materials for low-cost, light-weight, and flexible organic solar cells
  • Electrically highly conductive polymers for thermoelectrics, batteries, and solar cells
  • Low-temperature processable metal nanoparticle conductive inks
  • Novel synthetic chemistry for conjugated polymers
  • Single-walled carbon nanotubes and graphene

Design, fabrication, and characterization of organic electronics

Professor Yuning Li's Research lab website 

  • Organic thin film transistors (OTFTs) or organic filed effect transistors (OTFTs)
  • Small molecule and polymer bulk-heterojunction photovoltaics (OPV) (solar cells)
  • Dye-sensitized solar cells (DSC)
  • Perovskite solar cells
  • Organic light-emitting diodes (OLEDs)
  • Chemical/biosensors
  • Photodiode and phototransistor based organic/polymer photodetectors

Selected patents

  • US7,863,694 (2011), Liu, P.; Wu, Y.; Li, Y.; Smith, P. F. Organic thin film transistors
  • US7,847,397 (2010), Wu, Y.; Li, Y.; Ong, B. S. Nanoparticles with covalently bonded stabilizer
  • US7,847,052 (2010), Li, Y.; Ong, B. S.; Wu, Y.; Liu, P. Linked arylamine polymers
  • US7,837,903 (2010), Liu, P.; Wu, Y.; Li, Y. Polythiophenes and electronic devices comprising the same
  • US7,834,132 (2010), Ong, B. S.; Pan, H.; Li, Y.; Wu, Y.; Liu, P. Electronic devices
  • US7,829,727 (2010), Li, Y.; Ong, B. S.; Wu, Y.; Liu, P. Device containing compound having indolocarbazole moiety and divalent linkage
  • US7,821,068 (2010), Wu, Y.; Liu, P.; Li, Y.; Pan, H. Device and process involving pinhole undercut area
  • US7,820,782 (2010), Ong, B. S.; Pan, H.; Li, Y.; Wu, Y.; Liu, P. Poly(dithienylbenzo[1,2-b:4,5-b']dithiophene) polymers
  • US7,795,373 (2010), Li, Y.; Ong, B. S.; Wu, Y. Ethynylene acene polymers
  • US7,737,497 (2010), Li, Y. Silver nanoparticle compositions
  • US7,718,999 (2010), Li, Y.; Ong, B. S. Polythiophene electronic devices
  • US7,718,998 (2010), Liu, P.; Ong, B. S.; Wu, Y.; Li, Y.; Pan, H. Thiophene electronic devices
  • US7,705,111 (2010), Ong, B. S.; Li, Y.; Wu, Y. Polyalkynylthiophenes
  • US7,659,009 (2010), Li, Y.; Ding, J.; Day, M.; Tao, Y.; D'lorio, M. “Thermally crosslinkable materials and multi-layered devices therefrom”
  • US7,651,885 (2010), Li, Y.; Ong, B. S.; Wu, Y. “Electronic device fabrication process”

Selected references

  • Deng, Y.; Sun, B.; He, Y.; Quinn, J.; Guo, C.; Li, Y. Thiophene-S,S-dioxidized Indophenine: A High Electron Affinity Quinoid-type Building Block for Constructing Low-bandgap n-Type Polymer Semiconductor. Angew. Chem. Int. Ed. Engl., 2016, 55, 3459.
  • Sun, B.; Hong, W.; Aziz, H.; Li, Y. Polyethylenimine (PEI) as an effective dopant to conveniently convert ambipolar and p-type polymers into unipolar n-type polymers. ACS Appl. Mater. Inter., 2015, 7, 18662.
  • He, Y.; Guo, C.; Sun, B.; Quinn, J.; Li, Y. (3E,7E)-3,7-Bis(2-oxoindolin-3-ylidene)-5,7-dihydropyrrolo[2,3-f]indole-2,6(1H,3H)-dione based polymers for ambipolar organic thin film transistors. Chem. Commun. 2015, 51, 8093.
  • Sun, B.; Hong, W.; Yan, Z.; Aziz, H.; Li, Y. Record High Electron Mobility of 6.3 cm2V-1s-1 Achieved for Polymer Semiconductors Using a New Building Block. Adv. Mater. 2014, 26, 2636.
  • Yan, Z.; Sun, B.; Li, Y. Novel Stable (3E,7E)-3,7-Bis(2-oxoindolin-3-ylidene)benzo[1,2-b:4,5-b’]difuran-2,6(3H,7H)-dione Based Donor-acceptor Polymer Semiconductors for N-type Organic Thin Film Transistors. Chem. Commun. 2013, 49, 3790.
  • Li, Y.; Sonar, P.; Singh, S. P.; Soh, M. S.; van Meurs, M.; Tan, J.  Annealing-Free High Mobility Diketopyrrolopyrrole-Quaterthiophene Copolymer for Solution-Processed Organic Thin Film Transistors. J. Am. Chem. Soc. 2011, 133, 2198.
  • Sonar, P.; Singh, S. P.; Li, Y.; Soh, M. S.; Dodabalapur, A. “A Low Band Gap Diketopyrrolopyrrole-benzothiadiazole-based Copolymer for High Mobility Ambipolar Organic Thin Film Transistors” Adv. Mater. 2010, 22, 5409.

  • Li, Y.; Singh, S. P.; Sonar, P. “A high mobility p-type DPP-thieno[3,2-b]thiophene copolymer for organic thin film transistors”Adv. Mater. 2010, 22, 4862.

  • Pan, H.; Li, Y.; Wu, Y.; Liu, P.; Ong, B. S.; Zhu, S.; Xu, G. “Low-temperature, Solution-processed, High-mobility Polymer Semiconductors for Thin-film Transistors” J. Am. Chem. Soc. 2007,129, 4112.
  • Ong, B. S.; Li, C.; Li, Y.; Wu, Y.; Loutfy, R. “Stable, Solution-Processed, High-Mobility ZnO Thin-Film Transistors” J. Am. Chem. Soc. 2007, 129, 2750.
  • Wu, Y.; Li, Y.; Ong, B. S. “A Simple and Efficient Approach to a Printable Silver Conductor for Printed Electronics” J. Am. Chem. Soc. 2007, 129, 1862.
  • Li, Y.; Wu, Y.; Liu, P.; Birau, M.; Pan, H.; Ong, B. S. “Poly(2,5-bis(2-thienyl)-3,6-dialkylthieno [3,2-b]thiophene)s - High-Mobility Semiconductors for Thin-Film Transistors” Adv. Mater. 2006, 18, 3029.
  • Wu, Y.; Li, Y.; Ong, B. “Printed Silver Ohmic Contacts for High-Mobility Organic Thin-Film Transistors” J. Am. Chem. Soc. 2006, 128, 4202.
  • Li, Y.; Wu, Y.; Ong, B. “Facile Synthesis of Silver Nanoparticles Useful for Fabrication of High-conductivity Elements for Printed Electronics” J. Am. Chem. Soc. 2005,127, 3266.
  • Li, Y.; Wu, Y.; Gardner, S.; Ong, B. S. “Novel Peripherally Substituted Indolo[3,2-b]carbazoles for High-mobility Organic Thin-film Transistors” Adv. Mater. 2005, 17, 849.
  • Wu, Y.; Li, Y.; Gardner, S.; Ong, B. S. “Indolo[3,2- b]carbazole-Based Thin-Film Transistors with High Mobility and Stability” J. Am. Chem. Soc. 2005, 127, 614.
University of Waterloo