Chemistry Seminar Series: Dr. L. Hernández de la PeñaExport this event to calendar

Thursday, May 1, 2014 — 2:30 PM EDT

Quantum free energies from non-equilibrium path integral methods

Dr. L. Hernández de la Peña
Assistant Professor
Department of Chemistry & Biochemistry
Kittering University, MI, USA

May 1, 2014
2:30 p.m.
MC 2017

Abstract:  In this talk, we discuss how the imaginary-time path integral representation of the quantum canonical partition function and non-equilibrium work fluctuation relations can be combined to yield methods for computing free energy differences in quantum systems using non-equilibrium processes. The path integral representation is isomorphic to the configurational partition function of a classical field theory to which a natural Hamiltonian dynamics can be associated. It is then shown that both, Jarzynski nonequilibrium work relation and Crooks fluctuation relation, formally hold for this classical field theory. Since the energy diverges in canonical equilibrium, regularization methods need to be introduced in order to limit the number of degrees of freedom M to be finite. The convergence of the work distribution as M tends to infinity is demonstrated analytically for a system composed of a quantum particle trapped in a harmonic well, and numerically for a quartic double-well potential with varying asymmetry. Finally, the method is used to study the relevance of protonic quantum effects in ionic water clusters.

S M T W T F S
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2
3
4
5
6
  1. 2020 (36)
    1. April (1)
    2. March (9)
    3. February (11)
    4. January (15)
  2. 2019 (131)
    1. December (4)
    2. November (11)
    3. October (13)
    4. September (18)
    5. August (4)
    6. July (9)
    7. June (9)
    8. May (15)
    9. April (13)
    10. March (15)
    11. February (14)
    12. January (6)
  3. 2018 (115)
  4. 2017 (108)
  5. 2016 (125)
  6. 2015 (115)
  7. 2014 (98)
  8. 2013 (104)
  9. 2012 (85)
  10. 2011 (10)