1. Print your name here:
2. Print your school name and city on your STUDENT RESPONSE sheet.
3. Select, and enter on the STUDENT RESPONSE sheet, one of the following CODE numbers:

Code 1 Ontario, now studying Grade 11 Chemistry in a nonsemestered school

Code 2 Ontario, now studying Grade 11 Chemistry in a semestered school

Code 3 Ontario, Grade 11 Chemistry already completed

Code 4 Any other Ontario student
Code 5 Manitoba or Saskatchewan high school student

Code 6 Québec high school student
Code 7 not used
Code 8 Alberta or British Columbia high school student
Code 9 New Brunswick, Newfoundland, Nova Scotia, or Prince Edward Island high school student
Code 10 Northwest Territories, Nunavut, or Yukon high school student
Code 11 High school student outside Canada
Code 12 Teacher
4. Print your name (last name, first name and optional middle initial) on the STUDENT RESPONSE sheet. Also fill in the corresponding circles below your printed name.
5. Carefully detach the last page. It is the datasheet.
6. Now answer the exam questions. Questions are not in order of difficulty. Indicate your choice on the STUDENT RESPONSE sheet by marking one letter beside the question number.

- Mark only one answer for each question.
- Questions are all of the same value.
- There is a penalty ($1 / 4$ off) for each incorrect answer, but no penalty if you do not answer.

7. Take care that you make firm, black pencil marks, just filling the oval.

Be careful that any erasures are complete-make the sheet white again.

Carefully detach the last page. It is the Data Sheet.

1 Which of the following has the most neutrons?

A ${ }^{18} \mathrm{~F}$
B ${ }^{18} \mathrm{O}$
C ${ }^{14} \mathrm{C}$
D ${ }^{15} \mathrm{~N}$
E ${ }^{11} B$

2 Which of the following pairs of atomic symbols and elements is incorrect?

A Al-Aluminium
B Mg-Magnesium
C Ca-Calcium
D Br -Boron
E Mn-Manganese

3 Which of the following is not a subatomic particle?

A α-particle
B β-particle
C electron
D proton
E neutron
$4 \quad \mathrm{X}_{2} \mathrm{O}$ is the symbol of a compound. Which of the following is X least likely to be?

A magnesium (Mg)
B sodium (Na)
C cesium (Cs)
D hydrogen (H)
E copper (Cu)

5 How many protons are there in the nucleus of ${ }^{127}$ I?

A 7
B 53
C $\quad 74$

D 127
E 190

6 Which group of elements has the greatest electron affinity?

A group 14
B group 15
C group 16
D group 17
E group 18

7 The difference between deuterium ${ }_{1}^{2} \mathrm{H}$ and the more common form hydrogen is

A that deuterium does not occur naturally.
B that deuterium is radioactive.
C has one more neutron in the nucleus.

D has one more proton in the nucleus.
E has one more atom per molecule.

8 Which group of atoms and ions contain the same number of electrons?

A $\mathrm{F}, \mathrm{Ne}, \mathrm{Na}$
B $\mathrm{O}^{2-}, \mathrm{S}^{2-}, \mathrm{Se}^{2-}$
C $\mathrm{Mg}, \mathrm{Al}, \mathrm{Si}$
D $\mathrm{Ca}^{2+}, \mathrm{Fe}^{3+}, \mathrm{Zn}^{2+}$
E $\mathrm{Cl}^{-}, \mathrm{Ar}, \mathrm{K}^{+}$

9 Which of the following is an ionic solid?
A $\mathrm{N}_{2} \mathrm{O}$
B HCl
C CO_{2}
D LiCl
E CH_{4}

10 What volume of CO_{2} is produced when you burn exactly 1.0 litre of gaseous propane ($\mathrm{C}_{3} \mathrm{H}_{8}$) in the presence of excess oxygen in your backyard barbecue? Assume $\mathrm{H}_{2} \mathrm{O}$ and CO_{2} are the only combustion products and P and T remain constant.

A 1.0
B 1.5
C 2.0
D 2.5
E 3.0

11 Radioactive Polonium ${ }^{210} \mathrm{P}$ is extremely toxic. Complete the reaction for the radioactive decay of ${ }^{210} \mathrm{P}$.

$$
\mathrm{P} \rightarrow \quad ?+{ }_{2}^{4} \mathrm{He}
$$

A ${ }^{206} \mathrm{~Pb}$
B ${ }^{212} \mathrm{~T}$
c ${ }^{214} \mathrm{Po}$
D ${ }^{214} \mathrm{Rn}$
E ${ }^{210} \mathrm{Po}$

12 The bubbles in boiling water are mostly
A He
B $\mathrm{H}_{2} \mathrm{O}$
C CO_{2}
D N_{2}
E O_{2}

13 An element, X, from group 1 of the periodic table combines to form a stable compound with an element, Y , from group 16. The formula of that compound is most likely to be

A $X_{2} Y$
B $\mathrm{X}_{2} \mathrm{Y}_{3}$
C XY
D $\mathrm{X}_{2} \mathrm{Y}$
E XY_{3}

14 After a large meal the pH of your stomach drops to 1.76. What is the $\left[\mathrm{H}^{+}\right]$in your stomach?

A $1.66 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}$
B $\quad 60.3 \mathrm{~mol} \mathrm{~L}^{-1}$
C $\quad 1.78 \mathrm{~mol} \mathrm{~L}^{-1}$
D $1.83 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$
E $\quad 6.03 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}$
$15 \mathrm{Ba}\left(\mathrm{ReO}_{4}\right)_{2}$ is barium perrhenate. What is the charge on the perrhenate ion?

A +2
B +1
C 0
D -1
E -2

16 These three compounds have been isolated: NaCl , $\mathrm{Na}_{2} \mathrm{O}$, and AlCl_{3}. What is the formula of aluminium oxide?

17 The average car in Canada uses 0.93L of gasoline to go 100 km . The density of gasoline, octane, is $0.70 \mathrm{~g} / \mathrm{mL}$ and the molar mass is $114.2 \mathrm{~g} / \mathrm{mol}$. How many moles of gasoline are consumed by driving 100km?

A 0.93
B 11
C 5.7
D 5.7×10^{-4}
E 1.1×10^{-3}
18 How many moles of an ideal gas are present in a 15.0 L scuba tank with a pressure of 23.0 MPa at 298K?

A 23
B 72
C 44
D 14.1
E 139

19 Chlorine has two abundant stable isotopes 35 Cl and 37 Cl with atomic masses of 34.97 amu and 36.96 amu respectively. What is ther percent abundance of the heavier isotope?

A 78
B 36
C 64
D 50
E 24

20 The property of a compound that is closely related to the heat of vapourisation is...?

A density
B colour
C solubility
D thermal stabilty
E boiling point

21 Which of the following types of radiation has the highest energy?

A radio waves
B ultraviolet radiation
C infrared radiation
D x-rays
E purple laser light

22 The Lewis structure (i.e. electron dot) structure for the O_{3} molecule is given below.

$$
\mathrm{H}-\mathrm{C} \equiv \mathrm{~N}:
$$

The bond angle is nearest to
A 60°
B 90°
C 105°
D 120°
E 180°

23 What volume of $0.100 \mathrm{molL}^{-1} \mathrm{NaOH}$ is required to neutralize 0.245 L of $0.200 \mathrm{molL}^{-1} \mathrm{H}_{3} \mathrm{PO}_{4}$?

A 0.490 L
B $\quad 0.500 \mathrm{~L}$
C 1.47 L
D 2.30 L
E $\quad 1.47 \mathrm{~mL}$
24 Which of the following compounds forms hydrogen bonds?

A $\mathrm{CH}_{3} \mathrm{OCH}_{3}$ Dimethyl ether
B HCI Hydrochloric acid
C $\mathrm{H}_{2} \mathrm{~S}$ Hydrogen sulfide
D $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ Ethanol
E $\mathrm{H}_{2} \mathrm{CO}$ Formaldehyde
$25 \mathrm{Al}(\mathrm{s})$ dissolves in acidic solution according to the following reaction

$$
2 \mathrm{Al}(\mathrm{~s})+6 \mathrm{HCl} \rightarrow 2 \mathrm{AlCl}_{3}+3 \mathrm{H}_{2}(\mathrm{~g})
$$

How many grams of aluminium ($27 \mathrm{~g} / \mathrm{mol}$) are necessary to produce 0.50 mol of $\mathrm{H}_{2}(\mathrm{~g})$?

A 20
B 9.0
C 14
D 27
E. 24

26 For which of the following reactions is the change in energy equal the first electron affinity?

A $\quad \mathrm{X}^{-}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{X}^{2-}(\mathrm{g})$
B $\quad \mathrm{X}(\mathrm{g})+2 \mathrm{e}^{-} \rightarrow \mathrm{X}^{2-}(\mathrm{g})$
C $\mathrm{X}(\mathrm{g}) \rightarrow \mathrm{X}^{+}+\mathrm{e}^{-}$
D $\quad \mathrm{X}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{X}^{-}(\mathrm{g})$
E $\quad \mathrm{X}(\mathrm{g}) \rightarrow \mathrm{X}^{2+}+2 \mathrm{e}^{-}$

27 How does the pH of a solution change as HCl is added to a solution of NaOH ?

A The pH decreases and may go below 7.

B The pH will not change.

C The pH decreases until it reaches a value of 7 and the stops.

D The pH increases until it reaches a value of 7 and then stops.

E The pH increases and may go above 7.

28 The volume of a gas at 1 atm temperature of 20 C is increased from 40 mL to 80 mL . If the pressure remains constant what is the final temperature of the gas?

A $293 K+\frac{80.0}{40.0}$
B $\quad 20^{\circ} \mathrm{C} \times \frac{80.0}{40.0}$
C $293 \mathrm{~K} \times \frac{80.0}{40.0}$
D $\quad 293 \mathrm{~K} \times \frac{40.0}{80.0}$
E $\quad 20^{\circ} \mathrm{C} \times \frac{40.0}{80.0}$

29 Which drawing shows a pipet correctly filled for delivery?

A 1
B 2
C 3
D 4
E none of the above
30 What is the mass percent copper in $\mathrm{Cu}(\mathrm{II}) \mathrm{Cl}_{2}$?
A 12.1%
B 64.2%
C 91.2%
D 25.2%
E 47.3\%

31 Which one of the following solutions will be the best electrical conductor at $25^{\circ} \mathrm{C}$?

A $\quad 0.10 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
B $\quad 0.10 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NaCl}(a q)$
C $0.10 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{CaSO}_{4}(\mathrm{aq})$
D $\quad 0.10 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{HNO}_{3}(\mathrm{aq})$
E $\quad 0.10 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{CsCl}(a q)$

32 What is the coefficient of O_{2} when the following reaction is balanced with whole-number coefficients?
$-\mathrm{Cr}_{2} \mathrm{O}_{3}+$ \qquad $\mathrm{KOH}+$ \qquad $\mathrm{O}_{2} \rightarrow$ \qquad $\mathrm{K}_{2} \mathrm{CrO}_{4}+$ \qquad $\mathrm{H}_{2} \mathrm{O}$

A 2
B 3
C 4
D 5
E 6

33 What is the oxidation state of N in HNO_{2} ?
A +5
B +3
C +1
D -1
E -3
34 If the kelvin temperature of a sample of ideal gas doubles (e.g. from 200 K to 400 K), then the average kinetic energy of the molecules in the sample

A increases by a factor of $\sqrt{2}$
B increases by a factor of 2
C decreases by a factor of 2
D increases by a factor of 4
E remains the same

35 A neutral atom whose lowest electronic configuration is $[\mathrm{Xe}] 6 s^{2} 5 f^{14} 6 d^{10} 6 p^{4}$ belongs to

A Group 3
B Group 4
C Group 6
D Group 14
E Group 16

36 How many moles of water are there in 1.80 L of $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ at a pressure of 1.00 atm and temperature of 298 K . The density of water is $1.00 \mathrm{~g} / \mathrm{mL}$.

A 1.00
B .0736
C 55.6
D 1.00×10^{2}
E 13.6

37 The reaction, $\mathrm{Al}(s)+\mathrm{HCl}(a q) \rightarrow \mathrm{AlCl}_{3}(a q)+\mathrm{H}_{2}(\mathrm{~g})$ is an example of

A a precipitation reaction
B an acid-base reaction
C a decomposition reaction
D an oxidation-reduction reaction
E an isomerization reaction

38 If equal volumes of $0.10 \mathrm{~mol} / \mathrm{L}$ solutions of NaOH and HCl are mixed, what is the pH of the solution?

A 1
B 13
C 7
D 1.3
E 12.7

39 What is the concentration of a calcium chloride solution if 11.00 g of calcium chloride, CaCl_{2}, is dissolved in water to make 500 mL of solution?

A $.2 \mathrm{molL}^{-1}$
B $.1982 \mathrm{molL}^{-1}$
C $.198 \mathrm{molL}^{-1}$
D $.2000 \mathrm{molL}^{-1}$
E $.20 \mathrm{molL}^{-1}$

40 A compound of carbon and hydrogen is found to be 85.6 \% carbon, by mass, and 14.38% hydrogen. What is the simplest formula of the compound?

A CH

B CH_{2}
C CH_{3}
D CH_{4}
E $\quad \mathrm{C}_{3} \mathrm{H}_{4}$

DATA SHEET

AVOGADRO EXAM 2007

DETACH CAREFULLY

$\begin{gathered} 1 \\ 1 \mathrm{~A} \end{gathered}$																	$\begin{aligned} & 18 \\ & 8 A \end{aligned}$
1 \mathbf{H} 1.008	$\begin{gathered} 2 \\ 2 A \\ \hline \end{gathered}$											$\begin{aligned} & 13 \\ & 3 A \end{aligned}$	$\begin{aligned} & 14 \\ & 4 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 15 \\ & 5 A \end{aligned}$	$\begin{aligned} & 16 \\ & 6 A \end{aligned}$	$\begin{aligned} & 17 \\ & 7 A \end{aligned}$	
$\begin{array}{\|c\|} \hline 3 \\ \text { Li } \\ 6.941 \\ \hline \end{array}$	4 Be 9.012											$\begin{gathered} 5 \\ \mathbf{B} \\ 10.81 \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ \mathbf{C} \\ 12.01 \\ \hline \end{gathered}$	$\begin{gathered} 7 \\ \mathbf{N} \\ 14.01 \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ 0 \\ 16.00 \\ \hline \end{gathered}$	$\begin{gathered} 9 \\ \mathbf{F} \\ 19.00 \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ \mathrm{Ne} \\ 20.18 \end{gathered}$
$\begin{gathered} 11 \\ \mathrm{Na} \\ 22.99 \end{gathered}$	$\begin{gathered} 12 \\ \mathbf{M g} \\ 24.31 \end{gathered}$	3 3 B	$\begin{gathered} 4 \\ 4 B \end{gathered}$	$\begin{gathered} 5 \\ 5 B \end{gathered}$	$\begin{gathered} 6 \\ 6 B \end{gathered}$	$\begin{gathered} 7 \\ 7 B \end{gathered}$	$\begin{gathered} \mathbf{8} \\ \leftarrow \end{gathered}$	$\begin{gathered} 9 \\ 8 B \end{gathered}$	$\xrightarrow[\rightarrow]{10}$	$\begin{aligned} & 11 \\ & \text { 1B } \end{aligned}$	$\begin{aligned} & 12 \\ & \text { 2B } \end{aligned}$	$\begin{array}{r} 13 \\ \text { Al } \\ 26.98 \end{array}$	$\begin{gathered} 14 \\ \mathrm{Si} \\ 28.09 \end{gathered}$	$\begin{gathered} 15 \\ \mathbf{P} \\ 30.97 \end{gathered}$	$\begin{gathered} 16 \\ \mathbf{S} \\ 32.07 \end{gathered}$	$\begin{gathered} 17 \\ \mathrm{Cl} \\ 35.45 \end{gathered}$	$\begin{gathered} 18 \\ \mathrm{Ar} \\ 39.95 \end{gathered}$
$\begin{array}{\|c\|} \hline 19 \\ \mathbf{K} \\ 39.10 \\ \hline \end{array}$	$\begin{gathered} 20 \\ \text { Ca } \\ 40.08 \end{gathered}$	$\begin{array}{r} 21 \\ \mathrm{Sc} \\ 44.96 \\ \hline \end{array}$	$\begin{gathered} 22 \\ \mathrm{Ti} \\ 47.88 \\ \hline \end{gathered}$	$\begin{gathered} 23 \\ \text { V } \\ 50.94 \\ \hline \end{gathered}$	$\begin{gathered} 24 \\ \mathrm{Cr} \\ 52.00 \\ \hline \end{gathered}$	$\begin{gathered} 25 \\ \mathbf{M n} \\ 54.94 \end{gathered}$	$\begin{gathered} 26 \\ \text { Fe } \\ 55.85 \\ \hline \end{gathered}$	$\begin{gathered} 27 \\ \text { Co } \\ 58.93 \\ \hline \end{gathered}$	$\begin{gathered} 28 \\ \mathrm{Ni} \\ 58.69 \\ \hline \end{gathered}$	$\begin{array}{r} 29 \\ \mathrm{Cu} \\ 63.55 \\ \hline \end{array}$	$\begin{gathered} 30 \\ \text { Zn } \\ 65.38 \end{gathered}$		$\begin{gathered} 32 \\ \text { Ge } \\ 72.59 \\ \hline \end{gathered}$	$\begin{gathered} 33 \\ \text { As } \\ 74.92 \end{gathered}$	$\begin{gathered} 34 \\ \mathrm{Se} \\ 78.96 \end{gathered}$	$\begin{array}{r} 35 \\ \mathrm{Br} \\ 79.90 \\ \hline \end{array}$	$\begin{gathered} 36 \\ \mathrm{Kr} \\ 83.80 \\ \hline \end{gathered}$
$\begin{gathered} 37 \\ \text { Rb } \\ 85.47 \end{gathered}$	$\begin{gathered} 38 \\ \mathrm{Sr} \\ 87.62 \end{gathered}$	$\begin{gathered} 39 \\ \mathbf{Y} \\ 88.91 \end{gathered}$	$\begin{gathered} 40 \\ \mathbf{Z r} \\ 91.22 \end{gathered}$	$\begin{gathered} \hline 41 \\ \mathbf{N b} \\ 92.91 \\ \hline \end{gathered}$	$\begin{gathered} \hline 42 \\ \text { Mo } \\ 95.94 \end{gathered}$	$\begin{gathered} \hline 43 \\ \text { Tc } \\ (98) \\ \hline \end{gathered}$	$\begin{gathered} 44 \\ \mathrm{Ru} \\ 101.1 \end{gathered}$	$\begin{gathered} \hline 45 \\ \text { Rh } \\ 102.9 \\ \hline \end{gathered}$	$\begin{gathered} \hline 46 \\ \text { Pd } \\ 106.4 \end{gathered}$	$\begin{gathered} \hline 47 \\ \mathbf{A g} \\ 107.9 \end{gathered}$	$\begin{gathered} 48 \\ \text { Cd } \\ 112.4 \end{gathered}$	$\begin{gathered} 49 \\ \text { In } \\ 114.8 \end{gathered}$	$\begin{gathered} 50 \\ \text { Sn } \\ 118.7 \end{gathered}$	$\begin{gathered} \hline 51 \\ \text { Sb } \\ 121.8 \end{gathered}$	$\begin{gathered} 52 \\ \mathbf{T e} \\ 127.6 \end{gathered}$	$\begin{gathered} 53 \\ \text { I } \\ 126.9 \end{gathered}$	$\begin{gathered} \hline 54 \\ \text { Xe } \\ 131.3 \\ \hline \end{gathered}$
$\begin{array}{\|c\|} \hline 55 \\ \text { Cs } \\ 132.9 \\ \hline \end{array}$	$\begin{gathered} \hline 56 \\ \text { Ba } \\ 137.3 \end{gathered}$	$\begin{array}{\|c\|} \hline 57 \\ \text { La } \\ 138.9 \end{array}$	$\begin{gathered} 72 \\ \mathbf{H f} \\ 178.5 \end{gathered}$	$\begin{gathered} 73 \\ \text { Ta } \\ 180.9 \end{gathered}$	$\begin{gathered} 74 \\ \text { W } \\ 183.9 \\ \hline \end{gathered}$	$\begin{gathered} 75 \\ \operatorname{Re} \\ 186.2 \end{gathered}$	$\begin{gathered} 76 \\ \text { Os } \\ 190.2 \end{gathered}$	$\begin{gathered} 77 \\ \text { Ir } \\ 192.2 \end{gathered}$	$\begin{gathered} \hline 78 \\ \text { Pt } \\ 195.1 \end{gathered}$	$\begin{gathered} 79 \\ \mathbf{A u} \\ 197.0 \end{gathered}$	$\begin{gathered} 80 \\ \mathrm{Hg} \\ 200.6 \end{gathered}$	$\begin{gathered} 81 \\ \mathrm{TI} \\ 204.4 \end{gathered}$	$\begin{gathered} \hline 82 \\ \text { Pb } \\ 207.2 \end{gathered}$	$\begin{gathered} 83 \\ \mathbf{B i} \\ 209.0 \end{gathered}$	$\begin{gathered} \hline 84 \\ \text { Po } \\ (209) \\ \hline \end{gathered}$	$\begin{gathered} 85 \\ \text { At } \\ (210) \\ \hline \end{gathered}$	$\begin{gathered} 86 \\ \mathbf{R n} \\ (222) \end{gathered}$
$\begin{gathered} 87 \\ \mathrm{Fr} \\ (223) \end{gathered}$	$\begin{gathered} 88 \\ \mathrm{Ra} \\ 226 \end{gathered}$	$\begin{array}{\|c\|} \hline 89 \\ \text { Ac } \\ 227.0 \end{array}$	$\begin{gathered} 104 \\ \text { Rf } \end{gathered}$	105 Db	106 Sg	107	108 Hs	109 Mt	$\begin{gathered} \hline 110 \\ \text { Uun } \end{gathered}$	111 Uuu	112 Uub	$\begin{aligned} & 113 \\ & \text { Uut } \end{aligned}$					

$\begin{gathered} 58 \\ \text { Ce } \\ 140.1 \end{gathered}$	$\begin{gathered} 59 \\ \text { Pr } \\ 140.9 \end{gathered}$	$\begin{gathered} 60 \\ \mathrm{Nd} \\ 144.2 \end{gathered}$	$\begin{gathered} 61 \\ \text { Pm } \\ (145) \end{gathered}$	$\begin{gathered} 62 \\ \text { Sm } \\ 150.4 \end{gathered}$	$\begin{array}{\|c\|} \hline 63 \\ \text { Eu } \\ 152.00 \end{array}$	$\begin{gathered} 64 \\ \text { Gd } \\ 157.3 \end{gathered}$	$\begin{gathered} 65 \\ \mathbf{T b} \\ 158.9 \end{gathered}$	$\begin{gathered} 66 \\ \text { Dy } \\ 162.5 \end{gathered}$	$\begin{gathered} \hline 67 \\ \text { Ho } \\ 164.9 \end{gathered}$	$\begin{gathered} 68 \\ \text { Er } \\ 167.3 \end{gathered}$	$\begin{gathered} 69 \\ \text { Tm } \\ 168.9 \end{gathered}$	$\begin{gathered} 70 \\ \text { Yb } \\ 173.0 \end{gathered}$	$\begin{gathered} 71 \\ \mathrm{Lu} \\ 175.0 \end{gathered}$
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Constants:

$$
\begin{aligned}
N_{\mathrm{A}} & =6.022 \times 10^{23} \mathrm{~mol}^{-1} \\
R & =0.082058 \mathrm{~atm} \mathrm{~L} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& =8.3145 \mathrm{kPa} \mathrm{~L} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& =8.3145 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
K_{\mathrm{w}} & =1.0 \times 10^{-14}(\text { at } 298 \mathrm{~K}) \\
F & =96485 \mathrm{C} \mathrm{~mol}^{-1}
\end{aligned}
$$

Equations:

$$
P V=n R T
$$

$$
k t_{1 / 2}=0.693
$$

