1. Print your name here:
2. Print your school name and city on your STUDENT RESPONSE sheet.
3. Select, and enter on the STUDENT RESPONSE sheet, one of the following CODE numbers:

Code 1 Ontario, now studying Grade 11 Chemistry in a nonsemestered school

Code 2 Ontario, now studying Grade 11 Chemistry in a semestered school

Code 3 Ontario, Grade 11 Chemistry already completed
Code 4 Any other Ontario student
Code 5 Manitoba or Saskatchewan high school student

Code 6 Québec high school student
Code 7 not used
Code 8 Alberta or British Columbia high school student
Code 9 New Brunswick, Newfoundland, Nova Scotia, or Prince Edward Island high school student
Code 10 Northwest Territories, Nunavut, or Yukon high school student

Code 11 High school student outside Canada

Code 12 Teacher

4. Print your name (last name, first name and optional middle initial) on the STUDENT RESPONSE sheet. Also fill in the corresponding circles below your printed name.
5. Carefully detach the last page. It is the datasheet.
6. Now answer the exam questions. Questions are not in order of difficulty. Indicate your choice on the STUDENT RESPONSE sheet by marking one letter beside the question number.

- Mark only one answer for each question.
- Questions are all of the same value.
- There is a penalty ($1 / 4$ off) for each incorrect answer, but no penalty if you do not answer.

7. Take care that you make firm, black pencil marks, just filling the oval.

Be careful that any erasures are complete-make the sheet white again.

Carefully detach the last page. It is the Data Sheet.

1 The "lead" of a pencil is mostly
A lead, Pb
B carbon, C
C silicon dioxide, SiO_{2}
D silicon, Si
E calcium carbonate, CaCO_{3}

2 How many protons, neutrons and electrons are there in a single atom of ${ }_{84}^{209} \mathrm{Po}$?

A 84 protons, 84 neutrons, 209 electrons
B 84 protons, 209 neutrons, 84 electrons
C 209 protons, 125 neutrons, 209 electrons
D 125 protons, 84 neutrons, 125 electrons
E 84 protons, 125 neutrons, 84 electrons

3 The mass of one atom of ${ }^{12} \mathrm{C}$ is exactly 12 atomic mass units. With the assumption that a proton and a neutron are equally massive, what is the total number of protons and neutrons in the body of a $75-\mathrm{kg}$ person? (You may neglect the mass of an electron is negligible compared to that of a proton or neutron.)

A 2.2×10^{27}
B 4.5×10^{28}
C 8.0×10^{21}
D 3.8×10^{23}
E 8.0×10^{24}

4 Mercury, $\mathrm{Hg}(1)$, has a density of $13.6 \mathrm{~g} \mathrm{~mL}^{-1}$ at $25^{\circ} \mathrm{C}$. What is the volume of 4.25 grams of $\mathrm{Hg}(I)$ at $25^{\circ} \mathrm{C}$?

A 0.0173 mL
B 3.20 mL
C $\quad 0.0562 \mathrm{~mL}$
D 0.313 mL
E 0.0735 mL

5 Which of the following molecules has the same number of electrons as a water molecule?

A HF
B BH_{3}
C CO
D $\mathrm{H}_{2} \mathrm{~S}$
E F_{2}
6 Which of the following elements is a liquid at room temperature and atmospheric pressure?
A chlorine
B phosphorus
C sulfur
D bromine
E iodine
7 What is the formula of the binary compound formed between Mg and P ?
A MgP
B $\mathrm{Mg}_{2} \mathrm{P}$
C MgP_{2}
D $\mathrm{Mg}_{2} \mathrm{P}_{3}$
E $\mathrm{Mg}_{3} \mathrm{P}_{2}$
8 Which of the following elements has no known stable compounds?

A neon, Ne
B xenon, Xe
C gold, Au
D platinum, Pt
E uranium, U
9 Which of the following elements is believed to be the most abundant in the earth's crust?

A hydrogen
B oxygen
C carbon
D nitrogen
E silicon

10 Which of the following has the highest concentration at equilibrium when one mole of HCl is dissolved in 1.0 L of water at $25^{\circ} \mathrm{C}$?

A Cl
B Cl^{+}
C Cl_{2}
D H_{2}
E HCl
11 What is the symbol for the atom or ion that results from the addition of two protons to a single atom of ${ }_{20}^{42} \mathrm{Ca}$?

A $\quad{ }_{22}^{42} \mathrm{Ca}^{2+}$
B $\quad{ }_{22}^{44} \mathrm{Ca}^{2+}$
C $\quad{ }_{22}^{42} \mathrm{Ti}$
D ${ }_{22}^{44} \mathrm{Ti}^{2+}$
E ${ }_{20}^{44} \mathrm{Ti}^{2+}$

12 In a mixture of N_{2} and O_{2} gases, all the N_{2} molecules and the O_{2} molecules have the same

A average speed
B average kinetic energy
C partial pressure
D average molecular mass
E average momentum
13 When ethanol, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$, is burned in excess oxygen, carbon dioxide and water are the only products. What is the coefficient of O_{2} when the chemical equation representing the combustion reaction is balanced using the smallest whole number coefficients?

A 1
B 2
C 3
D 7
E none of the above

14 In an experiment, 16 g of methane and 32 g of oxygen react to produce 11 g of carbon dioxide. A balanced chemical equation for the reaction is given below.

$$
\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)
$$

What is the percentage yield of carbon dioxide in this experiment?

A 10%
B 25%
C 50%
D 67\%
E 75\%
15 If an oxide of nitrogen contains 25.9% by mass of nitrogen, what is its empirical formula?

A NO
B $\mathrm{N}_{2} \mathrm{O}$
C NO_{2}
D $\mathrm{N}_{2} \mathrm{O}_{4}$
E $\quad \mathrm{N}_{2} \mathrm{O}_{5}$
16 What is the percentage by mass of sodium in a mixture containing 1.00 mol NaCl and 1.00 mol NaF ?

A 39.3\%
B 45.8\%
C 47.1%
D 50.0%
E 54.8\%

17 When the hydrides of the group 16 elements are arranged in order of increasing boiling point, the order is

A $\quad \mathrm{H}_{2} \mathrm{~S} \quad \mathrm{H}_{2} \mathrm{Se} \quad \mathrm{H}_{2} \mathrm{Te} \quad \mathrm{H}_{2} \mathrm{O}$
B $\quad \mathrm{H}_{2} \mathrm{O} \quad \mathrm{H}_{2} \mathrm{~S} \quad \mathrm{H}_{2} \mathrm{Se} \quad \mathrm{H}_{2} \mathrm{Te}$
C $\quad \mathrm{H}_{2} \mathrm{Te} \quad \mathrm{H}_{2} \mathrm{Se} \quad \mathrm{H}_{2} \mathrm{~S} \quad \mathrm{H}_{2} \mathrm{O}$
D $\mathrm{H}_{2} \mathrm{O} \quad \mathrm{H}_{2} \mathrm{Te} \quad \mathrm{H}_{2} \mathrm{Se}$
E $\quad \mathrm{H}_{2} \mathrm{~S} \quad \mathrm{H}_{2} \mathrm{O} \quad \mathrm{H}_{2} \mathrm{Se} \quad \mathrm{H}_{2} \mathrm{Te}$

18 How many unpaired electrons are there in a ground state Mn^{2+} ion?

A zero
B one
C two
D three
E more than three

19 What is the pressure (in mmHg) of the gas inside the apparatus below if $\mathrm{P}_{\mathrm{atm}}=750 \mathrm{mmHg}, \Delta \mathrm{h}_{1}=40 \mathrm{~mm}$ and $\Delta \mathrm{h}_{2}=30 \mathrm{~mm}$?

A 710 mmHg
B 790 mmHg
C 720 mmHg
D 780 mmHg
E 820 mmHg
mercury ($\widehat{\mathrm{Hg} \text {) }}$

20 What is the HCH bond angle in a formaldehyde $\left(\mathrm{H}_{2} \mathrm{CO}\right)$ molecule? Choose the closest value.

A 45°
B 90°
C 109°
D 120°
E 180°

21 Which of the following diatomic molecules has the strongest bond?

A N_{2}
B O_{2}
C F_{2}
D Cl_{2}
E Br_{2}

22 Which of the following molecules or ions is planar? (The central atom is underlined and all other atoms are bonded to it.)

A NH_{3}
B NH_{4}^{+}
C $\underline{S F}_{4}$
D $\mathrm{SO}_{3}{ }^{2-}$
E $\underline{S O}_{3}$
23 What is the formula of iron(II) sulfate?
A $\mathrm{Fe}_{2} \mathrm{~S}$
B FeS_{2}
C FeSO_{4}
D FeSO_{3}
E $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

24 The pH of lemon juice is about 2.3. What is $\left[\mathrm{H}^{+}\right]$in lemon juice?

A $0.36 \mathrm{~mol} \mathrm{~L}^{-1}$
B $0.83 \mathrm{~mol} \mathrm{~L}^{-1}$
C $0.10 \mathrm{~mol} \mathrm{~L}^{-1}$
D $5.0 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$
E $0.071 \mathrm{~mol} \mathrm{~L}^{-1}$

25 Solid aluminum dissolves in hydrochloric acid solution according to the following chemical equation.

$$
2 \mathrm{Al}(s)+6 \mathrm{HCl}(a q) \rightarrow 2 \mathrm{AlCl}_{3}(a q)+3 \mathrm{H}_{2}(g)
$$

A reaction mixture contains 0.500 mol HCl and 0.400 mol Al. Assuming the reaction goes to completion, how many moles of the excess reactant remain?

A 0.000 mol
B $\quad 0.100 \mathrm{~mol}$
C 0.167 mol
D 0.233 mol
E 0.400 mol

26 What volume does 11 kg of carbon dioxide occupy at $0^{\circ} \mathrm{C}$ and 101.3 kPa ?

A $246 \mathrm{~m}^{3}$
B $5.6 \times 10^{3} \mathrm{~L}$
C 11 L
D 0.25 L
E $0.22 \mathrm{~m}^{3}$
27 What is the ground state electron configuration of an isolated sulfur (S) atom?

A $1 s^{2} 2 s^{2} 2 p^{2} 3 s^{2} 3 p^{2} 4 s^{2} 3 d^{2} 4 p^{2}$
B $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1} 3 p^{3} 3 d^{5}$
C $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$
D $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
E $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 d^{6}$
28 What volume of $0.123 \mathrm{~mol} / \mathrm{L}$ aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$ is needed to neutralize 40.0 mL of $0.175 \mathrm{~mol} / \mathrm{L}$ aqueous NaOH ? A balanced chemical equation for the reaction is given below.
$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(I)$
A 28.5 mL
B $\quad 56.9 \mathrm{~mL}$
C $\quad 114 \mathrm{~mL}$
D 80.0 mL
E 40.0 mL

29 Three successive elements, in order of increasing atomic number, have these first ionization energies:

$$
1680 \quad 2080 \quad 494 \mathrm{~kJ} / \mathrm{mol}
$$

Which of following sets represents the three elements?
A N O F
B O F N
C Ne Na Mg
D F Ne Na
E Na Mg Al

30 Which of the following gases does not burn, does not support combustion, and has no effect on lime water, $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})$?

A hydrogen, H_{2}
B oxygen, O_{2}
C carbon monoxide, CO
D nitrogen, N_{2}
E carbon dioxide, CO_{2}
31 Which of the following elements would you expect to be the most similar in chemical properties to element 20 ?

A element 19
B element 21
C element 18
D element 4
E element 38
32 A weather balloon filled with helium gas, $\mathrm{He}(g)$, has a volume of $2.00 \times 10^{3} \mathrm{~m}^{3}$ at ground level where the atmospheric pressure is 1.000 atm and the temperature is $27^{\circ} \mathrm{C}$. After the balloon rises high above the earth to a point where the atmospheric pressure is 0.400 atm , its volume increases to $4.00 \times 10^{3} \mathrm{~m}^{3}$. What is the temperature of the atmosphere at this altitude?

A $-33^{\circ} \mathrm{C}$
B $-22^{\circ} \mathrm{C}$
C $-73{ }^{\circ} \mathrm{C}$
D $22^{\circ} \mathrm{C}$
E $240^{\circ} \mathrm{C}$

33 In which of these compounds is the oxidation state of O the highest (i.e., the most positive)?

A $\mathrm{F}_{2} \mathrm{O}$
B O_{2}
C O_{3}
D $\mathrm{H}_{2} \mathrm{O}_{2}$
E $\mathrm{H}_{2} \mathrm{SO}_{4}$

34 The molar volumes of $\mathrm{C}_{2} \mathrm{H}_{6}(g)$ and $\mathrm{H}_{2}(g)$, measured at 300 K and 10.0 atm , are 2.30 L and 2.51 L , respectively. Which of the following statements accounts for the observation that the molar volume of $\mathrm{C}_{2} \mathrm{H}_{6}(g)$ is smaller than that of $\mathrm{H}_{2}(\mathrm{~g})$?

A $\mathrm{C}_{2} \mathrm{H}_{6}$ molecules are larger than H_{2} molecules. CO_{2}
B The intermolecular attractions in $\mathrm{C}_{2} \mathrm{H}_{6}(g)$ are weaker than they are in $\mathrm{H}_{2}(g)$.

C The intermolecular attractions in $\mathrm{C}_{2} \mathrm{H}_{6}(g)$ are stronger than they are in $\mathrm{H}_{2}(\mathrm{~g})$.

D The average kinetic energy of H_{2} molecules is greater than that of $\mathrm{C}_{2} \mathrm{H}_{6}$ molecules.

E The average kinetic energy of H_{2} molecules is less than that of $\mathrm{C}_{2} \mathrm{H}_{6}$ molecules.

35 When aqueous sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, is treated with dilute hydrochloric acid, HCl , the products are sodium chloride, water and carbon dioxide gas. What is the net ionic equation for this reaction?

A $\mathrm{Na}_{2} \mathrm{CO}_{3}(a q)+2 \mathrm{HCl}(a q)$

$$
\rightarrow 2 \mathrm{NaCl}(a q)+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(I)
$$

B $\mathrm{CO}_{3}{ }^{2-}(a q)+2 \mathrm{HCl}(a q)$

$$
\rightarrow \mathrm{H}_{2} \mathrm{O}(I)+\mathrm{CO}_{2}(g)+2 \mathrm{Cl}^{-}(a q)
$$

C $\mathrm{CO}_{3}{ }^{2-}(a q)+2 \mathrm{H}^{+}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(I)+\mathrm{CO}_{2}(g)$
D $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+2 \mathrm{H}^{+}(a q)$

$$
\rightarrow 2 \mathrm{Na}^{+}(a q)+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l)
$$

E $\mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)$
36 Which of the following is the best Lewis structure (i.e., the best electron dot structure) for the $\mathrm{N}_{2} \mathrm{O}$ molecule?

A $\quad \ddot{N}-\ddot{N}-\quad \ddot{O}:$
B $\quad \because \mathrm{N}-\mathrm{N}-\ddot{O}:$
c $\ddot{\mathrm{N}}=\mathrm{N}-\ddot{\mathrm{O}}$:
D $\quad \underset{\sim}{\mathrm{N}}=\mathrm{N}=\ddot{O}$
E

37 A 2.4917-g sample of a hydrate of cobalt (II) fluoride, $\mathrm{CoF}_{2} \cdot x \mathrm{H}_{2} \mathrm{O}$, was heated to drive off all of the water of hydration. The remaining solid weighed 1.4290 g . What is the formula of the hydrate?

A $\mathrm{CoF}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
B $\mathrm{CoF}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
C $\mathrm{CoF}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$
D $\mathrm{CoF}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
E $\mathrm{CoF}_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}$

38 How many isomers are there for $\mathrm{C}_{4} \mathrm{H}_{8}$? Consider both structural (i.e. constitutional) isomers and stereoisomers.

A one
B two
C three
D four
E more than four

39 Which of the following combinations reagents react to form an insoluble precipitate?

A $\mathrm{HNO}_{3}(\mathrm{aq})$ and $\mathrm{Ca}(\mathrm{OH})_{2}(a q)$
B $\mathrm{Zn}(\mathrm{s})$ and $\mathrm{HCl}(a q)$
C $\mathrm{Zn}(\mathrm{s})$ and $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(a q)$
D $\mathrm{NaHCO}_{3}(\mathrm{aq})$ and $\mathrm{NaOH}(\mathrm{aq})$
E $\mathrm{Na}_{2} \mathrm{CO}_{3}(a q)$ and $\mathrm{CaCl}_{2}(a q)$
40 Which of the following will occur if a $0.10 \mathrm{~mol} \mathrm{~L}^{-1}$ solution of acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ is diluted to $0.010 \mathrm{~mol} \mathrm{~L}^{-1}$ at constant temperature?

A the pH will decrease
B the dissociation constant of $\mathrm{CH}_{3} \mathrm{COOH}$ will increase
C the dissociation constant of $\mathrm{CH}_{3} \mathrm{COOH}$ will decrease
D the hydrogen ion concentration will decrease to $0.010 \mathrm{~mol} \mathrm{~L}^{-1}$

E the percentage ionization of $\mathrm{CH}_{3} \mathrm{COOH}$ will increase

DATA SHEET

AVOGADRO EXAM 2009

DETACH CAREFULLY

$\begin{gathered} 1 \\ \text { 1A } \end{gathered}$																	$\begin{aligned} & 18 \\ & 8 \mathrm{~A} \end{aligned}$
$\begin{gathered} 1 \\ \mathbf{H} \\ 1.008 \end{gathered}$	$\begin{gathered} 2 \\ 2 A \end{gathered}$											$\begin{aligned} & 13 \\ & 3 A \end{aligned}$	$\begin{aligned} & 14 \\ & 4 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 15 \\ & 5 A \end{aligned}$	$\begin{aligned} & 16 \\ & 6 A \end{aligned}$	$\begin{aligned} & 17 \\ & 7 A \end{aligned}$	
$\begin{gathered} 3 \\ \text { Li } \\ 6.941 \end{gathered}$	$\begin{gathered} 4 \\ \mathrm{Be} \\ 9.012 \end{gathered}$											$\begin{gathered} 5 \\ \mathbf{B} \\ 10.81 \end{gathered}$	$\begin{gathered} 6 \\ \mathbf{C} \\ 12.01 \end{gathered}$	$\begin{gathered} 7 \\ \mathbf{N} \\ 14.01 \end{gathered}$	$\begin{gathered} 8 \\ 0 \\ 16.00 \end{gathered}$	$\begin{gathered} 9 \\ \mathbf{F} \\ 19.00 \end{gathered}$	$\begin{gathered} 10 \\ \mathrm{Ne} \\ 20.18 \end{gathered}$
$\begin{gathered} 11 \\ \mathrm{Na} \\ 22.99 \end{gathered}$	$\begin{gathered} 12 \\ \mathbf{M g} \\ 24.31 \end{gathered}$	$\begin{gathered} 3 \\ 3 B \end{gathered}$	$\begin{gathered} 4 \\ 4 B \end{gathered}$	$\begin{gathered} 5 \\ 5 B \end{gathered}$	$\begin{gathered} 6 \\ 6 B \end{gathered}$	$\begin{gathered} 7 \\ 7 B \end{gathered}$	$\begin{aligned} & 8 \\ & \leftarrow \end{aligned}$	$\begin{gathered} 9 \\ 8 B \end{gathered}$	$\xrightarrow[\rightarrow]{10}$	$\begin{aligned} & 11 \\ & \text { 1B } \end{aligned}$	$\begin{aligned} & 12 \\ & 2 B \end{aligned}$	$\begin{gathered} 13 \\ \text { AI } \\ 26.98 \end{gathered}$	$\begin{gathered} 14 \\ \mathrm{Si} \\ 28.09 \end{gathered}$	$\begin{gathered} 15 \\ \mathbf{P} \\ 30.97 \end{gathered}$	$\begin{gathered} 16 \\ \mathbf{S} \\ 32.07 \end{gathered}$	$\begin{gathered} 17 \\ \mathrm{Cl} \\ 35.45 \end{gathered}$	$\begin{gathered} 18 \\ \text { Ar } \\ 39.95 \end{gathered}$
$\begin{array}{\|c\|} \hline 19 \\ \mathbf{K} \\ 39.10 \\ \hline \end{array}$	$\begin{gathered} 20 \\ \text { Ca } \\ 40.08 \end{gathered}$	$\begin{array}{r} 21 \\ \mathrm{Sc} \\ 44.96 \\ \hline \end{array}$		$\begin{gathered} 23 \\ \text { V } \\ 50.94 \\ \hline \end{gathered}$	$\begin{gathered} 24 \\ \mathrm{Cr} \\ 52.00 \\ \hline \end{gathered}$	$\begin{gathered} 25 \\ \mathbf{M n} \\ 54.94 \end{gathered}$	$\begin{gathered} 26 \\ \mathrm{Fe} \\ 55.85 \\ \hline \end{gathered}$	$\begin{gathered} 27 \\ \text { Co } \\ 58.93 \\ \hline \end{gathered}$	$\begin{gathered} 28 \\ \mathrm{Ni} \\ 58.69 \\ \hline \end{gathered}$	$\begin{gathered} 29 \\ \mathrm{Cu} \\ 63.55 \\ \hline \end{gathered}$	$\begin{gathered} \hline 30 \\ \mathbf{Z n} \\ 65.38 \\ \hline \end{gathered}$		$\begin{gathered} 32 \\ \mathrm{Ge} \\ 72.59 \\ \hline \end{gathered}$	$\begin{gathered} 33 \\ \text { As } \\ 74.92 \end{gathered}$	$\begin{gathered} 34 \\ \mathrm{Se} \\ 78.96 \end{gathered}$	$\begin{gathered} 35 \\ \mathrm{Br} \\ 79.90 \\ \hline \end{gathered}$	$\begin{gathered} 36 \\ \mathbf{K r} \\ 83.80 \\ \hline \end{gathered}$
$\begin{gathered} 37 \\ \mathbf{R b} \\ 85.47 \end{gathered}$	$\begin{gathered} 38 \\ \mathrm{Sr} \\ 87.62 \end{gathered}$	$\begin{gathered} 39 \\ \mathbf{Y} \\ 88.91 \end{gathered}$	$\begin{gathered} 40 \\ \text { Zr } \\ 91.22 \end{gathered}$	$\begin{gathered} \hline 41 \\ \mathbf{N b} \\ 92.91 \end{gathered}$	$\begin{gathered} \hline 42 \\ \text { Mo } \\ 95.94 \\ \hline \end{gathered}$	$\begin{gathered} \hline 43 \\ \mathrm{Tc} \\ (98) \\ \hline \end{gathered}$	$\begin{gathered} \hline 44 \\ \text { Ru } \\ 101.1 \\ \hline \end{gathered}$	$\begin{gathered} 45 \\ \mathbf{R h} \\ 102.9 \end{gathered}$	$\begin{gathered} \hline 46 \\ \text { Pd } \\ 106.4 \end{gathered}$	$\begin{gathered} 47 \\ \mathrm{Ag} \\ 107.9 \end{gathered}$	$\begin{array}{\|c\|} \hline 48 \\ \text { Cd } \\ 112.4 \\ \hline \end{array}$	$\begin{gathered} 49 \\ \text { In } \\ 114.8 \end{gathered}$	$\begin{gathered} 50 \\ \text { Sn } \\ 118.7 \end{gathered}$	$\begin{gathered} \hline 51 \\ \text { Sb } \\ 121.8 \end{gathered}$	$\begin{gathered} 52 \\ \mathrm{Te} \\ 127.6 \\ \hline \end{gathered}$	$\begin{gathered} 53 \\ \text { I } \\ 126.9 \end{gathered}$	$\begin{gathered} 54 \\ \mathbf{X e} \\ 131.3 \\ \hline \end{gathered}$
$\begin{gathered} 55 \\ \text { Cs } \\ 132.9 \end{gathered}$	$\begin{gathered} 56 \\ \text { Ba } \\ 137.3 \end{gathered}$	$\begin{array}{\|c\|} \hline 57 \\ \text { La } \\ 138.9 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 72 \\ \mathbf{H f} \\ 178.5 \end{array}$	$\begin{gathered} 73 \\ \text { Ta } \\ 180.9 \end{gathered}$	$\begin{gathered} 74 \\ \mathbf{W} \\ 183.9 \end{gathered}$	$\begin{gathered} 75 \\ \operatorname{Re} \\ 186.2 \end{gathered}$	$\begin{gathered} 76 \\ \text { Os } \\ 190.2 \end{gathered}$	$\begin{gathered} \hline 77 \\ \text { Ir } \\ 192.2 \end{gathered}$	$\begin{gathered} 78 \\ \text { Pt } \\ 195.1 \end{gathered}$	$\begin{gathered} 79 \\ \text { Au } \\ 197.0 \end{gathered}$	$\begin{array}{\|c\|} \hline 80 \\ \mathrm{Hg} \\ 200.6 \\ \hline \end{array}$	$\begin{gathered} 81 \\ \mathrm{TI} \\ 204.4 \end{gathered}$	$\begin{gathered} 82 \\ \mathrm{~Pb} \\ 207.2 \end{gathered}$	$\begin{gathered} 83 \\ \mathrm{Bi} \\ 209.0 \\ \hline \end{gathered}$	$\begin{gathered} 84 \\ \text { Po } \\ (209) \\ \hline \end{gathered}$	$\begin{gathered} 85 \\ \text { At } \\ (210) \\ \hline \end{gathered}$	$\begin{gathered} 86 \\ \text { Rn } \\ (222) \end{gathered}$
$\begin{gathered} 87 \\ \mathrm{Fr} \\ (223) \end{gathered}$	$\begin{gathered} 88 \\ \mathrm{Ra} \\ 226 \end{gathered}$	$\begin{array}{\|c\|} \hline 89 \\ \text { Ac } \\ 227.0 \end{array}$	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Uun	111 Uuu	112 Uub	$\begin{aligned} & 113 \\ & \text { Uut } \end{aligned}$					

$\begin{gathered} 58 \\ \text { Ce } \\ 140.1 \end{gathered}$	$\begin{gathered} 59 \\ \text { Pr } \\ 140.9 \end{gathered}$	$\begin{gathered} \hline 60 \\ \mathrm{Nd} \\ 144.2 \end{gathered}$	$\begin{gathered} 61 \\ \text { Pm } \\ (145) \end{gathered}$	$\begin{gathered} 62 \\ \text { Sm } \\ 150.4 \end{gathered}$	$\begin{array}{\|c\|} \hline 63 \\ \text { Eu } \\ 152.00 \end{array}$	$\begin{gathered} 64 \\ \text { Gd } \\ 157.3 \end{gathered}$	$\begin{gathered} 65 \\ \mathbf{T b} \\ 158.9 \end{gathered}$	$\begin{gathered} 66 \\ \text { Dy } \\ 162.5 \end{gathered}$	$\begin{gathered} \hline 67 \\ \text { Ho } \\ 164.9 \end{gathered}$	$\begin{gathered} 68 \\ \text { Er } \\ 167.3 \end{gathered}$	$\begin{gathered} 69 \\ \text { Tm } \\ 168.9 \end{gathered}$	$\begin{gathered} 70 \\ \text { Yb } \\ 173.0 \end{gathered}$	$\begin{gathered} 71 \\ \mathrm{Lu} \\ 175.0 \end{gathered}$
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Constants:

$$
\begin{aligned}
N_{\mathrm{A}} & =6.022 \times 10^{23} \mathrm{~mol}^{-1} \\
R & =0.082058 \mathrm{~atm} \mathrm{~L} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& =8.3145 \mathrm{kPa} \mathrm{~L} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& =8.3145 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
K_{\mathrm{w}} & =1.0 \times 10^{-14}(\text { at } 298 \mathrm{~K}) \\
F & =96485 \mathrm{C} \mathrm{~mol}^{-1}
\end{aligned}
$$

Equations:

$$
P V=n R T
$$

$$
k t_{1 / 2}=0.693
$$

