

AVOGADRO EXAM 2009 UNIVERSITY OF WATERLOO DEPARTMENT OF CHEMISTRY

21 MAY 2009

TIME: 75 MINUTES

This exam is being written by several thousand students. Please be sure that you follow the instructions below. We'll send you a report on your performance. Top performers are eligible for a prize. The names of the top 200 students will be published in the September issue of Chem 13 News.

- 1. Print your name here:
- Print your <u>school name</u> and <u>city</u> on your STUDENT RESPONSE sheet.
- 3. Select, and enter on the STUDENT RESPONSE sheet, one of the following CODE numbers:
- Code 1 **Ontario**, now studying Grade 11 Chemistry in a nonsemestered school
- Code 2 **Ontario**, now studying Grade 11 Chemistry in a semestered school
- Code 3 **Ontario**, Grade 11 Chemistry already completed
- Code 4 Any other Ontario student
- Code 5 Manitoba or Saskatchewan high school student
- Code 6 Québec high school student
- Code 7 not used
- Code 8 Alberta or British Columbia high school student
- Code 9 New Brunswick, Newfoundland, Nova Scotia, or Prince Edward Island high school student
- Code 10 Northwest Territories, Nunavut, or Yukon high school student
- Code 11 High school student outside Canada
- Code 12 Teacher

- Print your name (last name, first name and optional middle initial) on the STUDENT RESPONSE sheet. Also fill in the corresponding circles below your printed name.
- 5. Carefully detach the last page. It is the datasheet.
- Now answer the exam questions. Questions are <u>not</u> in order of difficulty. Indicate your choice on the STUDENT RESPONSE sheet by marking one letter beside the question number.
 - Mark only one answer for each question.
 - Questions are all of the same value.
 - There is a penalty (1/4 off) for each incorrect answer, but no penalty if you do not answer.
- 7. Take care that you make firm, **black** pencil marks, just filling the oval.

Be careful that any erasures are complete—make the sheet white again.

Carefully detach the last page. It is the Data Sheet.

- 1 The "lead" of a pencil is mostly
 - A lead, Pb
 - B carbon, C
 - **C** silicon dioxide, SiO₂
 - D silicon, Si
 - E calcium carbonate, CaCO₃
- 2 How many protons, neutrons and electrons are there in a single atom of $\frac{209}{84}$ Po ?
 - A 84 protons, 84 neutrons, 209 electrons
 - **B** 84 protons, 209 neutrons, 84 electrons
 - C 209 protons, 125 neutrons, 209 electrons
 - D 125 protons, 84 neutrons, 125 electrons
 - E 84 protons, 125 neutrons, 84 electrons
- **3** The mass of one atom of ¹²C is exactly 12 atomic mass units. With the assumption that a proton and a neutron are equally massive, what is the total number of protons and neutrons in the body of a 75-kg person? (You may neglect the mass of an electron is negligible compared to that of a proton or neutron.)
 - **A** 2.2×10^{27}
 - **B** 4.5×10^{28}
 - **C** 8.0 × 10^{21}
 - **D** 3.8×10^{23}
 - **E** 8.0 × 10^{24}
- 4 Mercury, Hg(*I*), has a density of 13.6 g mL⁻¹ at 25 °C. What is the volume of 4.25 grams of Hg(*I*) at 25 °C?
 - A 0.0173 mL
 - **B** 3.20 mL
 - **C** 0.0562 mL
 - **D** 0.313 mL
 - E 0.0735 mL

- 5 Which of the following molecules has the same number of electrons as a water molecule?
 - A HF
 - B BH₃
 - **C** CO
 - \mathbf{D} H₂S
 - **E** F₂
- **6** Which of the following elements is a liquid at room temperature and atmospheric pressure?
 - A chlorine
 - B phosphorus
 - C sulfur
 - D bromine
 - E iodine
- 7 What is the formula of the binary compound formed between Mg and P?
 - A MgP
 - B Mg₂P
 - $C MgP_2$
 - $\boldsymbol{D} \quad Mg_2P_3$
 - E Mg₃P₂
- 8 Which of the following elements has no known stable compounds?
 - A neon, Ne
 - B xenon, Xe
 - C gold, Au
 - D platinum, Pt
 - E uranium, U
- **9** Which of the following elements is believed to be the most abundant in the earth's crust?
 - A hydrogen
 - B oxygen
 - C carbon
 - D nitrogen
 - E silicon

- **10** Which of the following has the highest concentration at equilibrium when one mole of HCl is dissolved in 1.0 L of water at 25 °C?
 - A Cl
 - **B** Cl^+
 - **C** Cl₂
 - \mathbf{D} H_2
 - E HCI
- 11 What is the symbol for the atom or ion that results from the addition of two protons to a single atom of $^{42}_{20}$ Ca?
 - A ⁴²₂₂Ca²⁺
 - **B** ⁴⁴₂₂Ca²⁺
 - **C** ⁴²₂₂Ti
 - **D** $^{44}_{22}$ Ti²⁺
 - $E^{44}_{20}Ti^{2+}$
- 12 In a mixture of N_2 and O_2 gases, all the N_2 molecules and the O_2 molecules have the same
 - A average speed
 - B average kinetic energy
 - **C** partial pressure
 - D average molecular mass
 - E average momentum
- **13** When ethanol, CH₃CH₂OH, is burned in excess oxygen, carbon dioxide and water are the only products. What is the coefficient of O₂ when the chemical equation representing the combustion reaction is balanced **using the smallest whole number coefficients**?
 - **A** 1
 - **B** 2
 - •
 - **C** 3
 - **D** 7
 - E none of the above

14 In an experiment, 16 g of methane and 32 g of oxygen react to produce 11 g of carbon dioxide. A balanced chemical equation for the reaction is given below.

$$\operatorname{CH}_4(g)$$
 + 2 $\operatorname{O}_2(g) \rightarrow \operatorname{CO}_2(g)$ + 2 $\operatorname{H}_2\operatorname{O}(g)$

What is the percentage yield of carbon dioxide in this experiment?

- **A** 10%
- **B** 25%
- **C** 50%
- **D** 67%
- **E** 75%
- **15** If an oxide of nitrogen contains 25.9% by mass of nitrogen, what is its empirical formula?
 - A NO
 - **B** N₂O
 - **C** NO₂
 - $\mathbf{D} \quad N_2O_4$
 - $E N_2O_5$
- **16** What is the percentage by mass of sodium in a mixture containing 1.00 mol NaCl and 1.00 mol NaF?
 - **A** 39.3%
 - **B** 45.8%
 - **C** 47.1%
 - **D** 50.0%
 - **E** 54.8%
- **17** When the hydrides of the group 16 elements are arranged in order of increasing boiling point, the order is
 - Α H_2S H₂Se H₂Te H_2O В H_2O H_2S H₂Se H₂Te H₂Te H₂Se H_2S С H₂O H₂Te H₂Se D H_2O H_2S Ε H_2S H₂O H₂Se H₂Te

- 18 How many unpaired electrons are there in a ground state Mn²⁺ ion?
 - A zero
 - B one
 - **C** two
 - D three
 - E more than three
- **19** What is the pressure (in mmHg) of the gas inside the apparatus below if P_{atm} = 750 mmHg, Δh_1 = 40 mm and Δh_2 = 30 mm?
 - A 710 mmHg

- **C** 720 mmHg
- **D** 780 mmHg

E 820 mmHg

- **20** What is the HCH bond angle in a formaldehyde (H₂CO) molecule? Choose the closest value.
 - **A** 45°
 - **B** 90°
 - **C** 109°
 - **D** 120°
 - **E** 180°
- **21** Which of the following diatomic molecules has the strongest bond?
 - $\boldsymbol{A} \quad N_2$
 - **B** O₂
 - **C** F₂
 - \mathbf{D} Cl_2
 - E Br₂

- 22 Which of the following molecules or ions is planar? (The central atom is underlined and all other atoms are bonded to it.)
 - **Α** <u>N</u>H₃
 - **B** $\underline{N}H_4^+$
 - **C** <u>S</u>F₄
 - $\mathbf{D} = \underline{S} O_3^{2}$
 - **Ε** <u>S</u>O₃
- 23 What is the formula of iron(II) sulfate?
 - A Fe₂S
 - B FeS₂
 - C FeSO₄
 - D FeSO₃
 - **E** Fe₂(SO₄)₃
- **24** The pH of lemon juice is about 2.3. What is [H⁺] in lemon juice?
 - **A** 0.36 mol L⁻¹
 - **B** 0.83 mol L⁻¹
 - **C** 0.10 mol L⁻¹
 - **D** 5.0×10⁻³ mol L⁻¹
 - E 0.071 mol L⁻¹
- **25** Solid aluminum dissolves in hydrochloric acid solution according to the following chemical equation.

 $2 \operatorname{Al}(s) + 6 \operatorname{HCl}(aq) \rightarrow 2 \operatorname{AlCl}_3(aq) + 3 \operatorname{H}_2(g)$

A reaction mixture contains 0.500 mol HCl and 0.400 mol Al. Assuming the reaction goes to completion, how many moles of the excess reactant remain?

- A 0.000 mol
- **B** 0.100 mol
- **C** 0.167 mol
- D 0.233 mol
- E 0.400 mol

- 26 What volume does 11 kg of carbon dioxide occupy at 0 °C and 101.3 kPa?
 - **A** 246 m³
 - **B** 5.6 × 10^3 L
 - **C** 11 L
 - **D** 0.25 L
 - **E** 0.22 m³
- 27 What is the ground state electron configuration of an isolated sulfur (S) atom?
 - **A** $1s^2 2s^2 2p^2 3s^2 3p^2 4s^2 3d^2 4p^2$
 - **B** $1s^2 2s^2 2p^6 3s^1 3p^3 3d^5$
 - **C** $1s^2 2s^2 2p^6 3s^2 3p^4$
 - **D** $1s^2 2s^2 2p^6 3s^2 3p^6$
 - **E** $1s^2 2s^2 2p^6 3s^2 3d^6$
- **28** What volume of 0.123 mol/L aqueous H_2SO_4 is needed to neutralize 40.0 mL of 0.175 mol/L aqueous NaOH? A balanced chemical equation for the reaction is given below.

 $H_2SO_4(aq) + 2 NaOH(aq) \rightarrow Na_2SO_4(aq) + 2 H_2O(I)$

- A 28.5 mL
- **B** 56.9 mL
- **C** 114 mL
- **D** 80.0 mL
- **E** 40.0 mL
- **29** Three successive elements, in order of increasing atomic number, have these first ionization energies:

1680 2080 494 kJ/mol Which of following sets represents the three elements?

- **A** N O F
- BOFN
- C Ne Na Mg
- D F Ne Na

E Na Mg Al

- **30** Which of the following gases does not burn, does not support combustion, and has no effect on lime water, Ca(OH)₂(*aq*)?
 - A hydrogen, H₂
 - B oxygen, O₂
 - C carbon monoxide, CO
 - D nitrogen, N₂
 - E carbon dioxide, CO₂
- **31** Which of the following elements would you expect to be the most similar in chemical properties to element 20?
 - A element 19
 - B element 21
 - C element 18
 - D element 4
 - E element 38
- **32** A weather balloon filled with helium gas, He(g), has a volume of 2.00×10^3 m³ at ground level where the atmospheric pressure is 1.000 atm and the temperature is 27 °C. After the balloon rises high above the earth to a point where the atmospheric pressure is 0.400 atm, its volume increases to 4.00×10^3 m³. What is the temperature of the atmosphere at this altitude?
 - A −33 °C
 - **B** −22 °C
 - **C** –73 °C
 - **D** 22 °C
 - **E** 240 °C
- **33** In which of these compounds is the oxidation state of O the highest (i.e., the most positive)?
 - **A** F₂O
 - ${\bm B} \quad O_2$
 - **C** O₃
 - **D** H₂O₂
 - E H₂SO₄

- **34** The molar volumes of $C_2H_6(g)$ and $H_2(g)$, measured at 300 K and 10.0 atm, are 2.30 L and 2.51 L, respectively. Which of the following statements accounts for the observation that the molar volume of $C_2H_6(g)$ is smaller than that of $H_2(g)$?
 - **A** C_2H_6 molecules are larger than H_2 molecules.CO₂
 - **B** The intermolecular attractions in $C_2H_6(g)$ are weaker than they are in $H_2(g)$.
 - **C** The intermolecular attractions in $C_2H_6(g)$ are stronger than they are in $H_2(g)$.
 - **D** The average kinetic energy of H_2 molecules is greater than that of C_2H_6 molecules.
 - **E** The average kinetic energy of H_2 molecules is less than that of C_2H_6 molecules.
- **35** When aqueous sodium carbonate, Na₂CO₃, is treated with dilute hydrochloric acid, HCl, the products are sodium chloride, water and carbon dioxide gas. What is the <u>net ionic equation</u> for this reaction?
 - A Na₂CO₃(aq) + 2 HCl(aq) \rightarrow 2 NaCl(aq) + CO₂(g) + H₂O(l)
 - $\begin{array}{rl} \mathbf{B} & \mathrm{CO_3}^{2^-}(aq) \ + \ 2 \ \mathrm{HCl}(aq) \\ & \rightarrow \ \mathrm{H_2O}(\mathit{l}) \ + \ \mathrm{CO_2}(g) \ + \ 2 \ \mathrm{Cl}^-(aq) \end{array}$
 - $\mathbf{C} \quad \mathrm{CO_3^{2^-}}(aq) \ + \ 2 \ \mathrm{H^+}(aq) \ \rightarrow \ \mathrm{H_2O}(\mathit{I}) \ + \ \mathrm{CO_2}(g)$
 - **D** Na₂CO₃(s) + 2 H⁺(aq) \rightarrow 2 Na⁺(aq) + CO₂(g) + H₂O(*I*)
 - $\mathbf{E} \quad \mathrm{H}^{\scriptscriptstyle +}(aq) \ + \ \mathrm{OH}^{\scriptscriptstyle -}(aq) \ \rightarrow \ \mathrm{H}_2\mathrm{O}(\mathit{l})$
- **36** Which of the following is the best Lewis structure (i.e., the best electron dot structure) for the N₂O molecule?
 - $A : N \longrightarrow N \longrightarrow O:$ $B : N \longrightarrow N \longrightarrow O:$ $C : N \longrightarrow N \longrightarrow O:$ $D : N \longrightarrow N \longrightarrow O:$ $E : N \longrightarrow N:$

- **37** A 2.4917-g sample of a hydrate of cobalt (II) fluoride, $CoF_2 \cdot xH_2O$, was heated to drive off all of the water of hydration. The remaining solid weighed 1.4290 g. What is the formula of the hydrate?
 - **A** $CoF_2 \cdot H_2O$
 - $\textbf{B} \quad \text{CoF}_2 \cdot 2\text{H}_2\text{O}$
 - **C** $CoF_2 \cdot 3H_2O$
 - $D \quad CoF_2 \cdot 4H_2O$
 - **E** $CoF_2 \cdot 5H_2O$
- **38** How many isomers are there for C₄H₈? Consider both structural (i.e. constitutional) isomers and stereoisomers.
 - A one
 - B two
 - C three
 - D four
 - E more than four
- **39** Which of the following combinations reagents react to form an insoluble precipitate?
 - **A** HNO₃(aq) and Ca(OH)₂(aq)
 - **B** Zn(s) and HCl(aq)
 - **C** Zn(s) and $Cu(NO_3)_2(aq)$
 - D NaHCO₃(aq) and NaOH(aq)
 - **E** Na₂CO₃(aq) and CaCl₂(aq)
- **40** Which of the following will occur if a 0.10 mol L^{-1} solution of acetic acid (CH₃COOH) is diluted to 0.010 mol L^{-1} at constant temperature?
 - A the pH will decrease
 - B the dissociation constant of CH₃COOH will increase
 - **C** the dissociation constant of CH₃COOH will decrease
 - **D** the hydrogen ion concentration will decrease to 0.010 mol L^{-1}
 - E the percentage ionization of CH₃COOH will increase

DATA SHEET AVOGADRO EXAM 2009

DETACH CAREFULLY

1																	18
1A																	8A
1																	2
н	2											13	14	15	16	17	He
1.008	2A											3A	4A	5A	6A	7A	4.003
3	4											5	6	7	8	9	10
Li	Be											В	С	Ν	0	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	AI	Si	Р	S	CI	Ar
22.99	24.31	3B	4B	5B	6B	7B	←	8B	\rightarrow	1B	2B	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	v	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	La	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112	113					
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut					
(223)	226	227.0			_												

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
140.1	140.9	144.2	(145)	150.4	152.00	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Conversion factors:

0°C = 273.15 K

Constants:

 $N_{\rm A}$ = 6.022 × 10²³ mol⁻¹

 $R = 0.082058 \text{ atm L } \text{K}^{-1} \text{ mol}^{-1}$

- = 8.3145 kPa L K⁻¹ mol⁻¹
- = $8.3145 \text{ J K}^{-1} \text{ mol}^{-1}$
- $K_{\rm w} = 1.0 \times 10^{-14}$ (at 298 K)
- $F = 96485 \text{ C mol}^{-1}$

Equations: P

PV = nRT $k t_{1/2} = 0.6$

 $k t_{1/2} = 0.693$ pH = pK_a + log ([base]/[acid])

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

1 atm = 101.325 kPa = 760 torr = 760 mm Hg