This exam is being written by several thousand students. Please be sure that you follow the instructions below. We'll send you a report on your performance. Top performers are eligible for a prize. The names of the top 200 students will be published in the September issue of Chem 13 News.

1. Print your name here:
2. Print your school name and city on your STUDENT RESPONSE sheet.
3. Select, and enter on the STUDENT RESPONSE sheet, one of the following CODE numbers:

Code 1 Ontario, now studying Grade 11 Chemistry in a nonsemestered school

Code 2 Ontario, now studying Grade 11 Chemistry in a semestered school

Code 3 Ontario, Grade 11 Chemistry already completed

Code 4 Any other Ontario student
Code 5 Manitoba or Saskatchewan high school student

Code 6 Québec high school student
Code 7 not used
Code 8 Alberta or British Columbia high school student

Code 9 New Brunswick, Newfoundland, Nova Scotia, or Prince Edward Island high school student
Code 10 Northwest Territories, Nunavut, or Yukon high school student

Code 11 High school student outside Canada
Code 12 Teacher
4. Print your name (last name, first name and optional middle initial) on the STUDENT RESPONSE sheet. Also fill in the corresponding circles below your printed name.
5. Carefully detach the last page. It is the datasheet.
6. Now answer the exam questions. Questions are not in order of difficulty. Indicate your choice on the STUDENT RESPONSE sheet by marking one letter beside the question number.

- Mark only one answer for each question.
- Questions are all of the same value.
- There is a penalty (1/4 off) for each incorrect answer, but no penalty if you do not answer.

7. Take care that you make firm, black pencil marks, just filling the oval.

Be careful that any erasures are complete-make the sheet white again.

Carefully detach the last page. It is the Data Sheet.

1 Compared to an electron, a proton has
A the same charge and about the same mass
B the same charge but a much greater mass
C the opposite charge and much less mass
D the opposite charge and a much greater mass
E no charge and a much smaller mass

2 Argon has three isotopes with relative atomic masses of $36.0,38.0$ and 40.0. Given that the relative atomic mass of naturally occurring argon is 39.95 , which of the following statements must be correct?

A ${ }^{40} \mathrm{Ar}$ is less abundant than ${ }^{38} \mathrm{Ar}$.
B ${ }^{40} \mathrm{Ar}$ is more abundant than either ${ }^{36} \mathrm{Ar}$ or ${ }^{38} \mathrm{Ar}$.
C ${ }^{38} \mathrm{Ar}$ is more abundant than ${ }^{36} \mathrm{Ar}$.
D ${ }^{36} \mathrm{Ar}$ is more abundant than ${ }^{40} \mathrm{Ar}$.
E Another isotope of lesser mass must exist.

3 An incomplete equation describing the nuclear decay of boron-9 is given below. How many neutrons or protons are also produced?

$$
{ }_{5}^{9} \mathrm{~B} \rightarrow{ }_{4}^{8} \mathrm{Be}+{ }^{?}
$$

A one neutron
B one proton
C one neutron and one proton
D two protons
E two neutrons

4 When 50.0 mL of water and 50.0 mL of ethanol are mixed, the total volume is found to be 96.5 mL . What is the density of this water-ethanol solution?

A $\quad 1.78 \mathrm{~g} / \mathrm{mL}$
B $\quad 0.895 \mathrm{~g} / \mathrm{mL}$

Densities, in g/mL:
Water, 1.00
Ethanol , 0.789

C $0.211 \mathrm{~g} / \mathrm{mL}$
D 3.45 mL
E $0.927 \mathrm{~g} / \mathrm{mL}$

5 Which of the following has a linear geometry?
A O_{3}
B $\mathrm{NO}_{2}{ }^{-}$
C $\mathrm{C}_{2} \mathrm{H}_{2}$
D $\mathrm{H}_{2} \mathrm{~S}$
E $\mathrm{F}_{2} \mathrm{O}$
6 Which of the following elements has properties that most closely resemble those of calcium, Ca ?
A sodium, Na
B potassium, K
C magnesium, Mg
D bromine, Br
E krypton, Kr
7 What is the formula of lead(II) nitrate?
A $\mathrm{Pb}_{3} \mathrm{~N}_{2}$
B $\mathrm{Pb}_{2} \mathrm{~N}_{3}$
C $\mathrm{Pb}_{2} \mathrm{NO}_{3}$
D $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
E PbNO_{3}
8 Which of the following reacts with moisture in the air to form acid rain?

A sulfur trioxide, SO_{3}
B nitrogen, N_{2}
C carbon dioxide, CO_{2}
D methane, CH_{4}
E ozone, O_{3}
9 Which of the following is an example of chemical change?

A boiling water
B dissolving alcohol in water
C heating copper metal
D compressing a gas
E rusting of iron

10 What is $\left[\mathrm{Na}^{+}\right]$in a solution obtained by mixing 50.0 mL of $0.100 \mathrm{~mol} / \mathrm{L} \mathrm{NaNO}_{3}(\mathrm{aq})$ and 25.0 mL of $0.100 \mathrm{~mol} / \mathrm{L} \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$?

A $0.133 \mathrm{~mol} \mathrm{~L}^{-1}$
B $0.200 \mathrm{~mol} \mathrm{~L}^{-1}$
C $\quad 0.300 \mathrm{~mol} \mathrm{~L}^{-1}$
D $0.167 \mathrm{~mol} \mathrm{~L}^{-1}$
E $0.125 \mathrm{~mol} \mathrm{~L}^{-1}$
11 What is the mass of 0.67 mol Na ?
A 29 mg
B 15 g
C 10 g
D 23 g
E 0.67 g
12 One litre of oxygen gas is compared to one litre of carbon dioxide gas, both at $25^{\circ} \mathrm{C}$ and 100 kPa . Which statement is correct?

A The density of the oxygen gas is greater than that of the carbon dioxide gas.

B On average, the kinetic energy of a carbon dioxide molecule is greater than that of an oxygen molecule.

C On average, a carbon dioxide molecule moves faster than does an oxygen molecule.

D On average, the kinetic energy of carbon dioxide molecule is less than that of an oxygen molecule.

E The two samples contain the same number of molecules.

13 What is the net ionic equation for the reaction of $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$ and $\mathrm{CaCl}_{2}(\mathrm{aq})$?

A $\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{s})$
B $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{CaCl}_{2}(\mathrm{aq})$

$$
\rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{CaCO}_{3}(\mathrm{~s})
$$

C $\mathrm{Ca}^{+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{-}(\mathrm{aq}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})$
D $\mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})$
E $\quad 2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{Na}_{2} \mathrm{O}(\mathrm{s})$

14 In an experiment, $16.0 \mathrm{~g} \mathrm{SO}_{2}$ is treated with $6.0 \mathrm{~g} \mathrm{O}_{2}$ and $18.0 \mathrm{~g} \mathrm{SO}_{3}$ is obtained. A balanced chemical equation for the reaction is given below.

$$
2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{SO}_{3}(g)
$$

What is the percentage yield of SO_{3} in this experiment?
A 25%
B 38%
C 67\%
D 60\%
E 75%
Using the molar masses given, the "correct" answer is E . However, the molar mass given for SO_{3} is wrong. Question 14 was deleted.

15 What amount of $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~N}_{4}$ contains the same number of C atoms as $2 \mathrm{~mol} \mathrm{CO}_{2}$?

A 2 mol
B 8 mol
C 4 mol
D 0.25 mol
E 0.5 mol

16 In which region of the periodic table would you find the elements of highest electronegativity?

A top, left
B top, right
C near the middle
D bottom, left
E bottom, right

17 Which of the following has an odd-number of electrons?

A $\mathrm{NO}_{3}{ }^{-}$
B NO_{2}
C $\mathrm{N}_{2} \mathrm{O}$
D NO^{+}
E $\mathrm{NO}_{2}{ }^{-}$

18 What is the correct electron arrangement for a scandium (Sc) atom? (The first number in each list refers to the number of electrons in the first shell; the second number refers to the number of electrons in the second shell; and so on.)

A $2,8,9,2$
B 2, 8, 2, 8, 1
C $2,8,8,3$
D 10, 10, 1
E 4, 4, 4, 4, 1

19 A 10.0 L cylinder containing neon gas with a measured pressure of 550 kPa at 298 K is connected through a valve to a 2.50 L cylinder containing 275 kPa of helium gas at 298 K . The valve is opened and the gases mix with no change in temperature. What is the final total pressure in the system?

A 277 kPa
B 326 kPa
C 413 kPa
D 495 kPa
E 599 kPa

20 What is the $\mathrm{H}-\mathrm{N}-\mathrm{H}$ angle in the NH_{3} molecule? Choose the closest value.

A 45°
B 90°
C 109°
D 120°
E 180°

21 Which of the following molecules has the strongest carbon-carbon bond?

A ethanol, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
B ethanoic acid, $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
C ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$
D ethene, $\mathrm{C}_{2} \mathrm{H}_{4}$
E ethyne, $\mathrm{C}_{2} \mathrm{H}_{2}$

22 Consider the Lewis structure below for the $\mathrm{CH}_{3} \mathrm{CCH}$ molecule.

What is the maximum number of atoms that can lie in the same plane?

A three
B four
C five
D six
E seven

23 The following ions all have the same number of electrons.

$$
\mathrm{O}^{2-}, \mathrm{F}^{-}, \mathrm{Na}^{+}, \mathrm{Mg}^{2+}
$$

In which of following lists are these ions arranged in order of increasing radius (from smallest to largest)?

A $\mathrm{O}^{2-}<\mathrm{F}^{-}<\mathrm{Na}^{+}<\mathrm{Mg}^{2+}$
B $\mathrm{Mg}^{2+}<\mathrm{Na}^{+}<\mathrm{F}^{-}<\mathrm{O}^{2-}$
C $\mathrm{Na}^{+}<\mathrm{Mg}^{2+}<\mathrm{O}^{2-}<\mathrm{F}^{-}$
D $\mathrm{Mg}^{2+}<\mathrm{Na}^{+}<\mathrm{O}^{2-}<\mathrm{F}^{-}$
E $\mathrm{F}^{-}<\mathrm{O}^{2-}<\mathrm{Na}^{+}<\mathrm{Mg}^{2+}$

24 Which of the following is not a Bronsted-Lowry conjugate acid-base pair?

A NH_{3} and NH_{2}^{-}
B OH^{-}and O^{2-}
C $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}
D HCl and Cl^{-}
E $\mathrm{NH}_{4}{ }^{+}$and NH_{3}

25 A 0.350 g sample of acid HX requires 25.4 mL of $0.140 \mathrm{~mol} / \mathrm{L} \mathrm{NaOH}(\mathrm{aq})$ for complete reaction. What is the molar mass of the acid?

A $42.3 \mathrm{~g} / \mathrm{mol}$
B $\quad 68.4 \mathrm{~g} / \mathrm{mol}$
C $98.4 \mathrm{~g} / \mathrm{mol}$
D $121 \mathrm{~g} / \mathrm{mol}$
E $84.6 \mathrm{~g} / \mathrm{mol}$
26 What is the density of carbon dioxide gas at $0.00^{\circ} \mathrm{C}$ and 101.3 kPa ?

A $1.96 \mathrm{~g} / \mathrm{L}$
B $0.0446 \mathrm{~g} / \mathrm{L}$
C $\quad 22.4 \mathrm{~g} / \mathrm{L}$
D $44.6 \mathrm{~g} / \mathrm{L}$
E $0.509 \mathrm{~g} / \mathrm{L}$

27 An element M forms an ion M^{3+}. The atom M and the ion M^{3+} have the same

A number of protons
B number of electrons
C radius
D ionization energy
E chemical properties

28 Methanoic acid, HCOOH , is a weak electrolyte. In a solution prepared by dissolving 0.10 mol HCOOH in water to make 1.0 L of solution, approximately 4.1% of the HCOOH molecules ionize. What is the pH of this solution?

A 0.61
B 1.39
C 2.39
D 4.10
E 6.10

29 In March of this year, the International Union of Pure and Applied Chemistry (IUPAC) officially approved the name and atomic symbol (Cn) for element 112. What is the official name of element 112 ?

A copernicium
B californium
C cupenium
D cernium
E cuternium

30 Element 114 would be placed directly below lead (element 82). At the present time, nuclear scientists have managed to synthesize only a few atoms of element 114 at any one time and thus, the physical appearance of a larger sample is not yet known. Based on its position in the periodic table, element 114 is most likely to be a

A reddish-brown volatile liquid
B a pale yellow green gas
C a colourless crystal
D a gray-silvery metal
E a black powdery solid

31 Sodium hydroxide, NaOH , is most likely found in which household product?

A vinegar
B soap
C bleach
D window cleaner
E drain cleaner

32 A balloon was filled with helium gas to a volume of 3.0 L on a day when the atmospheric pressure was 101 kPa and the temperature was $31^{\circ} \mathrm{C}$. The following day, the atmospheric pressure and temperature were measured as 98.3 kPa and $33^{\circ} \mathrm{C}$, respectively. The volume of the balloon had not changed. Which of the following statements is consistent with these data?

A Based on the changes in pressure and temperature that occurred, the volume of the balloon would not be expected to change.

B The balloon absorbed some air from the atmosphere.

C Some helium gas leaked out of the balloon.
D Helium atoms in the balloon lost energy to the surroundings.

E Based on the changes in pressure and temperature that occurred, the volume of the balloon should have decreased.

33 To prepare exactly 250 mL of $0.10 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}(\mathrm{aq})$ starting from 1.0 L of $0.20 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}(\mathrm{aq})$, one should

A slowly add exactly 125 mL of $0.20 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}(\mathrm{aq})$ to exactly 125 mL of water.

B slowly add exactly 125 mL of $0.20 \mathrm{~mol} / \mathrm{L}$ $\mathrm{HCl}(\mathrm{aq})$ to about 100 mL of water and then dilute with water to a total volume of 250 mL .

C evaporate 750 mL of water from 1.0 L of 0.20 $\mathrm{mol} / \mathrm{L} \mathrm{HCl}(\mathrm{aq})$.

D slowly add exactly 125 mL of water to exactly 125 mL of $0.20 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}(\mathrm{aq})$.

E add 750 mL of $0.10 \mathrm{~mol} / \mathrm{L} \mathrm{NaOH}$ to 1.0 L of $0.20 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}(\mathrm{aq})$.

34 Which of the following dilute solutions would allow a chemist to distinguish between dilute solutions of $\mathrm{NaCl}(\mathrm{aq})$ and $\mathrm{NaNO}_{3}(\mathrm{aq})$?

A $\mathrm{NaOH}(\mathrm{aq})$
B $\mathrm{HCl}(\mathrm{aq})$
C $\mathrm{NH}_{3}(\mathrm{aq})$
D $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
E $\mathrm{AgNO}_{3}(\mathrm{aq})$

35 Compared to a chlorine atom, a sodium atom has a larger

A radius
B mass
C number of electrons
D ionization energy
E electronegativity

36 Which of the following bonds has the greatest ionic character?

A C-H
B $\mathrm{O}-\mathrm{H}$
C O-F
D $\mathrm{H}-\mathrm{F}$
E C-O

37 A compound is found to be 85.62% carbon by mass and 14.38% hydrogen. What is the simplest formula of this compound?

A CH

D CH_{4}
E $\mathrm{C}_{3} \mathrm{H}_{4}$
For question 33, the intended answer was " B ", but the volume of water was mistakenly given as 200 mL when 100 mL is what was intended. Question 33 was deleted. Answer " A " is not the correct answer because 125 mL of $\mathrm{HCl}(\mathrm{aq})$ and 125 mL of water may not give exactly 250 mL of solution because volumes are not exactly additive. See question 4 for an extreme example.

38 Mercury(II) sulfide, HgS , is practically insoluble in pure water. Its solubility at $25^{\circ} \mathrm{C}$ is probably no more than $3 \times 10^{-25} \mathrm{~g} / \mathrm{L}$. Of the following quantities of pure water, which is the smallest quantity that could be used to make a saturated solution of HgS ?

A 20,000 L
B 1000 L
C $10,000 \mathrm{~L}$
D 2000 L
E 200 L

39 What is the pH of a solution prepared by mixing 50.0 mL of $0.010 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}(\mathrm{aq})$ and 50.0 mL of $0.010 \mathrm{~mol} / \mathrm{L} \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})$? Assume the temperature is $25^{\circ} \mathrm{C}$.

A 2.00

$$
K_{\mathrm{w}}=1.0 \times 10^{-14} \text { at } 25^{\circ} \mathrm{C}
$$

B 2.30
C 7.00
D 11.70
E 12.00

40 Consider the Lewis structure below. What is the charge on this molecule or ion?

A -2
B -1
C 0
D $\quad+1$
E +2

DATA SHEET

AVOGADRO EXAM 2010

DETACH CAREFULLY

$\begin{gathered} 1 \\ \text { 1A } \end{gathered}$																	$\begin{aligned} & 18 \\ & 8 A \end{aligned}$
1																	2
H	2											13	14	15	16	17	He
1.008	2A											3A	4A	5A	6A	7A	4.003
3	4											5	6	7	8	9	10
Li	Be											B	C	N	0	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	AI	Si	P	S	Cl	Ar
22.99	24.31	3B	4B	5B	6B	7B	\leftarrow	8B	\rightarrow	1B	2B	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La-Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.9	137.3		178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89-103	104	105	106	107	108	109	110	111	112						
$\begin{gathered} \mathrm{Fr} \\ (223) \end{gathered}$	$\begin{gathered} \text { Ra } \\ 226 \end{gathered}$	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Sg	Cn						

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
138.9	140.1	140.9	144.2	(145)	150.4	152.00	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
227.	232.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Constants:

$$
\begin{aligned}
N_{\mathrm{A}} & =6.022 \times 10^{23} \mathrm{~mol}^{-1} \\
R & =0.082058 \mathrm{~atm} \mathrm{~L} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& =8.3145 \mathrm{kPa} \mathrm{~L} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& =8.3145 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
K_{\mathrm{w}} & =1.0 \times 10^{-14}(\text { at } 298 \mathrm{~K}) \\
F & =96485 \mathrm{C} \mathrm{~mol}^{-1}
\end{aligned}
$$

Equations:

$$
P V=n R T
$$

$$
k t_{1 / 2}=0.693
$$

