CHEM 13 NEWS EXAM 2011
 UNIVERSITY OF WATERLOO DEPARTMENT OF CHEMISTRY

12 MAY 2011
TIME: 75 MINUTES

This exam is being written by several thousand students. Please be sure that you follow the instructions below. We'll send your teacher a report on your performance. Top performers are eligible for a prize.
The names of the top 200 students will be published in the September issue of Chem 13 News.

1. Print your name here:
2. Print your school name and city on your STUDENT RESPONSE sheet.
3. Select, and enter on the STUDENT RESPONSE sheet, one of the following CODE numbers:

Code 1 Ontario, now studying Grade 12 Chemistry in a nonsemestered school

Code 2 Ontario, now studying Grade 12 Chemistry in a semestered school

Code 3 Ontario, Grade 12 Chemistry already completed

Code 4 Any other Ontario student
Code 5 Manitoba or Saskatchewan high school student

Code 6 Québec high school student
Code 7 Québec CEGEP student
Code 8 Alberta or British Columbia high school student
Code 9 New Brunswick, Newfoundland, Nova Scotia, or Prince Edward Island high school student
Code 10 Northwest Territories, Nunavut, or Yukon high school student
Code 11 High school student outside Canada
Code 12 Teacher
4. Print your name (last name, first name and optional middle initial) on the STUDENT RESPONSE sheet. Also fill in the corresponding circles below your printed name.
5. Carefully detach the last page. It is the datasheet.
6. Now answer the exam questions. Questions are not in order of difficulty. Indicate your choice on the STUDENT RESPONSE sheet by marking one letter beside the question number.

- Mark only one answer for each question.
- Questions are all of the same value.
- There is a penalty ($1 / 4$ off) for each incorrect answer, but no penalty if you do not answer.

7. Take care that you make firm, black pencil marks, just filling the oval.

Be careful that any erasures are complete-make the sheet white again.

Carefully detach the last page. It is the Data Sheet.

1 At $25{ }^{\circ} \mathrm{C}$ and 100 kPa , most of the known elements are
A monatomic gases
B diatomic gases
C liquids
D metallic solids
E non-metallic or semi-metallic solids

2 Which of the following series lists the compounds in order of increasing boiling point? (from lowest to highest)

A $\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{O}$
B $\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{2} \mathrm{O}$
C $\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}$
D $\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}$
E $\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{~S}$

3 In which of the following compounds does oxygen have the highest oxidation state?

A CsO_{2}
B $\mathrm{H}_{2} \mathrm{O}$
C $\quad \mathrm{O}_{2}$
D $\mathrm{H}_{2} \mathrm{O}_{2}$
E OF_{2}

4 Which of the following processes is the most endothermic?

A $\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
B $\mathrm{F}(\mathrm{g})+\mathrm{e}^{-} \longrightarrow \mathrm{F}^{-}(\mathrm{g})$
C $\mathrm{NaCl}(\mathrm{s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{NaCl}(\mathrm{aq})$
D $\mathrm{Na}(\mathrm{g}) \longrightarrow \mathrm{Na}^{+}(\mathrm{g})+\mathrm{e}^{-}$
$\mathrm{E} \mathrm{K}^{+}(\mathrm{g})+\mathrm{Cl}^{-}(\mathrm{g}) \longrightarrow \mathrm{KCl}(\mathrm{s})$

5 Which of the following atoms has electrons in its outermost shell arranged in the configuration $4 s^{2} 4 p^{3}$? Assume each atom is in its lowest energy state.

A Rb
B Kr
C As
D Cr
E Sb

6 The following reaction reaches equilibrium in a closed reaction vessel at $200^{\circ} \mathrm{C}$.

$$
\mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}), \Delta H^{\circ}=-206 \mathrm{~kJ}
$$

Which of the following actions causes the reaction to proceed from left to right in order to restore equilibrium?

A increasing the volume of the container, holding temperature constant

B adding some CH_{4} gas to the system, with volume and temperature held constant

C adding some H_{2} gas to the system, with volume and temperature held constant

D increasing the temperature, holding the pressure constant

E removing some CO gas from the system, with volume and temperature held constant

7 At a certain temperature, the following equilibrium constants have been measured.

$$
\begin{array}{ll}
\mathrm{A}_{2}(\mathrm{~s})+2 \mathrm{~B}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{C}(\mathrm{~g}) & K_{1}=36 \\
\mathrm{D}(\mathrm{~s})+2 \mathrm{E}(\mathrm{~g}) \rightleftharpoons \mathrm{C}(\mathrm{~g}) & K_{2}=20
\end{array}
$$

What is the equilibrium constant at the same temperature for the reaction below?

$$
1 / 2 \mathrm{~A}_{2}(\mathrm{~s})+\mathrm{B}(\mathrm{~g}) \rightleftharpoons \mathrm{D}(\mathrm{~s})+2 \mathrm{E}(\mathrm{~g})
$$

A 720
B 1.8
C 0.56
D 0.30
E 0.090

8 In a particular solution, $\left[\mathrm{Br}^{-1}\right]=0.020 \mathrm{~mol} \mathrm{~L}^{-1}$ and $\left[\mathrm{CrO}_{4}^{2-}\right]=0.0030 \mathrm{~mol} \mathrm{~L}^{-1}$. Finely-divided solid silver nitrate, AgNO_{3}, is slowly added to the solution. What is $\left[\mathrm{Br}^{-}\right]$when $\mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s})$ just begins to precipitate?
A $2.1 \times 10^{-8} \mathrm{~mol} \mathrm{~L}^{-1}$
B $\quad 6.0 \times 10^{-8} \mathrm{~mol} \mathrm{~L}^{-1}$
C $2.7 \times 10^{-7} \mathrm{~mol} \mathrm{~L}^{-1}$

	$\boldsymbol{K}_{\text {sp }}$
$\mathrm{Ag}_{2} \mathrm{CrO}_{4}$	1.9×10^{-12}
AgBr	5.2×10^{-13}

D $5.2 \times 10^{-13} \mathrm{~mol} \mathrm{~L}^{-1}$
E $\quad 6.4 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$

9 What is the formula of the stable compound formed by magnesium and nitrogen?

A MgN
B $\mathrm{Mg}_{2} \mathrm{~N}$
C $\mathrm{Mg}_{3} \mathrm{~N}_{2}$
D $\mathrm{Mg}_{2} \mathrm{~N}_{3}$
E MgN_{2}

10 Which of the following ions has the smallest tendency to be protonated when dissolved in liquid acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{I})$?

A hydroxide, OH^{-}
B fluoride, F^{-}
C chloride, Cl^{-}
D bromide, Br^{-}
E iodide, I^{-}

11 X-ray radiation is more energetic than microwave radiation because

A photons of X-ray radiation travel faster than those of microwave radiation

B photons of X-ray radiation are heavier than those of microwave radiation

C X-ray radiation has a higher frequency than does microwave radiation

D X-ray radiation has a longer wavelength than does microwave radiation

E photons of X-ray radiation travel slower than those of microwave radiation

12 Which of the following contains only single bonds?
A NO^{+}
B CO
C CN^{-}
D $\mathrm{N}_{2}{ }^{2-}$
E $\mathrm{O}_{2}{ }^{2-}$

13 What is the empirical formula of a compound that is 66.64% carbon, 7.45% hydrogen and 25.91% nitrogen by mass?

A $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}$
B $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}$
C $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}$
D $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}$
E $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~N}_{2}$

14 Let $D_{\mathrm{C}=\mathrm{c}}$ represent the $\mathrm{C}=\mathrm{C}$ bond dissociation energy in ethene, $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$, and $\mathrm{D}_{\mathrm{C}-\mathrm{c}}$ the $\mathrm{C}-\mathrm{C}$ bond dissociation energy in ethane, $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{3}$. How do these bond dissociation energies compare?

A $D_{\mathrm{C}=\mathrm{c}}$ equals $D_{\mathrm{C}-\mathrm{c}}$
B $D_{\mathrm{C}=\mathrm{c}}$ is exactly equal to $2 \times D_{\mathrm{C} \text { - }}$
C $D_{\mathrm{C}=\mathrm{c}}$ is exactly equal to $1 / 2 \times D_{\mathrm{C}-\mathrm{c}}$
D $D_{\mathrm{C}=\mathrm{c}}$ is greater than $D_{\mathrm{C}-\mathrm{c}}$ but less than $2 \times D_{\mathrm{C}-\mathrm{c}}$
E $D_{\mathrm{C}=\mathrm{c}}$ is greater than $2 \times D_{\mathrm{C}-\mathrm{c}}$

15 Which of the following bonds is most polar?
A B-O
B B-F
C $\mathrm{C}-\mathrm{O}$
D $\mathrm{C}=\mathrm{O}$
E C-F

16 Consider the following energy level diagram for the reaction $R \rightarrow P$.

Which of the following statements is false?
A The conversion of R to P occurs via a two-step process.

B X and Y represent reaction intermediates.
C The conversion of R to P is endothermic.
D At equilibrium, the rate of conversion of R to P is equal to the rate of conversion of P to R.

E The rate-limiting step is the conversion of X to Y.

17 A solution in which the bromide concentration is $2.0 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$ is in equilibrium with solid AgBr and solid Agl. What is the concentration of iodide ion?

A $\quad 2.6 \times 10^{-8} \mathrm{~mol} \mathrm{~L}^{-1}$
B $\quad 5.8 \times 10^{-9} \mathrm{~mol} \mathrm{~L}^{-1}$

	$\boldsymbol{K}_{\text {sp }}$
AgBr	5.2×10^{-13}
AgI	1.5×10^{-16}

C $\quad 1.5 \times 10^{-16} \mathrm{~mol} \mathrm{~L}^{-1}$
D $\quad 7.5 \times 10^{-12} \mathrm{~mol} \mathrm{~L}^{-1}$
E $\quad 2.9 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$

18 Consider the hydrogen halides $\mathrm{HF}, \mathrm{HCl}, \mathrm{HBr}$ and HI . Which of the statements about them is true?

A They are all strong acids.
B They are all weak acids.
C The boiling point increases with molar mass.
D The bond dissociation energy increases with molar mass.

E none of above

19 For the reaction below, $K_{\mathrm{c}}=1.0 \times 10^{-20}$.

$$
2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}(\mathrm{~g}) \rightleftharpoons \mathrm{C}(\mathrm{~g})
$$

In an experiment, 1.0 mol each of A, B and C are placed in an empty 1.0 L container and then the container is quickly sealed. When equilibrium is established, which of the following will be true?

A $[\mathrm{A}]<[\mathrm{B}]<[\mathrm{C}]$
B $[\mathrm{A}]>[\mathrm{B}]>[\mathrm{C}]$
C $[A]=[B]=[C]$
D $[\mathrm{A}]=[\mathrm{B}]<[\mathrm{C}]$
E $[\mathrm{A}]>[\mathrm{B}]=[\mathrm{C}]$

20 What percentage of $\mathrm{CH}_{3} \mathrm{COOH}$ molecules are ionized in $1.8 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) ?$

A 1.8%
B 4.2%
C 42%
D 62\%
E almost 100\%

$$
K_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=1.8 \times 10^{-5}
$$

21 A technician recorded the following curve during a titration.

The curve represents the titration of a
A weak acid by adding strong base
B strong acid by adding weak base
C strong base by adding weak acid
D strong base by adding strong acid
E a weak base by adding strong acid

Use the table of standard reduction potentials

 given below to answer questions 22 through 25.| Half-Reaction | E° |
| :--- | :--- |
| $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightleftharpoons \mathrm{Ag}(\mathrm{s})$ | +0.80 V |
| $\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+4 \mathrm{e}^{-} \rightleftharpoons 4 \mathrm{OH}^{-}(\mathrm{aq})$ | +0.40 V |
| $2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})$ | 0.0 V |
| $\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Sn}(\mathrm{s})$ | -0.14 V |
| $\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Ni}(\mathrm{s})$ | -0.25 V |
| $\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}(\mathrm{s})$ | -0.41 V |
| $\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Zn}(\mathrm{s})$ | -0.76 V |
| $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{H}(\mathrm{g})+2 \mathrm{OH}^{-}(\mathrm{aq})$ | -0.83 V |
| $\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightleftharpoons \mathrm{Al}(\mathrm{s})$ | -1.66 V |

22 Which of the following is the strongest oxidizing agent under standard conditions?

A $\mathrm{Ag}^{+}(\mathrm{aq})$
B $\mathrm{Ag}(\mathrm{s})$
C $\mathrm{H}^{+}(\mathrm{aq})$
D Al(s)
E $\quad \mathrm{Al}^{3+}(\mathrm{aq})$

23 When $\mathrm{Ag}^{+}(\mathrm{aq})$ reacts completely with exactly one mole of $\mathrm{H}_{2}(\mathrm{~g})$ under standard conditions, how many moles of solid Ag are produced?

A 1 mol
B 2 mol
C 0.5 mol
D 4 mol
E 0.25 mol

24 What is E° for the reaction $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$?
A 1.23 V
B 0.43 V
C 4.06 V
D 0.43 V
E 2.06 V

25 Which of the following reagents would spontaneously reduce $\mathrm{Ni}^{2+}(\mathrm{aq})$ to $\mathrm{Ni}(\mathrm{s})$ under standard conditions?

A $\mathrm{Ag}^{+}(\mathrm{aq})$
B $\mathrm{Ag}(\mathrm{s})$
C $\mathrm{Zn}(\mathrm{s})$
D $\mathrm{Sn}(\mathrm{s})$
E $\quad \mathrm{Al}^{3+}(\mathrm{aq})$

26 Consider the ions $\mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{Cl}^{-}$and S^{2-}. In which series are the species listed in order of decreasing radius? (from largest to smallest)

A $\mathrm{S}^{2-}>\mathrm{Cl}^{-}>\mathrm{K}^{+}>\mathrm{Ca}^{2+}$
B $\mathrm{K}^{+}>\mathrm{Ca}^{2+}>\mathrm{S}^{2-}>\mathrm{Cl}^{-}$
C $\mathrm{S}^{2-}>\mathrm{Ca}^{2+}>\mathrm{Cl}^{-}>\mathrm{K}^{+}$
D $\mathrm{Ca}^{2+}>\mathrm{K}^{+}>\mathrm{Cl}^{-}>\mathrm{S}^{2-}$
E $\mathrm{Ca}^{2+}>\mathrm{K}^{+}>\mathrm{S}^{2-}>\mathrm{Cl}^{-}$
27 A solution is prepared by completely dissolving a solid mixture of NaOH and $\mathrm{Mg}(\mathrm{OH})_{2}$ in water. For the resulting solution, which of the following conditions must be satisfied?

A $\left[\mathrm{Na}^{+}\right]=\left[\mathrm{Mg}^{2+}\right]=\left[\mathrm{OH}^{-}\right]$
B $\left[\mathrm{Na}^{+}\right]=\left[\mathrm{Mg}^{2+}\right]=3\left[\mathrm{OH}^{-}\right]$
C $\left[\mathrm{Na}^{+}\right]+\left[\mathrm{Mg}^{2+}\right]=3\left[\mathrm{OH}^{-}\right]$
D $\left[\mathrm{Na}^{+}\right]+2\left[\mathrm{Mg}^{2+}\right]=\left[\mathrm{OH}^{-}\right]$
E $\left[\mathrm{Na}^{+}\right]+\left[\mathrm{Mg}^{2+}\right]=\left[\mathrm{OH}^{-}\right]$

28 What is the minimum volume of water needed to dissolve completely $1.0 \mathrm{~g} \mathrm{SrF}_{2}$?

A 9.0 L
B 150 L
$K_{\text {sp }}\left(\mathrm{SrF}_{2}\right)=2.8 \times 10^{-9}$
$\mathrm{Sr}, 87.62 \mathrm{~g} \mathrm{~mol}^{-1}$
F, $19.00 \mathrm{~g} \mathrm{~mol}^{-1}$
C $\quad 10.5 \mathrm{~L}$
D 5.6 L
E 2.8 L

29 What is the molecular geometry of SF_{4} ?
A T-shaped
B tetrahedral
C see-saw
D square planar
E square pyramidal

30 In the incomplete equation below, NH_{3} acts as a Bronsted-Lowry acid and "X" represents a BronstedLowry base. What is the conjugate base of NH_{3} ?

$$
\mathrm{NH}_{3}+\mathrm{X} \rightarrow ?
$$

A X
B XH^{+}
C NH_{4}^{+}
D NH_{2}^{-}
E OH

31 What is the general trend observed for the first ionization energies of the elements in groups 13 through 17 ?

A Ionization energies tend to increase from left to right in a period, and are approximately constant in a group.

B Ionization energies tend to increase from left to right in a period, and decrease from top to bottom in a group.

C Ionization energies tend to decrease from left to right in a period, and increase from top to bottom in a group.

D Ionization energies tend to decrease from left to right in a period, and decrease from top to bottom in a group.

E Ionization energies are approximately constant in a period, and decrease from top to bottom in a group.

32 What is the hybridization of the sulfur atom in the $\mathrm{SO}_{3}{ }^{2-}$ ion?

A sp
B sp^{2}
C sp^{3}
D $\mathrm{sp}^{3} \mathrm{~d}$
E $\mathrm{sp}^{3} \mathrm{~d}^{2}$

33 The phase diagram for an unidentified substance is shown below.

Temperature

Which of the following statements is true?
A Liquid can be converted to solid by increasing the pressure at constant temperature.

B The melting temperature of the solid increases as pressure increases.

C Solid cannot be converted into gas without first being converted to liquid.

D There is only one combination of temperature and pressure for which solid, liquid and gas can coexist.

E More than one of the statements above are true.

34 When the following equation is balanced using the smallest whole number coefficients, what is the coefficient of O_{2} ?

$$
\mathrm{NH}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}
$$

A 2
B 3
C 4
D 5
E 6

35 What is $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]$ at equilibrium if 0.10 moles of $\mathrm{CH}_{3} \mathrm{COOH}$ and 0.15 moles of NaOH are dissolved in enough water to make 1.0 L of solution at $25^{\circ} \mathrm{C}$? For $\mathrm{CH}_{3} \mathrm{COOH}, K_{\mathrm{a}}=1.8 \times 10^{-5}$ at $25^{\circ} \mathrm{C}$.

A $0 \mathrm{~mol} \mathrm{~L}^{-1}$
B $\quad 1.8 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$
C $5.6 \times 10^{-10} \mathrm{~mol} \mathrm{~L}^{-1}$
D $1.1 \times 10^{-9} \mathrm{~mol} \mathrm{~L}^{-1}$
E $1.3 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$

36 The following diagram is sometimes used to illustrate the structure of benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$.

Which of the statements concerning the structure of benzene is false?

A The double bonds oscillate rapidly back and forth between adjacent pairs of carbon atoms.
B The $\mathrm{H}-\mathrm{C}-\mathrm{C}$ angles are 120°.
C The carbon atoms form a flat hexagonal ring.
D The oxidation state of carbon is -1 .
E The carbon-carbon bonds are all the same length.

37 A particular substance, X , decomposes such that its concentration decreases by a factor of two every 35 s . If the initial concentration of X was $1.0 \mathrm{~mol} \mathrm{~L}^{-1}$, what is [X] after exactly 140 s?

A $0.33 \mathrm{~mol} \mathrm{~L}^{-1}$
B $0.13 \mathrm{~mol} \mathrm{~L}^{-1}$
C $0.25 \mathrm{~mol} \mathrm{~L}^{-1}$
D $0.063 \mathrm{~mol} \mathrm{~L}^{-1}$
E $0.67 \mathrm{~mol} \mathrm{~L}^{-1}$

38 The bond dissociation energies for F_{2} and Cl_{2} are approximately 158 and $242 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively. Given that the enthalpy change for the reaction below is $\Delta H=-54 \mathrm{~kJ} \mathrm{~mol}^{-1}$, what is the bond dissociation energy for the $\mathrm{F}-\mathrm{Cl}$ bond?

$$
1 / 2 \mathrm{~F}_{2}(\mathrm{~g})+1 / 2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{FCl}(\mathrm{~g})
$$

A $200 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B $254 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C $146 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D $454 \mathrm{~kJ} \mathrm{~mol}^{-1}$
E $346 \mathrm{~kJ} \mathrm{~mol}^{-1}$

39 Which of the following has the greatest number of unpaired electrons in its ground electronic state?

A Al
B Cl
C Ti^{2+}
D Zn^{2+}
E S^{2-}

40 Let HA represent a weak monoprotic acid with $K_{\mathrm{a}}=1.0 \times 10^{-5}$. In an experiment, a 50.0 mL sample of $0.10 \mathrm{~mol}^{-1} \mathrm{HA}(\mathrm{aq})$ is titrated with $0.10 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NaOH}(\mathrm{aq})$. At which point during the titration are the equilibrium concentrations of H^{+} and OH^{-}equal?

A after the addition of exactly 25.0 mL of NaOH (aq)
B after the addition of slightly less than 50.0 mL of $\mathrm{NaOH}(\mathrm{aq})$

C after the addition of exactly 50.0 mL of NaOH (aq)
D after the addition of more than 50.0 mL of $\mathrm{NaOH}(\mathrm{aq})$

E The equilibrium concentrations of H^{+}and OH^{-}are never equal.

DATA SHEET

CHEM 13 NEWS EXAM 2011

DETACH CAREFULLY

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
138.9	140.1	140.9	144.2	(145)	150.4	152.00	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
227.	232.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Constants:

$$
\begin{aligned}
N_{\mathrm{A}} & =6.022 \times 10^{23} \mathrm{~mol}^{-1} \\
R & =0.082058 \mathrm{~atm} \mathrm{~L} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& =8.3145 \mathrm{kPa} \mathrm{~L} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& =8.3145 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
K_{\mathrm{w}} & =1.0 \times 10^{-14}(\text { at } 298 \mathrm{~K}) \\
F & =96485 \mathrm{C} \mathrm{~mol}^{-1}
\end{aligned}
$$

Equations:

$$
P V=n R T \quad k t_{1 / 2}=0.693
$$

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log ([\text { base }] /[\text { acid }]) \quad x=\frac{-b \pm \sqrt{b^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}
$$

