

CHEM 13 NEWS EXAM 2007 UNIVERSITY OF WATERLOO DEPARTMENT OF CHEMISTRY

10 MAY 2007

TIME: 75 MINUTES

This exam is being written by several thousand students. Please be sure that you follow the instructions below. We'll send you a report on your performance. Top performers are eligible for a prize.

- 1. Print your name here:
- Print your <u>school name</u> and <u>city</u> on your STUDENT RESPONSE sheet.
- 3. Select, and enter on the STUDENT RESPONSE sheet, one of the following CODE numbers:
- Code 1 **Ontario**, now studying Grade 12 Chemistry in a nonsemestered school
- Code 2 **Ontario**, now studying Grade 12 Chemistry in a semestered school
- Code 3 **Ontario**, Grade 12 Chemistry already completed
- Code 4 Any other Ontario student
- Code 5 Manitoba or Saskatchewan high school student
- Code 6 Québec high school student
- Code 7 Québec CEGEP student
- Code 8 Alberta or British Columbia high school student
- Code 9 New Brunswick, Newfoundland, Nova Scotia, or Prince Edward Island high school student
- Code 10 Northwest Territories, Nunavut, or Yukon high school student
- Code 11 High school student outside Canada
- Code 12 Teacher

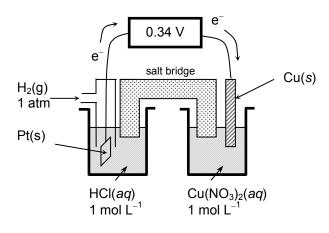
- Print your name (last name, first name and optional middle initial) on the STUDENT RESPONSE sheet. Also fill in the corresponding circles below your printed name.
- 5. Carefully detach the last page. It is the datasheet.
- Now answer the exam questions. Questions are <u>not</u> in order of difficulty. Indicate your choice on the STUDENT RESPONSE sheet by marking one letter beside the question number.
 - Mark only one answer for each question.
 - Questions are all of the same value.
 - There is a penalty (1/4 off) for each incorrect answer, but no penalty if you do not answer.
- 7. Take care that you make firm, **black** pencil marks, just filling the oval.

Be careful that any erasures are complete—make the sheet white again.

Carefully detach the last page. It is the Data Sheet.

- 1 In which of the following series are the atomic orbitals given in order of increasing energy?
 - A 3d, 4s, 4p, 4d, 4f, 5s
 - **B** 2s, 3s, 2p, 3p, 3d, 4s
 - **C** 4s, 3d, 4p, 4d, 4f, 5s
 - D 4s, 3d, 4p, 5s, 4d, 5p
 - E 1s, 2s, 3s, 4s, 2p, 3p
- 2 What is the ground state electron configuration of Ar?
 - **A** $1s^2 2s^2 2p^6 3s^2 3p^6$
 - **B** $1s^2 2s^2 2p^6$
 - **C** $1s^2 2s^2 3s^2 3p^6$
 - $\textbf{D} \quad 1 s^2 \, 2 s^2 \, 2 p^3 \, 3 s^2 \, 3 p^3$
 - **E** $1s^2 1p^6 2s^2 2p^6 3s^2 3p^6$
- 3 Which of the following ions, in its ground electronic state, does <u>not</u> have the same electronic configuration as a ground state Ar atom?
 - **A** P³⁻
 - B Cl⁻
 - C K⁺
 - **D** Ca²⁺
 - E Sc²⁺
- 4 Which of the following molecules is linear?
 - **A** H₂O
 - **B** O₃
 - C NH₃
 - D HCN
 - E HONO

- **5** Which of the following molecules has polar bonds but is nonpolar?
 - ${\bm A} \quad N_2 H_4$
 - B CCl₄
 - **C** HNO₃
 - D CH₂Cl₂
 - **E** F₂O
- **6** Why is the boiling point of iodine chloride (I-CI) greater than that of bromine (Br₂)?
 - A ICI is heavier than Br₂.
 - **B** ICI is a covalent compound and Br₂ is not.
 - **C** The I-CI bond is stronger than the Br–Br bond.
 - **D** ICI is a polar molecule and Br₂ is nonpolar.
 - **E** ICI is an ionic compound and Br₂ is not.
- 7 What is the molecular geometry of phosphorus pentachloride, PCI₅?
 - A square pyramidal
 - B trigonal bipyramidal
 - C pentagonal
 - D trigonal pyramidal
 - E octahedral
- 8 Which of the following correctly characterizes the bonds and geometry of C_2H_4 ?
 - A four σ bonds, one π bond and an H-C-C bond angle very close to 109°
 - **B** five σ bonds, no π bonds and an H-C-C bond angle very close to 90°
 - **C** five σ bonds, one π bond and an H-C-C bond angle very close to 120°
 - **D** three σ bonds, two π bonds and an H-C-C bond angle very close to 109°
 - E four σ bonds, two π bonds and an H-C-C bond angle very close to 120°

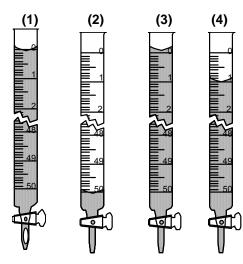

Use the following information to answer questions 9-11.

In acidic solution, zinc metal reacts spontaneously with ReO_4^- . The <u>unbalanced</u> chemical equation for the reaction is given below.

 $Zn(s) + ReO_4^{-}(aq) + H^{+}(aq) \rightarrow Re(s) + Zn^{2+}(aq) + H_2O(I)$

- **9** What is the oxidation state of rhenium (Re) in ReO_4^- ?
 - **A** 0 **B** +1
 - _
 - **C** +3
 - **D** +4
 - E +7
- **10** What is the coefficient of zinc (Zn) when the equation above for the reaction is balanced using the smallest whole number coefficients?
 - **A** 1
 - **B** 2
 - **C** 7
 - **D** 16
 - E none of the above
- **11** For the reaction above, what element or ion is the reducing agent?
 - A Re(s)
 - B Zn(s)
 - **C** ReO₄⁻(*aq*)
 - **D** Zn²⁺(*aq*)
 - $\mathbf{E} \quad \operatorname{H}^{+}(aq)$

12 In the galvanic cell shown below, what is the reaction that occurs at the cathode?


- **A** $H_2(g) \rightarrow 2H^+(aq) + 2e^-$
- **B** $2\text{H}^+(aq) + 2e^- \rightarrow \text{H}_2(g)$
- **C** $Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-}$
- **D** $\operatorname{Cu}^{2+}(aq) + 2e^{-} \rightarrow \operatorname{Cu}(s)$
- **E** $Pt(s) + H_2(g) + 4Cl^{-}(aq)$

$$\rightarrow$$
 PtCl₄²⁻(*aq*) + 2H⁺(*aq*) + 4e⁻

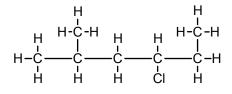
- **13** In the statements below, X refers to one of Ca, Fe, Pb, Cu or Pt. What is the identity of X?
 - X(s) reacts spontaneously in 1 mol L⁻¹ HCl(aq) to give XCl₂(aq) and H₂(g).
 - The reaction $3X^{2^+}(aq) + 2AI(s) \rightarrow 3X(s) + 2AI^{3^+}(aq)$ is spontaneous under standard conditions.
 - X(s) is a better reducing agent than Co(s) under standard conditions.

Α	Са	Half-reaction	E°
		$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	–2.84 V
В	Fe	$Al^{3+}(aq) + 3e^- \rightarrow Al(s)$	–1.66 V
		$Fe^{2^+}(aq) + 2e^- \rightarrow Fe(s)$	–0.44 V
С	Pb	$\text{Co}^{2^+}(aq) + 2e^- \rightarrow \text{Co}(s)$	–0.28 V
_		$Pb^{2+}(aq) + 2e^- \rightarrow Pb(s)$	–0.13 V
D	Cu	$2\text{H}^{+}(aq) + 2e^{-} \rightarrow \text{H}_{2}(g)$	0.00 V
-		$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	0.34 V
E	Pt	$Pt^{2+}(aq) + 2e^- \rightarrow Pt(s)$	1.18 V

- 14 In the laboratory, one must never dip a stirring rod into a reagent bottle. This is because
 - A the bottle may tip over
 - B the stirring rod might break
 - C the rod might puncture the bottle
 - D the contents of the bottle may become contaminated
 - **E** reagent can creep up the rod and come in contact with one's hand
- **15** What is the most accurate and precise way to measure one litre of water?
 - A Use a 1-L graduated cylinder.
 - B Use a 1-L volumetric flask.
 - C Use a 100-mL volumetric flask ten times.
 - D Use a 100-mL pipette ten times.
 - E Weigh 1 kg of water using a balance that weighs to ± 1 g.
- **16** Examine the diagrams below carefully. Which of the burets shown below is/are ready for use?

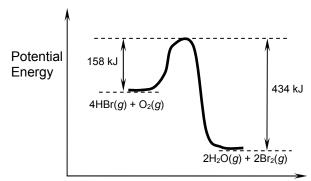
- **A** (1) only
- **B** (2) only
- **C** (3) only
- **D** (4) only
- **E** (1), (3) and (4)

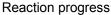
- **17** An aqueous solution is 5.0% ethanoic acid (HC₂H₃O₂) by mass and its density is 0.96 g mL^{-1} . What is the molar concentration of ethanoic acid in this solution?
 - **A** 0.80 mol L⁻¹
 - $HC_2H_3O_2$, 60.05 g mol⁻¹
 - **B** 4.8 mol L⁻¹
 - **C** 12 mol L^{-1}
 - **D** 0.087 mol L⁻¹
 - E 16 mol L⁻¹
- **18** Which reagents react to give ethyl benzoate $(C_6H_5COOC_2H_5)$ and water? The structure of ethyl benzoate is given below.


B
$$C_6H_5 - C - O - H$$
 and CH_3CH_2OH

- **C** $H_3C C O H$ and $C_6H_5CH_2OH$
- **D** CH_3CH_2OH and C_6H_5OH
- E none of the above

 \sim


- **19** Which of the following is <u>not</u> a pair of isomers?
 - A ethyl benzene $(C_6H_5-C_2H_5)$ and dimethyl benzene, $C_6H_4(CH_3)_2$
 - **B** 1-propanol (CH₃CH₂CH₂OH) and 2-propanol (CH₃CHOHCH₃)
 - **C** ethanol (C_2H_5OH) and dimethyl ether (CH_3OCH_3)
 - **D** 2-butanone (CH₃COCH₂CH₃) and 1-butanol (CH₃CH₂CH₂CH₂OH)
 - E urea (NH_2CONH_2) and ammonium cyanate (NH_4CNO)


20 What is the IUPAC name for the compound below?

- A 2-chloro-1,4-dimethylpentane
- B 3-chloro-1,1,4-trimethylbutane
- C 4-chloro-2-methylhexane
- D 3-chloro-5-methylhexane
- E 3-chloroheptane
- **21** Which of the following compounds is a solid at room temperature?
 - A H-C≡C-H
 - **B** CH₃CH₂CH₃
 - C CH₃CH₂CH₂OH
 - $D C_8H_{18}$
 - E C₆H₅OH
- **22** How many different structural isomers are there for the compound chlorobutane (C₄H₉Cl)?
 - A two
 - B three
 - C four
 - D five
 - E more than five

23 According to the reaction profile below, what is ΔH for the reaction $4\text{HBr}(g) + O_2(g) \rightarrow 2\text{H}_2O(g) + 2\text{Br}_2(g)$?

- A 276 kJ
- **B** –276 kJ
- **C** 434 kJ
- **D** –434 kJ
- E 158 kJ
- 24 The enthalpy change for the reaction below is $\Delta H = -58$ kJ (per mole of N₂O₄ formed).

$$2 \operatorname{NO}_2(g) \xrightarrow{k_1} \operatorname{N}_2\operatorname{O}_4(g)$$

If k_1 and k_{-1} are the rate constants for the forward and reverse reactions, respectively, and K_c is the equilibrium constant for the reaction as written, then what is the effect of adding a catalyst on the values of k_1 , k_{-1} and K_c ?

- **A** k_1 increases, k_{-1} increases, K_c increases
- **B** k_1 decreases, k_{-1} decreases, K_c decreases
- **C** k_1 increases, k_{-1} increases, K_c remains the same
- **D** k_1 decreases, k_{-1} decreases, K_c remains the same
- **E** k_1 remains the same, k_{-1} remains the same, K_c remains the same

25 The reaction below reaches equilibrium in a closed reaction vessel.

 $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g), \quad \Delta H = 178 \text{ kJ}$

Which of the following actions cause(s) an increase in the partial pressure of $CO_2(g)$?

- (i) increasing the temperature
- (ii) adding some $CaCO_3(s)$
- (iii) increasing the volume of the reaction vessel
- A (i) only
- B (i) and (ii)
- **C** (i), (ii) and (iii)
- D (ii) only
- E (i) and (iii)
- **26** The reaction below was studied using the method of initial rates.

 $BrO_3^-(aq) + 5Br^-(aq) + 6H^+(aq) \rightarrow 3Br_2(aq) + 3H_2O(I)$ The rate law for the reaction was determined to be *Rate* = $k [BrO_3^-] [Br^-] [H^+]^2$, where *Rate* refers to the rate of consumption of BrO_3^- . Which of the following statements is <u>false</u>?

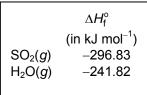
- A If concentrations are measured in mol L^{-1} and time is measured in seconds (*s*), then the units of *k* are mol $L^{-1} s^{-1}$.
- **B** The rate of consumption of Br^- is five times greater than the rate of consumption of BrO_3^- .
- **C** The conversion of reactants into products must involve two or more simpler reactions.
- **D** If the concentrations of all reactants are doubled, the rate of consumption of BrO_3^- will increase by a factor of sixteen.
- **E** When the reaction reaches a state of dynamic equilibrium, $[BrO_3^-]$ stops changing.

- 27 Which of the following reagents could be used to separate the metal ions in an aqueous mixture of Fe(NO₃)₃ and AgNO₃?
 - \mathbf{A} NH₃
 - B KOH
 - C NaCl
 - D HNO₃
 - E CaCO₃
- **28** The reaction below was studied using the method of initial rates.

2 HgCl₂(aq) + C₂O₄^{2–}(aq)
$$\rightarrow$$
 products

The following data were recorded. (*Rate* refers to the initial rate of consumption of $C_2O_4^{2-}$.)

	Initial [HgCl ₂]		Rate
Experiment	(in mol L⁻¹)	(in mol L ⁻¹)	(in mol $L^{-1} hr^{-1}$)
1	0.0836	0.202	0.260
2	0.0836	0.404	1.04
3	0.0334	0.404	0.416


What is the rate law for the reaction?

- **A** Rate = $k [HgCl_2] [C_2O_4^{2-}]^2$
- **B** Rate = $k [HgCl_2]^2 [C_2O_4^{2-}]$
- **C** Rate = k [HgCl₂] [C₂O₄²⁻]
- **D** Rate = $k [HgCl_2]^2 [C_2O_4^{2-}]^2$
- **E** Rate = $k [HgCl_2]^{\frac{1}{2}} [C_2O_4^{2-}]$
- **29** A concentrated solution of ethanoic acid $(HC_2H_3O_2)$ has a concentration of 17.4 mol L⁻¹. What volume of this solution is needed to prepare 0.25 L of 0.30 mol L⁻¹ HC₂H₃O₂(*aq*)?
 - A 4.7 mL
 - **B** 4.3 mL
 - C 3.0 mL
 - D 2.5 mL
 - E 2.2 mL

- **30** Which of the following is a valid set of quantum numbers for an electron in a *p* orbital?
 - **A** $n = 1, I = 1, m_l = 0, m_s = \frac{1}{2}$
 - **B** $n = 3, I = 1, m_l = 2, m_s = \frac{1}{2}$
 - **C** $n = 2, l = 1, m_l = -1, m_s = \frac{1}{2}$
 - **D** $n = 2, I = 0, m_I = 0, m_s = \frac{1}{2}$
 - **E** $n = 2, I = 2, m_l = 0, m_s = \frac{1}{2}$
- **31** For the reaction below, $\Delta H^{\circ} = -518.02$ kJ per mole of H₂S. What is ΔH_{f}° for H₂S(*g*)?

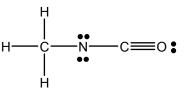
$$H_2S(g) + \frac{3}{2} O_2(g) \rightarrow SO_2(g) + H_2O(g)$$

- **A** –20.63 kJ mol⁻¹
- **B** 41.26 kJ mol⁻¹
- **C** 20.63 kJ mol⁻¹

- **D** -497.39 kJ mol⁻¹
- E -41.26 kJ mol⁻¹
- **32** What is the pH of 0.10 mol L^{-1} HClO₂(*aq*)?

	Α	1.98	$K_{\rm a} = 1.1 \times 10^{-2} \text{ for HClO}_2$
	В	5.11	
	С	1.55	
	D	2.52	
	Е	1.00	
3	Со	nsider the reaction b	pelow.

 $2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \rightleftharpoons 2 \operatorname{SO}_3(g)$


In an experiment, 0.10 mol of O_2 and 0.10 mol of SO_3 are added to an empty 1.0-L flask and then the flask is sealed. Which of the following must be <u>true</u> at equilibrium?

- **A** $[SO_2] = [O_2] = [SO_3]$
- **B** [O₂] < [SO₃]

33

- **C** [O₂] = 2 [SO₂]
- **D** $[O_2] = [SO_2]$
- **E** $[SO_3] < [O_2]$

34 Which of the following statements concerning the structure below is <u>true</u>?

- **A** There are eight σ bonds in this structure.
- **B** The nitrogen atom is *sp*-hybridized.
- **C** The H-C-H bond angle is 90° .
- **D** The structure above is the most important structure for the CH₃NCO molecule.
- E None of the statements above are true.
- **35** When a 10.0-g sample of a mixture of CH_4 and C_2H_6 is burned excess oxygen, exactly 525 kJ of heat is produced. What is the percentage by mass of CH_4 in the original mixture?

 $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(I)$ $\Delta H = -890.4 \text{ kJ (per mol CH}_4)$

$$C_2H_6(g) + \frac{7}{2} O_2(g) \rightarrow 2 CO_2(g) + 3 H_2O(I)$$

 $\Delta H = -1560.0 \text{ kJ} \text{ (per mol } C_2H_6)$

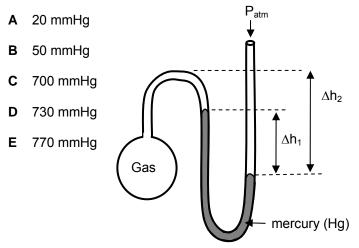
A 17%

CH₄, 16.042 g mol⁻¹ C₂H₆, 30.068 g mol⁻¹

B 21%

С

D 59%


34%

- **E** 87%
- **36** Which of the following is an acceptable Lewis structure for the thiocyanate ion, SCN⁻?
 - A ::S.—C.—N: B :S≡C≡N: C ::S.—C.=N

Е

© 2007 UNIVERSITY OF WATERLOO CHEM 13 NEWS EXAM / 7

37 What is the pressure (in mmHg) of the gas inside the apparatus below if P_{atm} = 750 mmHg, Δh_1 = 20 mm and Δh_2 = 50 mm?

- **38** Consider the compounds HF, HCI, HBr and HI. Of these compounds, which one has the highest boiling point and which one is the strongest acid in water?
 - A HF has the highest boiling point and is the strongest acid
 - **B** HI has the highest boiling point and is the strongest acid
 - **C** HF has the highest boiling point and HI is the strongest acid
 - **D** HI has the highest boiling point and HF is the strongest acid
 - E HI has the highest boiling point and HCI is the strongest acid
- **39** Ethanoic acid, CH₃COOH, is a weak acid in water. Which substance, when added to an aqueous solution of ethanoic acid, causes both the pH and the percentage ionization of CH₃COOH to <u>decrease</u>?
 - A NaCH₃COO
 - B NaCl
 - C CH₃COOH
 - D NaNO₃
 - E AgCl

- **40** A compound of carbon, hydrogen and oxygen is found to be 52.13% carbon by mass, 13.13% hydrogen by mass, and 34.74% oxygen by mass. What is the simplest formula of the compound?
 - A C_5H_8O
 - **B** C₃H₄O₃

С

H, 1.008 g mol ⁻¹	
C, 12.01 g mol ⁻¹	
O, 16.00 g mol ⁻¹	

 $D CH_2O_2$

C₂H₆O

E CHO

DATA SHEET CHEM 13 NEWS EXAM 2006

DETACH CAREFULLY

1																	18
1A																	8A
1																	2
н	2											13	14	15	16	17	Не
1.008	2A	_										3A	4A	5A	6A	7A	4.003
3	4											5	6	7	8	9	10
Li	Be											В	С	Ν	0	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	AI	Si	Р	S	CI	Ar
22.99	24.31	3B	4B	5B	6B	7B	←	8B	\rightarrow	1B	2B	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
ĸ	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	La	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112	113					
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut					
(223)	226	227.0			_												

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
140.1	140.9	144.2	(145)	150.4	152.00	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Constants:

 $N_{\rm A}$ = 6.022 × 10²³ mol⁻¹

 $R = 0.082058 \text{ atm L } \text{K}^{-1} \text{ mol}^{-1}$

- = 8.3145 kPa L K⁻¹ mol⁻¹
- = $8.3145 \text{ J K}^{-1} \text{ mol}^{-1}$
- $K_{\rm w} = 1.0 \times 10^{-14}$ (at 298 K)
- $F = 96485 \text{ C mol}^{-1}$

Equations:

Conversion factors:

1 atm = 101.325 kPa = 760 torr = 760 mm Hg 0°C = 273.15 K

PV = nRT $k t_{1/2} = 0.693$ $pH = pK_a + \log([base]/[acid])$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

0°C = 273.15 K