1. Print your name here:
2. Print your school name and city on your STUDENT RESPONSE sheet.
3. Select, and enter on the STUDENT RESPONSE sheet, one of the following CODE numbers:

Code 1 Ontario, now studying Grade 12 Chemistry in a nonsemestered school

Code 2 Ontario, now studying Grade 12 Chemistry in a semestered school

Code 3 Ontario, Grade 12 Chemistry already completed

Code 4 Any other Ontario student
Code 5 Manitoba or Saskatchewan high school student

Code 6 Québec high school student
Code 7 Québec CEGEP student
Code 8 Alberta or British Columbia high school student
Code 9 New Brunswick, Newfoundland, Nova Scotia, or Prince Edward Island high school student
Code 10 Northwest Territories, Nunavut, or Yukon high school student
Code 11 High school student outside Canada
Code 12 Teacher
4. Print your name (last name, first name and optional middle initial) on the STUDENT RESPONSE sheet. Also fill in the corresponding circles below your printed name.
5. Carefully detach the last page. It is the datasheet.
6. Now answer the exam questions. Questions are not in order of difficulty. Indicate your choice on the STUDENT RESPONSE sheet by marking one letter beside the question number.

- Mark only one answer for each question.
- Questions are all of the same value.
- There is a penalty ($1 / 4$ off) for each incorrect answer, but no penalty if you do not answer.

7. Take care that you make firm, black pencil marks, just filling the oval.

Be careful that any erasures are complete-make the sheet white again.

Carefully detach the last page. It is the Data Sheet.

1 In which of the following series are the atomic orbitals given in order of increasing energy?

A $3 \mathrm{~d}, 4 \mathrm{~s}, 4 \mathrm{p}, 4 \mathrm{~d}, 4 \mathrm{f}, 5 \mathrm{~s}$
B 2s, 3s, 2p, 3p, 3d, 4s
C $4 \mathrm{~s}, 3 \mathrm{~d}, 4 \mathrm{p}, 4 \mathrm{~d}, 4 \mathrm{f}, 5 \mathrm{~s}$
*D 4s, 3d, 4p, 5s, 4d, 5p
E 1s, 2s, 3s, 4s, 2p, 3p

2 What is the ground state electron configuration of Ar ?
*A $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
B $1 s^{2} 2 s^{2} 2 p^{6}$
C $1 s^{2} 2 s^{2} 3 s^{2} 3 p^{6}$
D $1 s^{2} 2 s^{2} 2 p^{3} 3 s^{2} 3 p^{3}$
E $\quad 1 s^{2} 1 p^{6} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$

3 Which of the following ions, in its ground electronic state, does not have the same electronic configuration as a ground state Ar atom?

A P^{3-}
B Cl^{-}
C K^{+}
D Ca^{2+}
*E Sc ${ }^{2+}$

4 Which of the following molecules is linear?
A $\mathrm{H}_{2} \mathrm{O}$
B O_{3}
C NH_{3}
*D HCN
E HONO

5 Which of the following molecules has polar bonds but is nonpolar?

A $\mathrm{N}_{2} \mathrm{H}_{4}$
*B CCl_{4}
C HNO_{3}
D $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
E $\quad \mathrm{F}_{2} \mathrm{O}$

6 Why is the boiling point of iodine chloride ($\mathrm{I}-\mathrm{Cl}$) greater than that of bromine $\left(\mathrm{Br}_{2}\right)$?

A ICl is heavier than Br_{2}.
B ICI is a covalent compound and Br_{2} is not.
C The $\mathrm{I}-\mathrm{Cl}$ bond is stronger than the $\mathrm{Br}-\mathrm{Br}$ bond.
*D ICI is a polar molecule and Br_{2} is nonpolar.
E ICI is an ionic compound and Br_{2} is not.

7 What is the molecular geometry of phosphorus pentachloride, PCl_{5} ?

A square pyramidal
*B trigonal bipyramidal
C pentagonal
D trigonal pyramidal
E octahedral

8 Which of the following correctly characterizes the bonds and geometry of $\mathrm{C}_{2} \mathrm{H}_{4}$?

A four σ bonds, one π bond and an H-C-C bond angle very close to 109°

B five σ bonds, no π bonds and an $\mathrm{H}-\mathrm{C}-\mathrm{C}$ bond angle very close to 90°
${ }^{*} \mathbf{C}$ five σ bonds, one π bond and an $\mathrm{H}-\mathrm{C}-\mathrm{C}$ bond angle very close to 120°

D three σ bonds, two π bonds and an H-C-C bond angle very close to 109°

E four σ bonds, two π bonds and an H-C-C bond angle very close to 120°

Use the following information to answer questions 9-11.

In acidic solution, zinc metal reacts spontaneously with ReO_{4}^{-}. The unbalanced chemical equation for the reaction is given below.
$\mathrm{Zn}(\mathrm{s})+\mathrm{ReO}_{4}^{-}(a q)+\mathrm{H}^{+}(a q) \rightarrow \mathrm{Re}(s)+\mathrm{Zn}^{2+}(a q)+\mathrm{H}_{2} \mathrm{O}(I)$

9 What is the oxidation state of rhenium (Re) in $\mathrm{ReO}_{4}{ }^{-}$?
A 0
B +1
C +3
D +4
*E +7

10 What is the coefficient of zinc (Zn) when the equation above for the reaction is balanced using the smallest whole number coefficients?

A 1
B 2
*C 7
D 16
E none of the above

11 For the reaction above, what element or ion is the reducing agent?

A $\operatorname{Re}(s)$
*B $\mathrm{Zn}(\mathrm{s})$
C $\mathrm{ReO}_{4}^{-}(a q)$
D $\mathrm{Zn}^{2+}(a q)$
E $\mathrm{H}^{+}(a q)$

12 In the galvanic cell shown below, what is the reaction that occurs at the cathode?

A $\mathrm{H}_{2}(g) \rightarrow 2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-}$
B $2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})$
C $\mathrm{Cu}(\mathrm{s}) \rightarrow \mathrm{Cu}^{2+}(a q)+2 \mathrm{e}^{-}$
*D $\mathrm{Cu}^{2+}(a q)+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(s)$
E $\mathrm{Pt}(\mathrm{s})+\mathrm{H}_{2}(g)+4 \mathrm{Cl}^{-}(\mathrm{aq})$

$$
\rightarrow \mathrm{PtCl}_{4}^{2-}(a q)+2 \mathrm{H}^{+}(a q)+4 \mathrm{e}^{-}
$$

13 In the statements below, X refers to one of $\mathrm{Ca}, \mathrm{Fe}, \mathrm{Pb}$, Cu or Pt. What is the identity of X ?

- $X(s)$ reacts spontaneously in $1 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{HCl}(a q)$ to give $\mathrm{XCl}_{2}(a q)$ and $\mathrm{H}_{2}(g)$.
- \quad The reaction $3 \mathrm{X}^{2+}(a q)+2 \mathrm{Al}(s) \rightarrow 3 \mathrm{X}(s)+2 \mathrm{Al}^{3+}(a q)$ is spontaneous under standard conditions.
- $\mathrm{X}(\mathrm{s})$ is a better reducing agent than $\mathrm{Co}(\mathrm{s})$ under standard conditions.

A Ca
*B Fe
C Pb
D Cu
E Pt

Half-reaction	E°
$\mathrm{Ca}^{2+}(a q)+2 \mathrm{e}^{-} \rightarrow \mathrm{Ca}(\mathrm{s})$	-2.84 V
$\mathrm{Al}^{3+}(a q)+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}(s)$	-1.66 V
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(s)$	-0.44 V
$\mathrm{Co}^{2+}(a q)+2 \mathrm{e}^{-} \rightarrow \mathrm{Co}(s)$	-0.28 V
$\mathrm{~Pb}^{2+}(a q)+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}(\mathrm{s})$	-0.13 V
$2 \mathrm{H}^{+}(a q)+2 \mathrm{e}^{-} \rightarrow \mathrm{H} 2(g)$	0.00 V
$\mathrm{Cu}^{2+}(a q)+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(s)$	0.34 V
$\mathrm{Pt}^{2+}(a q)+2 \mathrm{e}^{-} \rightarrow \mathrm{Pt}(s)$	1.18 V

14 In the laboratory, one must never dip a stirring rod into a reagent bottle. This is because

A the bottle may tip over
B the stirring rod might break
C the rod might puncture the bottle
*D the contents of the bottle may become contaminated

E reagent can creep up the rod and come in contact with one's hand

15 What is the most accurate and precise way to measure one litre of water?

A Use a 1-L graduated cylinder.
*B Use a 1-L volumetric flask.
C Use a $100-\mathrm{mL}$ volumetric flask ten times.
D Use a $100-\mathrm{mL}$ pipette ten times.
E Weigh 1 kg of water using a balance that weighs to $\pm 1 \mathrm{~g}$.

16 Examine the diagrams below carefully. Which of the burets shown below is/are ready for use?

(2)

(3)

(4)

A (1) only
B (2) only
C (3) only
*D (4) only

17 An aqueous solution is 5.0% ethanoic acid $\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)$ by mass and its density is $0.96 \mathrm{~g} \mathrm{~mL}^{-1}$. What is the molar concentration of ethanoic acid in this solution?
*A $0.80 \mathrm{~mol} \mathrm{~L}^{-1}$
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}, 60.05 \mathrm{~g} \mathrm{~mol}^{-1}$
B $\quad 4.8 \mathrm{~mol} \mathrm{~L}^{-1}$
C $12 \mathrm{~mol} \mathrm{~L}^{-1}$
D $\quad 0.087 \mathrm{~mol} \mathrm{~L}^{-1}$
E $16 \mathrm{~mol} \mathrm{~L}^{-1}$

18 Which reagents react to give ethyl benzoate $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOC}_{2} \mathrm{H}_{5}\right)$ and water? The structure of ethyl benzoate is given below.

A

*B

C

D $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$

E none of the above

19 Which of the following is not a pair of isomers?
A ethyl benzene $\left(\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{C}_{2} \mathrm{H}_{5}\right)$ and dimethyl benzene, $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right)_{2}$

B 1-propanol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$ and 2-propanol $\left(\mathrm{CH}_{3} \mathrm{CHOHCH}_{3}\right)$

C ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ and dimethyl ether $\left(\mathrm{CH}_{3} \mathrm{OCH}_{3}\right)$
*D 2-butanone $\left(\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{3}\right)$ and 1-butanol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$

E urea $\left(\mathrm{NH}_{2} \mathrm{CONH}_{2}\right)$ and ammonium cyanate ($\mathrm{NH}_{4} \mathrm{CNO}$)

E (1), (3) and (4)

20 What is the IUPAC name for the compound below?

For 20, D is not correct because you must number the C atoms so that the substituents have the lowest numbers possible ($4+2$ is less than $3+5$).

A 2-chloro-1,4-dimethylpentane
B 3-chloro-1,1,4-trimethylbutane
*C 4-chloro-2-methylhexane
D 3-chloro-5-methylhexane
E 3-chloroheptane

21 Which of the following compounds is a solid at room temperature?

A $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$
B $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$
C $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
D $\mathrm{C}_{8} \mathrm{H}_{18}$
*E $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$

22 How many different structural isomers are there for the compound chlorobutane ($\left.\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}\right)$?

A two
B three
*C four
D five
E more than five

23 According to the reaction profile below, what is ΔH for the reaction $4 \mathrm{HBr}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(g)+2 \mathrm{Br}_{2}(g)$?

A 276 kJ
*B -276 kJ
C 434 kJ
D -434 kJ
E 158 kJ

24 The enthalpy change for the reaction below is $\Delta H=-58 \mathrm{~kJ}$ (per mole of $\mathrm{N}_{2} \mathrm{O}_{4}$ formed).
$2 \mathrm{NO}_{2}(g) \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftarrows}} \mathrm{~N}_{2} \mathrm{O}_{4}(g)$
If k_{1} and k_{-1} are the rate constants for the forward and reverse reactions, respectively, and K_{c} is the equilibrium constant for the reaction as written, then what is the effect of adding a catalyst on the values of k_{1}, k_{-1} and K_{c} ?

A k_{1} increases, k_{-1} increases, K_{c} increases
B $\quad k_{1}$ decreases, k_{-1} decreases, K_{c} decreases
${ }^{*} C \quad k_{1}$ increases, k_{-1} increases, K_{c} remains the same
D k_{1} decreases, k_{-1} decreases, K_{c} remains the same
E k_{1} remains the same, k_{-1} remains the same, K_{c} remains the same

25 The reaction below reaches equilibrium in a closed reaction vessel.

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(g), \quad \Delta H=178 \mathrm{~kJ}
$$

Which of the following actions cause(s) an increase in the partial pressure of $\mathrm{CO}_{2}(\mathrm{~g})$?
(i) increasing the temperature
(ii) adding some CaCO_{3} (s)
(iii) increasing the volume of the reaction vessel
*A (i) only
B (i) and (ii)
C (i), (ii) and (iii)
D (ii) only
E (i) and (iii)

26 The reaction below was studied using the method of initial rates.

$$
\mathrm{BrO}_{3}^{-}(\mathrm{aq})+5 \mathrm{Br}^{-}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 3 \mathrm{Br}_{2}(a q)+3 \mathrm{H}_{2} \mathrm{O}(I)
$$

The rate law for the reaction was determined to be Rate $=k\left[\mathrm{BrO}_{3}^{-}\right]\left[\mathrm{Br}^{-}\right]\left[\mathrm{H}^{+}\right]^{2}$, where Rate refers to the rate of consumption of BrO_{3}^{-}. Which of the following statements is false?
*A If concentrations are measured in $\mathrm{mol} \mathrm{L}^{-1}$ and time is measured in seconds (s), then the units of k are $\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$.

B The rate of consumption of Br^{-}is five times greater than the rate of consumption of BrO_{3}^{-}.

C The conversion of reactants into products must involve two or more simpler reactions.

D If the concentrations of all reactants are doubled, the rate of consumption of BrO_{3}^{-}will increase by a factor of sixteen.

E When the reaction reaches a state of dynamic equilibrium, $\left[\mathrm{BrO}_{3}^{-}\right]$stops changing.

27 Which of the following reagents could be used to separate the metal ions in an aqueous mixture of $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$ and AgNO_{3} ?

A NH_{3}

B KOH

* C NaCl

D HNO_{3}

E CaCO_{3}

28 The reaction below was studied using the method of initial rates.

$$
2 \mathrm{HgCl}_{2}(a q)+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(a q) \rightarrow \text { products }
$$

The following data were recorded. (Rate refers to the initial rate of consumption of $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$.)

Experiment	nitial $\left[\mathrm{HgCl}_{2}\right]$ (in mol L-1	Initial $\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]$ (in $\mathrm{mol} \mathrm{L}^{-1}$)	Rate (in $\mathrm{mol} \mathrm{L}^{-1} \mathrm{hr}^{-1}$)
1	0.0836	0.202	0.260
2	0.0836	0.404	1.04
3	0.0334	0.404	0.416

What is the rate law for the reaction?
*A Rate $=k\left[\mathrm{HgCl}_{2}\right]\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]^{2}$
B Rate $=k\left[\mathrm{HgCl}_{2}\right]^{2}\left[\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\right]$
C Rate $=k\left[\mathrm{HgCl}_{2}\right]\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]$
D Rate $=k\left[\mathrm{HgCl}_{2}\right]^{2}\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]^{2}$
E Rate $=k\left[\mathrm{HgCl}_{2}\right]^{1 / 2}\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]$

29 A concentrated solution of ethanoic acid $\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)$ has a concentration of $17.4 \mathrm{~mol} \mathrm{~L}^{-1}$. What volume of this solution is needed to prepare 0.25 L of $0.30 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})$?

A 4.7 mL
*B 4.3 mL
C 3.0 mL
D 2.5 mL
E 2.2 mL

30 Which of the following is a valid set of quantum numbers for an electron in a p orbital?

A $n=1, l=1, m_{l}=0, m_{s}=1 / 2$
B $n=3, l=1, m_{l}=2, m_{s}=1 / 2$
${ }^{*} \mathbf{C} n=2, I=1, m_{l}=-1, m_{s}=1 / 2$
D $n=2, l=0, m_{l}=0, m_{s}=1 / 2$
E $n=2, l=2, m_{l}=0, m_{s}=1 / 2$
31 For the reaction below, $\Delta H^{\circ}=-518.02 \mathrm{~kJ}$ per mole of $\mathrm{H}_{2} \mathrm{~S}$. What is $\Delta H_{\mathrm{f}}^{\circ}$ for $\mathrm{H}_{2} \mathrm{~S}(g)$?

$$
\mathrm{H}_{2} \mathrm{~S}(g)+\frac{3}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{SO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g)
$$

*A $-20.63 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B $\quad 41.26 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C $\quad 20.63 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D $\quad-497.39 \mathrm{~kJ} \mathrm{~mol}^{-1}$
E $-41.26 \mathrm{~kJ} \mathrm{~mol}^{-1}$

32 What is the pH of $0.10 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{HClO}_{2}(\mathrm{aq})$?
A 1.98

$$
K_{\mathrm{a}}=1.1 \times 10^{-2} \text { for } \mathrm{HClO}_{2}
$$

B 5.11
*C 1.55
D 2.52
E 1.00
33 Consider the reaction below.

$$
2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{SO}_{3}(g)
$$

In an experiment, 0.10 mol of O_{2} and 0.10 mol of SO_{3} are added to an empty 1.0-L flask and then the flask is sealed. Which of the following must be true at equilibrium?

A $\left[\mathrm{SO}_{2}\right]=\left[\mathrm{O}_{2}\right]=\left[\mathrm{SO}_{3}\right]$
B $\left[\mathrm{O}_{2}\right]<\left[\mathrm{SO}_{3}\right]$
C $\left[\mathrm{O}_{2}\right]=2\left[\mathrm{SO}_{2}\right]$

The reaction must go \leftarrow to establish equilibrium.

D $\left[\mathrm{O}_{2}\right]=\left[\mathrm{SO}_{2}\right]$
${ }^{*} E\left[\mathrm{SO}_{3}\right]<\left[\mathrm{O}_{2}\right]$

34 Which of the following statements concerning the structure below is true?

A There are eight σ bonds in this structure.
B The nitrogen atom is $s p$-hybridized.

C The $\mathrm{H}-\mathrm{C}-\mathrm{H}$ bond angle is 90°.

D The structure above is the most important structure for the $\mathrm{CH}_{3} \mathrm{NCO}$ molecule.
*E None of the statements above are true.

35 When a 10.0-g sample of a mixture of CH_{4} and $\mathrm{C}_{2} \mathrm{H}_{6}$ is burned excess oxygen, exactly 525 kJ of heat is produced. What is the percentage by mass of CH_{4} in the original mixture?

$$
\begin{gathered}
\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(I) \\
\Delta H=-890.4 \mathrm{~kJ}\left(\text { per mol } \mathrm{CH}_{4}\right) \\
\mathrm{C}_{2} \mathrm{H}_{6}(g)+\frac{7}{2} \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(I) \\
\Delta H=-1560.0 \mathrm{~kJ}\left(\text { per mol } \mathrm{C}_{2} \mathrm{H}_{6}\right)
\end{gathered}
$$

*A 17\%
B 21%
C 34%
D 59%
E 87%

36 Which of the following is an acceptable Lewis structure for the thiocyanate ion, SCN^{-}?

A

B $: \mathrm{S} \overline{\mathrm{Z}} \mathrm{C} \mathrm{N}:$

C

*D

E
$\mathrm{CH}_{4}, 16.042 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathrm{C}_{2} \mathrm{H}_{6}, 30.068 \mathrm{~g} \mathrm{~mol}^{-1}$

A

$\ddot{\mathrm{S}}=\ddot{\mathrm{C}}-\stackrel{\ddot{N}}{\bullet}$

37 What is the pressure (in mmHg) of the gas inside the apparatus below if $\mathrm{P}_{\mathrm{atm}}=750 \mathrm{mmHg}, \Delta \mathrm{h}_{1}=20 \mathrm{~mm}$ and $\Delta h_{2}=50 \mathrm{~mm}$?

A 20 mmHg
B 50 mmHg
C 700 mmHg
*D 730 mmHg
E 770 mmHg

38 Consider the compounds $\mathrm{HF}, \mathrm{HCl}, \mathrm{HBr}$ and HI . Of these compounds, which one has the highest boiling point and which one is the strongest acid in water?

A HF has the highest boiling point and is the strongest acid

B HI has the highest boiling point and is the strongest acid
*C HF has the highest boiling point and HI is the strongest acid

D HI has the highest boiling point and HF is the strongest acid

E HI has the highest boiling point and HCl is the strongest acid

39 Ethanoic acid, $\mathrm{CH}_{3} \mathrm{COOH}$, is a weak acid in water. Which substance, when added to an aqueous solution of ethanoic acid, causes both the pH and the percentage ionization of $\mathrm{CH}_{3} \mathrm{COOH}$ to decrease?

A $\mathrm{NaCH}_{3} \mathrm{COO}$
B NaCl
${ }^{*} \mathrm{CH}_{3} \mathrm{COOH}$
D NaNO_{3}
E AgCl

40 A compound of carbon, hydrogen and oxygen is found to be 52.13% carbon by mass, 13.13% hydrogen by mass, and 34.74% oxygen by mass. What is the simplest formula of the compound?

A $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}$
B $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}$

* $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
$\mathrm{H}, 1.008 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathrm{C}, 12.01 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathrm{O}, 16.00 \mathrm{~g} \mathrm{~mol}^{-1}$

D $\mathrm{CH}_{2} \mathrm{O}_{2}$
E CHO

DATA SHEET

CHEM 13 NEWS EXAM 2006

DETACH CAREFULLY

$\begin{gathered} 1 \\ \text { 1A } \end{gathered}$																	$\begin{aligned} & 18 \\ & 8 A \end{aligned}$
$\begin{array}{\|c\|} \hline 1 \\ \mathbf{H} \\ 1.008 \\ \hline \end{array}$	$\begin{gathered} 2 \\ 2 A \end{gathered}$											$\begin{aligned} & 13 \\ & 3 A \\ & \hline \end{aligned}$	$\begin{aligned} & 14 \\ & 4 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 15 \\ & 5 A \end{aligned}$	$\begin{aligned} & 16 \\ & 6 A \end{aligned}$	$\begin{aligned} & 17 \\ & 7 \mathrm{~A} \end{aligned}$	
$\begin{array}{\|c\|} \hline 3 \\ \mathrm{Li} \\ 6.941 \end{array}$	4 Be 9.012											$\begin{gathered} \hline 5 \\ \text { B } \\ 10.81 \end{gathered}$	$\begin{gathered} 6 \\ \mathbf{C} \\ 12.01 \end{gathered}$	$\begin{gathered} 7 \\ \mathbf{N} \\ 14.01 \end{gathered}$	$\begin{gathered} 8 \\ 0 \\ 16.00 \end{gathered}$	$\begin{gathered} 9 \\ \mathbf{F} \\ 19.00 \end{gathered}$	$\begin{gathered} 10 \\ \mathrm{Ne} \\ 20.18 \end{gathered}$
$\begin{array}{\|c\|} \hline 11 \\ \mathrm{Na} \\ 22.99 \end{array}$	$\begin{gathered} 12 \\ \mathbf{M g} \\ 24.31 \end{gathered}$	3 $3 B$	4	$\begin{gathered} 5 \\ 5 B \end{gathered}$	6 $6 B$	7	$\begin{aligned} & 8 \\ & \leftarrow \end{aligned}$	$\begin{gathered} 9 \\ 8 B \end{gathered}$	$\xrightarrow{10}$	$\begin{aligned} & 11 \\ & \text { 1B } \end{aligned}$	$\begin{aligned} & 12 \\ & \text { 2B } \end{aligned}$	$\begin{array}{\|c\|} \hline 13 \\ \text { AI } \\ 26.98 \end{array}$	$\begin{gathered} 14 \\ \text { Si } \\ 28.09 \end{gathered}$	$\begin{gathered} 15 \\ \mathbf{P} \\ 30.97 \end{gathered}$	$\begin{gathered} 16 \\ \mathbf{S} \\ 32.07 \end{gathered}$	$\begin{gathered} 17 \\ \mathrm{Cl} \\ 35.45 \end{gathered}$	$\begin{gathered} 18 \\ \mathbf{A r} \\ 39.95 \end{gathered}$
$\begin{array}{\|c\|} \hline 19 \\ \mathbf{K} \\ 39.10 \\ \hline \end{array}$	$\begin{gathered} 20 \\ \mathrm{Ca} \\ 40.08 \\ \hline \end{gathered}$	$\begin{gathered} 21 \\ \mathrm{Sc} \\ 44.96 \\ \hline \end{gathered}$	$\begin{gathered} 22 \\ \mathrm{Ti} \\ 47.88 \\ \hline \end{gathered}$	$\begin{gathered} 23 \\ \mathbf{v} \\ 50.94 \\ \hline \end{gathered}$	$\begin{gathered} 24 \\ \mathrm{Cr} \\ 52.00 \\ \hline \end{gathered}$	$\begin{gathered} 25 \\ \mathrm{Mn} \\ 54.94 \end{gathered}$	$\begin{gathered} 26 \\ \text { Fe } \\ 55.85 \\ \hline \end{gathered}$	$\begin{gathered} 27 \\ \text { Co } \\ 58.93 \\ \hline \end{gathered}$	$\begin{gathered} 28 \\ \mathrm{Ni} \\ 58.69 \\ \hline \end{gathered}$	$\begin{array}{r} 29 \\ \text { Cu } \\ 63.55 \\ \hline \end{array}$	$\begin{gathered} 30 \\ \mathbf{Z n} \\ 65.38 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 31 \\ \text { Ga } \\ 69.72 \\ \hline \end{array}$	$\begin{gathered} 32 \\ \mathbf{G e} \\ 72.59 \\ \hline \end{gathered}$	$\begin{gathered} 33 \\ \text { As } \\ 74.92 \end{gathered}$	$\begin{gathered} 34 \\ \mathrm{Se} \\ 78.96 \\ \hline \end{gathered}$	$\begin{array}{r} 35 \\ \mathrm{Br} \\ 79.90 \\ \hline \end{array}$	$\begin{gathered} 36 \\ \mathbf{K r} \\ 83.80 \\ \hline \end{gathered}$
	$\begin{gathered} 38 \\ \mathrm{Sr} \\ 87.62 \end{gathered}$	$\begin{gathered} 39 \\ \mathbf{Y} \\ 88.91 \end{gathered}$	$\begin{gathered} 40 \\ \text { Zr } \\ 91.22 \end{gathered}$	$\begin{gathered} \hline 41 \\ \mathbf{N b} \\ 92.91 \\ \hline \end{gathered}$	$\begin{gathered} 42 \\ \text { Mo } \\ 95.94 \end{gathered}$	$\begin{array}{r} \hline 43 \\ \text { Tc } \\ (98) \\ \hline \end{array}$	$\begin{gathered} 44 \\ \text { Ru } \\ 101.1 \end{gathered}$	$\begin{gathered} 45 \\ \text { Rh } \\ 102.9 \end{gathered}$	$\begin{gathered} \hline 46 \\ \text { Pd } \\ 106.4 \end{gathered}$	$\begin{gathered} 47 \\ \mathbf{A g} \\ 107.9 \end{gathered}$	$\begin{array}{\|c\|} \hline 48 \\ \text { Cd } \\ 112.4 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 49 \\ \text { In } \\ 114.8 \\ \hline \end{array}$	$\begin{gathered} 50 \\ \text { Sn } \\ 118.7 \end{gathered}$	$\begin{gathered} \hline 51 \\ \text { Sb } \\ 121.8 \end{gathered}$	$\begin{gathered} 52 \\ \mathrm{Te} \\ 127.6 \end{gathered}$	$\begin{gathered} 53 \\ \text { I } \\ 126.9 \\ \hline \end{gathered}$	$\begin{gathered} 54 \\ \mathrm{Xe} \\ 131.3 \end{gathered}$
$\begin{array}{\|c} \hline 55 \\ \text { Cs } \\ 132.9 \\ \hline \end{array}$	$\begin{gathered} 56 \\ \text { Ba } \\ 137.3 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 57 \\ \text { La } \\ 138.9 \end{array}$	$\begin{gathered} 72 \\ \mathbf{H f} \\ 178.5 \\ \hline \end{gathered}$	$\begin{gathered} 73 \\ \mathrm{Ta} \\ 180.9 \end{gathered}$	$\begin{gathered} 74 \\ \mathbf{W} \\ 183.9 \end{gathered}$	$\begin{gathered} 75 \\ \text { Re } \\ 186.2 \end{gathered}$	$\begin{gathered} 76 \\ \text { Os } \\ 190.2 \end{gathered}$	$\begin{gathered} 77 \\ \mathbf{I r} \\ 192.2 \end{gathered}$	$\begin{array}{r} 78 \\ \mathbf{P t} \\ 195.1 \\ \hline \end{array}$	$\begin{gathered} 79 \\ \text { Au } \\ 197.0 \end{gathered}$	$\begin{gathered} 80 \\ \mathrm{Hg} \\ 200.6 \end{gathered}$	$\begin{array}{\|c\|} \hline 81 \\ \mathrm{TI} \\ 204.4 \\ \hline \end{array}$	$\begin{gathered} 82 \\ \text { Pb } \\ 207.2 \end{gathered}$	$\begin{gathered} 83 \\ \mathrm{Bi} \\ 209.0 \end{gathered}$	$\begin{gathered} 84 \\ \text { Po } \\ (209) \\ \hline \end{gathered}$	$\begin{gathered} 85 \\ \text { At } \\ (210) \\ \hline \end{gathered}$	$\begin{gathered} 86 \\ \mathbf{R n} \\ (222) \\ \hline \end{gathered}$
$\begin{gathered} 87 \\ \text { Fr } \\ (223) \\ \hline \end{gathered}$	$\begin{array}{r} \hline 88 \\ \mathrm{Ra} \\ 226 \\ \hline \end{array}$	89 Ac 227.0	$\begin{gathered} 104 \\ \text { Rf } \end{gathered}$	105 Db	106 $\mathbf{S g}$	107 Bh	108 Hs	$\begin{aligned} & 109 \\ & \text { Mt } \end{aligned}$	110 Uun	111 Uuu	112 Uub	$\begin{aligned} & 113 \\ & \text { Uut } \end{aligned}$					

$\begin{gathered} 58 \\ \mathrm{Ce} \\ 140.1 \end{gathered}$	$\begin{gathered} 59 \\ \mathrm{Pr} \\ 140.9 \end{gathered}$	$\begin{gathered} 60 \\ \mathrm{Nd} \\ 144.2 \end{gathered}$	$\begin{gathered} 61 \\ \text { Pm } \\ (145) \end{gathered}$	$\begin{gathered} 62 \\ \text { Sm } \\ 150.4 \end{gathered}$	$\begin{array}{\|c\|} \hline 63 \\ \text { Eu } \\ 152.00 \end{array}$	$\begin{gathered} 64 \\ \text { Gd } \\ 157.3 \end{gathered}$	$\begin{gathered} 65 \\ \text { Tb } \\ 158.9 \end{gathered}$	$\begin{gathered} 66 \\ \text { Dy } \\ 162.5 \end{gathered}$	$\begin{gathered} 67 \\ \text { Ho } \\ 164.9 \end{gathered}$	$\begin{gathered} 68 \\ \text { Er } \\ 167.3 \end{gathered}$	$\begin{gathered} 69 \\ \text { Tm } \\ 168.9 \end{gathered}$	$\begin{gathered} 70 \\ \text { Yb } \\ 173.0 \end{gathered}$	$\begin{gathered} 71 \\ \mathrm{Lu} \\ 175.0 \end{gathered}$
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Constants:

$$
\begin{aligned}
N_{\mathrm{A}} & =6.022 \times 10^{23} \mathrm{~mol}^{-1} \\
R & =0.082058 \mathrm{~atm} \mathrm{~L} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& =8.3145 \mathrm{kPa} \mathrm{~L} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& =8.3145 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
K_{\mathrm{w}} & =1.0 \times 10^{-14}(\text { at } 298 \mathrm{~K}) \\
F & =96485 \mathrm{C} \mathrm{~mol}^{-1}
\end{aligned}
$$

Equations:

$$
P V=n R T
$$

$$
k t_{1 / 2}=0.693
$$

