- 1 At 25 °C and 100 kPa, most of the known elements are
 - A monatomic gases
 - B diatomic gases
 - C liquids
 - *D metallic solids
 - E non-metallic or semi-metallic solids
- 2 Which of the following series lists the compounds in order of increasing boiling point? (from lowest to highest)
 - A $H_2Te < H_2Se < H_2S < H_2O$
 - *B $H_2S < H_2Se < H_2Te < H_2O$
 - $\textbf{C} \quad H_2 \textbf{S} < H_2 \textbf{O} < H_2 \textbf{S} \textbf{e} < H_2 \textbf{T} \textbf{e}$
 - $\textbf{D} \quad H_2 O < H_2 S < H_2 S e < H_2 T e$
 - $\textbf{E} \quad H_2 O < H_2 Te < H_2 Se < H_2 S$
- 3 In which of the following compounds does oxygen have the highest oxidation state?
 - A CsO₂
 - **B** H₂O
 - **C** O₂
 - \mathbf{D} H₂O₂
 - ***E** OF₂
- 4 Which of the following processes is the most endothermic?
 - **A** $H_2O(I) \longrightarrow H_2O(g)$
 - **B** $F(g) + e^{-} \longrightarrow F^{-}(g)$
 - **C** NaCl(s) $\xrightarrow{H_2O}$ NaCl(aq)
 - ***D** Na(g) \longrightarrow Na⁺(g) + e⁻
 - $\mathbf{E} \quad \mathsf{K}^{\scriptscriptstyle +}(\mathsf{g}) \ + \ \mathsf{Cl}^{\scriptscriptstyle -}(\mathsf{g}) \ \longrightarrow \ \mathsf{KCl}(\mathsf{s})$

- 5 Which of the following atoms has electrons in its outermost shell arranged in the configuration 4s² 4p³? Assume each atom is in its lowest energy state.
 - A Rb
 - B Kr
 - ***C** As
 - D Cr
 - E Sb
- 6 The following reaction reaches equilibrium in a closed reaction vessel at 200 °C.

 $CO(g) + 3 H_2(g) \rightleftharpoons CH_4(g) + H_2O(g), \Delta H^o = -206 \text{ kJ}$

Which of the following actions causes the reaction to proceed from left to right in order to restore equilibrium?

- A increasing the volume of the container, holding temperature constant
- **B** adding some CH₄ gas to the system, with volume and temperature held constant
- *C adding some H₂ gas to the system, with volume and temperature held constant
- **D** increasing the temperature, holding the pressure constant
- E removing some CO gas from the system, with volume and temperature held constant
- 7 At a certain temperature, the following equilibrium constants have been measured.

$$\begin{array}{ll} A_2(s) \ + \ 2 \ B(g) \ \rightleftharpoons \ 2 \ C(g) \\ D(s) \ + \ 2 \ E(g) \ \rightleftharpoons \ C(g) \\ \end{array} \qquad \begin{array}{ll} \mathcal{K}_1 = 36 \\ \mathcal{K}_2 = 20 \end{array}$$

What is the equilibrium constant at the same temperature for the reaction below?

$$\frac{1}{2} A_2(s) + B(g) \rightleftharpoons D(s) + 2 E(g)$$

- **A** 720
- **B** 1.8
- **C** 0.56
- ***D** 0.30
- **E** 0.090

8 In a particular solution, $[Br^-] = 0.020 \text{ mol } L^{-1}$ and $[CrO_4^{2^-}] = 0.0030 \text{ mol } L^{-1}$. Finely-divided solid silver nitrate, AgNO₃, is slowly added to the solution. What is $[Br^-]$ when Ag₂CrO₄(s) just begins to precipitate?

* A	2.1×10 ⁻⁸ mol L ⁻¹		K _{sp}
в	6.0×10 ⁻⁸ mol L ⁻¹	Ag ₂ CrO ₄ AgBr	1.9×10^{-12} 5 2 × 10^{-13}
С	$2.7 \times 10^{-7} \text{ mol } \text{L}^{-1}$	Лурі	0.2210
D	$5.2 \times 10^{-13} \text{ mol } \text{L}^{-1}$		

- **E** $6.4 \times 10^{-4} \text{ mol L}^{-1}$
- **9** What is the formula of the stable compound formed by magnesium and nitrogen?
 - A MgN
 - B Mg₂N
 - *C Mg₃N₂
 - \mathbf{D} Mg₂N₃
 - E MgN₂
- **10** Which of the following ions has the smallest tendency to be protonated when dissolved in liquid acetic acid, CH₃COOH(I)?
 - A hydroxide,OH⁻
 - B fluoride, F
 - **C** chloride, Cl⁻
 - D bromide, Br
 - *E iodide, I
- **11** X-ray radiation is more energetic than microwave radiation because
 - A photons of X-ray radiation travel faster than those of microwave radiation
 - **B** photons of X-ray radiation are heavier than those of microwave radiation
 - *C X-ray radiation has a higher frequency than does microwave radiation
 - **D** X-ray radiation has a longer wavelength than does microwave radiation
 - **E** photons of X-ray radiation travel slower than those of microwave radiation

- 12 Which of the following contains only single bonds?
 - **A** NO^+
 - B CO
 - **C** CN[−]
 - **D** N_2^{2-}
 - *E O₂²⁻
- **13** What is the empirical formula of a compound that is 66.64% carbon, 7.45% hydrogen and 25.91% nitrogen by mass?
 - *A C_3H_4N
 - ${\bm B} \quad C_3 H_4 N_2$
 - **C** C₃H₃N
 - $\mathbf{D} \quad C_4 H_4 N$
 - $\textbf{E} \quad C_4H_3N_2$
- **14** Let $D_{C=C}$ represent the C=C bond dissociation energy in ethene, H₂C=CH₂, and D_{C-C} the C-C bond dissociation energy in ethane, H₃C-CH₃. How do these bond dissociation energies compare?
 - **A** $D_{C=C}$ equals D_{C-C}
 - **B** $D_{C=C}$ is exactly equal to 2 × D_{C-C}
 - **C** $D_{C=C}$ is exactly equal to $\frac{1}{2} \times D_{C-C}$
 - *D $D_{C=C}$ is greater than D_{C-C} but less than $2 \times D_{C-C}$
 - **E** $D_{C=C}$ is greater than $2 \times D_{C-C}$
- 15 Which of the following bonds is most polar?
 - **A** B-O
 - ***B** B-F
 - **C** C-O
 - D C=O
 - E C-F

16 Consider the following energy level diagram for the reaction $R \rightarrow P$.

Which of the following statements is false?

- *A The conversion of R to P occurs via a two-step process.
- B X and Y represent reaction intermediates.
- **C** The conversion of R to P is endothermic.
- **D** At equilibrium, the rate of conversion of R to P is equal to the rate of conversion of P to R.
- **E** The rate-limiting step is the conversion of X to Y.
- A solution in which the bromide concentration is
 2.0×10⁻⁵ mol L⁻¹ is in equilibrium with solid AgBr and solid AgI. What is the concentration of iodide ion?
 - **A** $2.6 \times 10^{-8} \text{ mol } \text{L}^{-1}$ ***B** $5.8 \times 10^{-9} \text{ mol } \text{L}^{-1}$

	$K_{\sf sp}$
AgBr	5.2×10 ⁻¹³
Agl	1.5×10 ^{−16}

- **C** $1.5 \times 10^{-16} \text{ mol L}^{-1}$
- **D** $7.5 \times 10^{-12} \text{ mol L}^{-1}$
- **E** $2.9 \times 10^{-4} \text{ mol L}^{-1}$
- **18** Consider the hydrogen halides HF, HCl, HBr and HI. Which of the statements about them is <u>true</u>?
 - A They are all strong acids.
 - B They are all weak acids.
 - **C** The boiling point increases with molar mass.
 - **D** The bond dissociation energy increases with molar mass.
 - *E none of above

19 For the reaction below, $K_c = 1.0 \times 10^{-20}$.

$$2 A(g) + B(g) \implies C(g)$$

In an experiment, 1.0 mol each of A, B and C are placed in an empty 1.0 L container and then the container is quickly sealed. When equilibrium is established, which of the following will be <u>true</u>?

- **A** [A] < [B] < [C]
- ***B** [A] > [B] > [C]
- **C** [A] = [B] = [C]
- **D** [A] = [B] < [C]
- **E** [A] > [B] = [C]
- **20** What percentage of CH_3COOH molecules are ionized in 1.8×10^{-5} mol L⁻¹ $CH_3COOH(aq)$?
 - **A** 1.8%

$$K_{a}(CH_{3}COOH) = 1.8 \times 10^{-5}$$

C 42%

В

4.2%

- ***D** 62%
- E almost 100%
- **21** A technician recorded the following curve during a titration.

The curve represents the titration of a

- A weak acid by adding strong base
- B strong acid by adding weak base
- C strong base by adding weak acid
- **D** strong base by adding strong acid
- *E a weak base by adding strong acid

Use the table of standard reduction potentials given below to answer questions 22 through 25.

Half–Reaction	E°
$Ag^{+}(aq) + e^{-} \rightleftharpoons Ag(s)$	+0.80 V
$O_2(g) + 2 H_2O(I) + 4e^- \rightleftharpoons 4 OH^-(aq)$	+0.40 V
$2 \text{ H}^{+}(\text{aq}) + 2e^{-} \rightleftharpoons \text{H}_{2}(g)$	0.0 V
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightleftharpoons \operatorname{Sn}(s)$	–0.14 V
$Ni^{2+}(aq) + 2e^{-} \rightleftharpoons Ni(s)$	–0.25 V
$Fe^{2+}(aq) + 2e^{-} \rightleftharpoons Fe(s)$	–0.41 V
$Zn^{2+}(aq) + 2e^{-} \rightleftharpoons Zn(s)$	–0.76 V
$2 H_2O(I) + 2e^- \rightleftharpoons H_2(g) + 2 OH^-(aq)$	–0.83 V
$AI^{3+}(aq) + 3e^{-} \rightleftharpoons AI(s)$	–1.66 V

- 22 Which of the following is the strongest oxidizing agent under standard conditions?
 - ***A** $Ag^+(aq)$
 - **B** Ag(s)
 - С H⁺(aq)
 - D AI(s)
 - E $Al^{3+}(aq)$
- 23 When Ag⁺(aq) reacts completely with exactly one mole of $H_2(g)$ under standard conditions, how many moles of solid Ag are produced?
 - 1 mol Α
 - *B 2 mol
 - 0.5 mol С
 - 4 mol D
 - E 0.25 mol
- **24** What is E° for the reaction $2H_2(g) + O_2(g) \rightarrow 2H_2O(I)$?
 - *A 1.23 V
 - 0.43 V R
 - 4.06 V С

0.43 V D

E 2.06 V

- 25 Which of the following reagents would spontaneously reduce Ni²⁺(aq) to Ni(s) under standard conditions?
 - A Ag⁺(aq)
 - В Ag(s)
 - *C Zn(s)
 - Sn(s) D
 - E Al³⁺(aq)
- **26** Consider the ions K^+ , Ca^{2+} , Cl^- and S^{2-} . In which series are the species listed in order of decreasing radius? (from largest to smallest)
 - ***A** $S^{2-} > Cl^{-} > K^{+} > Ca^{2+}$
 - **B** $K^+ > Ca^{2+} > S^{2-} > Cl^-$
 - **C** $S^{2^-} > Ca^{2^+} > Cl^- > K^+$
 - **D** $Ca^{2+} > K^{+} > Cl^{-} > S^{2-}$
 - **E** $Ca^{2+} > K^{+} > S^{2-} > Cl^{-}$
- 27 A solution is prepared by completely dissolving a solid mixture of NaOH and Mg(OH)₂ in water. For the resulting solution, which of the following conditions must be satisfied?
 - **A** $[Na^+] = [Mg^{2+}] = [OH^-]$
 - $[Na^+] = [Mg^{2+}] = 3 [OH^-]$ В
 - **C** $[Na^+] + [Mg^{2+}] = 3 [OH^-]$
 - ***D** $[Na^+] + 2 [Mg^{2+}] = [OH^-]$
 - **E** $[Na^+] + [Mg^{2+}] = [OH^-]$

28 What is the minimum volume of water needed to dissolve completely 1.0 g SrF₂?

*A P	9.0 L	$K_{\rm sp}({\rm SrF}_2) = 2.8 \times 10^{-9}$ Sr, 87.62 g mol ⁻¹
C	10.5 L	1, 19.00 g mor
D	5.6 L	
Е	2.8 L	

29 What is the molecular geometry of SF₄?

- Α T-shaped
- В tetrahedral
- *C see-saw
- square planar D
- square pyramidal Ε
- 30 In the incomplete equation below, NH₃ acts as a Bronsted-Lowry acid and "X" represents a Bronsted-Lowry base. What is the conjugate base of NH₃?

 $NH_3 + X \rightarrow ?$

- Α Х
- XH^{+} В
- NH_4^+ С
- ***D** NH₂
- E OH⁻
- **31** What is the general trend observed for the first ionization energies of the elements in groups 13 through 17?
 - Ionization energies tend to increase from left to Α right in a period, and are approximately constant in a group.
 - *B Ionization energies tend to increase from left to right in a period, and decrease from top to bottom in a group.
 - С Ionization energies tend to decrease from left to right in a period, and increase from top to bottom in a group.
 - Ionization energies tend to decrease from left to D right in a period, and decrease from top to bottom in a group.
 - E Ionization energies are approximately constant in a period, and decrease from top to bottom in a group.

- 32 What is the hybridization of the sulfur atom in the $SO_3^{2^-}$ ion?
 - Α sp
 - sp² В
 - ***C** sp^3
 - **D** $sp^{3}d$
 - $E sp^3 d^2$
- 33 The phase diagram for an unidentified substance is shown below.

Temperature

Which of the following statements is true?

- A Liquid can be converted to solid by increasing the pressure at constant temperature.
- The melting temperature of the solid increases as B pressure increases.
- С Solid cannot be converted into gas without first being converted to liquid.
- *D There is only one combination of temperature and pressure for which solid, liquid and gas can coexist.
- Е More than one of the statements above are true.
- **34** When the following equation is balanced using the smallest whole number coefficients, what is the coefficient of O₂?
 - NH_3 + $O_2 \rightarrow NO$ + H₂O 2 3 4 *D 5

Α

В

С

E 6

- **35** What is [CH₃COOH] at equilibrium if 0.10 moles of CH₃COOH and 0.15 moles of NaOH are dissolved in enough water to make 1.0 L of solution at 25 °C? For CH₃COOH, $K_a = 1.8 \times 10^{-5}$ at 25 °C.
 - **A** 0 mol L⁻¹
 - **B** 1.8×10⁻⁵ mol L⁻¹
 - **C** $5.6 \times 10^{-10} \text{ mol } \text{L}^{-1}$
 - ***D** $1.1 \times 10^{-9} \text{ mol L}^{-1}$
 - **E** $1.3 \times 10^{-3} \text{ mol L}^{-1}$
- **36** The following diagram is sometimes used to illustrate the structure of benzene, C_6H_6 .

Which of the statements concerning the structure of benzene is **false**?

- *A The double bonds oscillate rapidly back and forth between adjacent pairs of carbon atoms.
- **B** The H-C-C angles are 120°.
- C The carbon atoms form a flat hexagonal ring.
- **D** The oxidation state of carbon is -1.
- E The carbon-carbon bonds are all the same length.
- A particular substance, X, decomposes such that its concentration decreases by a factor of two every 35 s. If the initial concentration of X was 1.0 mol L⁻¹, what is [X] after exactly 140 s?
 - **A** 0.33 mol L⁻¹
 - **B** 0.13 mol L⁻¹
 - **C** 0.25 mol L⁻¹
 - ***D** 0.063 mol L⁻¹
 - **E** 0.67 mol L^{-1}

38 The bond dissociation energies for F_2 and Cl_2 are approximately 158 and 242 kJ mol⁻¹, respectively. Given that the enthalpy change for the reaction below is $\Delta H = -54$ kJ mol⁻¹, what is the bond dissociation energy for the F-Cl bond?

$$\frac{1}{2}$$
 F₂(g) + $\frac{1}{2}$ Cl₂(g) \rightarrow FCl(g)

- **A** 200 kJ mol⁻¹
- ***B** 254 kJ mol⁻¹
- **C** 146 kJ mol⁻¹
- **D** 454 kJ mol⁻¹
- **E** 346 kJ mol⁻¹
- **39** Which of the following has the greatest number of unpaired electrons in its ground electronic state?
 - A AI
 - B Cl
 - ***C** Ti²⁺
 - D Zn²⁺
 - **E** S²⁻
- **40** Let HA represent a weak monoprotic acid with $K_a = 1.0 \times 10^{-5}$. In an experiment, a 50.0 mL sample of 0.10 mol L⁻¹ HA(aq) is titrated with 0.10 mol L⁻¹ NaOH(aq). At which point during the titration are the equilibrium concentrations of H⁺ and OH⁻ equal?
 - A after the addition of exactly 25.0 mL of NaOH(aq)
 - *B after the addition of slightly less than 50.0 mL of NaOH(aq)
 - C after the addition of exactly 50.0 mL of NaOH(aq)
 - D after the addition of more than 50.0 mL of NaOH(aq)
 - **E** The equilibrium concentrations of H^+ and OH^- are never equal.