CHEM 13 NEWS EXAM 2011 - Answers

1 At $25{ }^{\circ} \mathrm{C}$ and 100 kPa , most of the known elements are
A monatomic gases
B diatomic gases
C liquids
*D metallic solids
E non-metallic or semi-metallic solids

2 Which of the following series lists the compounds in order of increasing boiling point? (from lowest to highest)

A $\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{O}$
*B $\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{2} \mathrm{O}$
C $\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}$
D $\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}$
E $\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{~S}$

3 In which of the following compounds does oxygen have the highest oxidation state?

A CsO_{2}
B $\mathrm{H}_{2} \mathrm{O}$
C O_{2}
D $\mathrm{H}_{2} \mathrm{O}_{2}$
*E OF 2

4 Which of the following processes is the most endothermic?

A $\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
B $\mathrm{F}(\mathrm{g})+\mathrm{e}^{-} \longrightarrow \mathrm{F}^{-}(\mathrm{g})$
C $\mathrm{NaCl}(\mathrm{s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{NaCl}(\mathrm{aq})$
*D $\mathrm{Na}(\mathrm{g}) \longrightarrow \mathrm{Na}^{+}(\mathrm{g})+\mathrm{e}^{-}$
E $\mathrm{K}^{+}(\mathrm{g})+\mathrm{Cl}^{-}(\mathrm{g}) \longrightarrow \mathrm{KCl}(\mathrm{s})$

5 Which of the following atoms has electrons in its outermost shell arranged in the configuration $4 s^{2} 4 p^{3}$? Assume each atom is in its lowest energy state.

A Rb
B Kr
*C As
D Cr
E Sb

6 The following reaction reaches equilibrium in a closed reaction vessel at $200^{\circ} \mathrm{C}$.

$$
\mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}), \Delta H^{\circ}=-206 \mathrm{~kJ}
$$

Which of the following actions causes the reaction to proceed from left to right in order to restore equilibrium?

A increasing the volume of the container, holding temperature constant

B adding some CH_{4} gas to the system, with volume and temperature held constant

* \mathbf{C} adding some H_{2} gas to the system, with volume and temperature held constant

D increasing the temperature, holding the pressure constant

E removing some CO gas from the system, with volume and temperature held constant

7 At a certain temperature, the following equilibrium constants have been measured.
$\mathrm{A}_{2}(\mathrm{~s})+2 \mathrm{~B}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{C}(\mathrm{g})$
$K_{1}=36$
$\mathrm{D}(\mathrm{s})+2 \mathrm{E}(\mathrm{g}) \rightleftharpoons \mathrm{C}(\mathrm{g})$
$K_{2}=20$

What is the equilibrium constant at the same temperature for the reaction below?

$$
1 / 2 \mathrm{~A}_{2}(\mathrm{~s})+\mathrm{B}(\mathrm{~g}) \rightleftharpoons \mathrm{D}(\mathrm{~s})+2 \mathrm{E}(\mathrm{~g})
$$

A 720
B 1.8
C 0.56
*D 0.30
E 0.090

8 In a particular solution, $\left[\mathrm{Br}^{-1}\right]=0.020 \mathrm{~mol} \mathrm{~L}^{-1}$ and $\left[\mathrm{CrO}_{4}^{2-}\right]=0.0030 \mathrm{~mol} \mathrm{~L}^{-1}$. Finely-divided solid silver nitrate, AgNO_{3}, is slowly added to the solution. What is $\left[\mathrm{Br}^{-}\right]$when $\mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s})$ just begins to precipitate?
*A $2.1 \times 10^{-8} \mathrm{~mol} \mathrm{~L}^{-1}$
B $6.0 \times 10^{-8} \mathrm{~mol} \mathrm{~L}^{-1}$
C $2.7 \times 10^{-7} \mathrm{~mol} \mathrm{~L}^{-1}$

	$\boldsymbol{K}_{\text {sp }}$
$\mathrm{Ag}_{2} \mathrm{CrO}_{4}$	1.9×10^{-12}
AgBr	5.2×10^{-13}

D $5.2 \times 10^{-13} \mathrm{~mol} \mathrm{~L}^{-1}$
E $6.4 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$

9 What is the formula of the stable compound formed by magnesium and nitrogen?

A MgN
B $\mathrm{Mg}_{2} \mathrm{~N}$
${ }^{*} \mathrm{C}_{\mathrm{Mg}}^{3} \mathrm{~N}_{2}$
D $\mathrm{Mg}_{2} \mathrm{~N}_{3}$
E MgN_{2}

10 Which of the following ions has the smallest tendency to be protonated when dissolved in liquid acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{I})$?

A hydroxide, OH^{-}
B fluoride, F^{-}
C chloride, Cl^{-}
D bromide, Br^{-}
*E iodide, I^{-}

11 X -ray radiation is more energetic than microwave radiation because

A photons of X-ray radiation travel faster than those of microwave radiation

B photons of X-ray radiation are heavier than those of microwave radiation
*C X-ray radiation has a higher frequency than does microwave radiation

D X-ray radiation has a longer wavelength than does microwave radiation

E photons of X-ray radiation travel slower than those of microwave radiation

12 Which of the following contains only single bonds?
A NO^{+}
B CO
C CN^{-}
D $\mathrm{N}_{2}{ }^{2-}$
${ }^{*} \mathrm{E} \quad \mathrm{O}_{2}{ }^{2-}$

13 What is the empirical formula of a compound that is 66.64% carbon, 7.45% hydrogen and 25.91% nitrogen by mass?
${ }^{*} A \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}$
B $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}$
C $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}$
D $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}$
E $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~N}_{2}$

14 Let $D_{\mathrm{C}=\mathrm{C}}$ represent the $\mathrm{C}=\mathrm{C}$ bond dissociation energy in ethene, $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$, and $\mathrm{D}_{\mathrm{C}-\mathrm{c}}$ the $\mathrm{C}-\mathrm{C}$ bond dissociation energy in ethane, $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{3}$. How do these bond dissociation energies compare?

A $D_{\mathrm{C}=\mathrm{c}}$ equals $D_{\mathrm{C}-\mathrm{c}}$
B $\quad D_{\mathrm{C}=\mathrm{c}}$ is exactly equal to $2 \times D_{\mathrm{C}-\mathrm{c}}$
C $D_{\mathrm{C}=\mathrm{C}}$ is exactly equal to $1 / 2 \times D_{\mathrm{C}-\mathrm{C}}$
*D $D_{\mathrm{C}=\mathrm{C}}$ is greater than $D_{\mathrm{C}-\mathrm{c}}$ but less than $2 \times D_{\mathrm{C}-\mathrm{c}}$
E $\quad D_{\mathrm{C}=\mathrm{C}}$ is greater than $2 \times D_{\mathrm{C}-\mathrm{C}}$

15 Which of the following bonds is most polar?
A B-O
*B B-F
C $\mathrm{C}-\mathrm{O}$
D $\mathrm{C}=\mathrm{O}$
E C-F

16 Consider the following energy level diagram for the reaction $R \rightarrow P$.

Reaction progress

Which of the following statements is false?
*A The conversion of R to P occurs via a two-step process.

B X and Y represent reaction intermediates.
C The conversion of R to P is endothermic.
D At equilibrium, the rate of conversion of R to P is equal to the rate of conversion of P to R.

E The rate-limiting step is the conversion of X to Y .

17 A solution in which the bromide concentration is $2.0 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$ is in equilibrium with solid AgBr and solid Agl. What is the concentration of iodide ion?

A $2.6 \times 10^{-8} \mathrm{~mol} \mathrm{~L}^{-1}$
*B $5.8 \times 10^{-9} \mathrm{~mol} \mathrm{~L}^{-1}$

	$\boldsymbol{K}_{\text {sp }}$
AgBr	5.2×10^{-13}
AgI	1.5×10^{-16}

C $1.5 \times 10^{-16} \mathrm{~mol} \mathrm{~L}^{-1}$
D $7.5 \times 10^{-12} \mathrm{~mol} \mathrm{~L}^{-1}$
E $2.9 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$

18 Consider the hydrogen halides $\mathrm{HF}, \mathrm{HCl}, \mathrm{HBr}$ and HI . Which of the statements about them is true?

A They are all strong acids.
B They are all weak acids.
C The boiling point increases with molar mass.
D The bond dissociation energy increases with molar mass.
*E none of above

19 For the reaction below, $K_{\mathrm{c}}=1.0 \times 10^{-20}$.

$$
2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}(\mathrm{~g}) \rightleftharpoons \mathrm{C}(\mathrm{~g})
$$

In an experiment, 1.0 mol each of A, B and C are placed in an empty 1.0 L container and then the container is quickly sealed. When equilibrium is established, which of the following will be true?

A $[\mathrm{A}]<[\mathrm{B}]<[\mathrm{C}]$
*B $[\mathrm{A}]>[\mathrm{B}]>[\mathrm{C}]$
C $[\mathrm{A}]=[\mathrm{B}]=[\mathrm{C}]$
D $[\mathrm{A}]=[\mathrm{B}]<[\mathrm{C}]$
E $[\mathrm{A}]>[\mathrm{B}]=[\mathrm{C}]$

20 What percentage of $\mathrm{CH}_{3} \mathrm{COOH}$ molecules are ionized in $1.8 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$?

A 1.8%
B 4.2%
C 42%
*D 62\%
E almost 100\%

21 A technician recorded the following curve during a titration.

The curve represents the titration of a
A weak acid by adding strong base
B strong acid by adding weak base
C strong base by adding weak acid
D strong base by adding strong acid
*E a weak base by adding strong acid

Use the table of standard reduction potentials given below to answer questions 22 through 25.

Half-Reaction	E°
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightleftharpoons \mathrm{Ag}(\mathrm{s})$	+0.80 V
$\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+4 \mathrm{e}^{-} \rightleftharpoons 4 \mathrm{OH}^{-}(\mathrm{aq})$	+0.40 V
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})$	0.0 V
$\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Sn}(\mathrm{s})$	-0.14 V
$\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Ni}(\mathrm{s})$	-0.25 V
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}(\mathrm{s})$	-0.41 V
$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Zn}(\mathrm{s})$	-0.76 V
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{H}(\mathrm{g})+2 \mathrm{OH}^{-}(\mathrm{aq})$	-0.83 V
$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightleftharpoons \mathrm{Al}(\mathrm{s})$	-1.66 V

22 Which of the following is the strongest oxidizing agent under standard conditions?

* $A \quad \mathrm{Ag}^{+}(\mathrm{aq})$

B $\mathrm{Ag}(\mathrm{s})$
C $\mathrm{H}^{+}(\mathrm{aq})$
D Al(s)
E $\quad \mathrm{Al}^{3+}(\mathrm{aq})$

23 When $\mathrm{Ag}^{+}(\mathrm{aq})$ reacts completely with exactly one mole of $\mathrm{H}_{2}(\mathrm{~g})$ under standard conditions, how many moles of solid Ag are produced?

A 1 mol
*B 2 mol
C 0.5 mol
D 4 mol
E 0.25 mol

24 What is E° for the reaction $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$?
*A 1.23 V
B 0.43 V
C 4.06 V
D 0.43 V
E 2.06 V

25 Which of the following reagents would spontaneously reduce $\mathrm{Ni}^{2+}(\mathrm{aq})$ to $\mathrm{Ni}(\mathrm{s})$ under standard conditions?

A $\mathrm{Ag}^{+}(\mathrm{aq})$
B $\mathrm{Ag}(\mathrm{s})$
*C $\mathrm{Zn}(\mathrm{s})$
D $\mathrm{Sn}(\mathrm{s})$
E $\quad \mathrm{Al}^{3+}(\mathrm{aq})$

26 Consider the ions $\mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{Cl}^{-}$and S^{2-}. In which series are the species listed in order of decreasing radius? (from largest to smallest)
*A $\mathrm{S}^{2-}>\mathrm{Cl}^{-}>\mathrm{K}^{+}>\mathrm{Ca}^{2+}$
B $\mathrm{K}^{+}>\mathrm{Ca}^{2+}>\mathrm{S}^{2-}>\mathrm{Cl}^{-}$
C $\mathrm{S}^{2-}>\mathrm{Ca}^{2+}>\mathrm{Cl}^{-}>\mathrm{K}^{+}$
D $\mathrm{Ca}^{2+}>\mathrm{K}^{+}>\mathrm{Cl}^{-}>\mathrm{S}^{2-}$
E $\mathrm{Ca}^{2+}>\mathrm{K}^{+}>\mathrm{S}^{2-}>\mathrm{Cl}^{-}$
27 A solution is prepared by completely dissolving a solid mixture of NaOH and $\mathrm{Mg}(\mathrm{OH})_{2}$ in water. For the resulting solution, which of the following conditions must be satisfied?

A $\left[\mathrm{Na}^{+}\right]=\left[\mathrm{Mg}^{2+}\right]=\left[\mathrm{OH}^{-}\right]$
B $\left[\mathrm{Na}^{+}\right]=\left[\mathrm{Mg}^{2+}\right]=3\left[\mathrm{OH}^{-}\right]$
C $\left[\mathrm{Na}^{+}\right]+\left[\mathrm{Mg}^{2+}\right]=3\left[\mathrm{OH}^{-}\right]$
*D $\left[\mathrm{Na}^{+}\right]+2\left[\mathrm{Mg}^{2+}\right]=\left[\mathrm{OH}^{-}\right]$
E $\left[\mathrm{Na}^{+}\right]+\left[\mathrm{Mg}^{2+}\right]=\left[\mathrm{OH}^{-}\right]$

28 What is the minimum volume of water needed to dissolve completely $1.0 \mathrm{~g} \mathrm{SrF}_{2}$?
*A 9.0 L
B 150 L
$K_{\text {sp }}\left(\mathrm{SrF}_{2}\right)=2.8 \times 10^{-9}$
$\mathrm{Sr}, 87.62 \mathrm{~g} \mathrm{~mol}^{-1}$
F, $19.00 \mathrm{~g} \mathrm{~mol}^{-1}$

C 10.5 L
D 5.6 L
E 2.8 L

29 What is the molecular geometry of SF_{4} ?
A T-shaped
B tetrahedral
*C see-saw
D square planar
E square pyramidal

30 In the incomplete equation below, NH_{3} acts as a Bronsted-Lowry acid and " X " represents a BronstedLowry base. What is the conjugate base of NH_{3} ?

$$
\mathrm{NH}_{3}+\mathrm{X} \rightarrow \text { ? }
$$

A X
B XH^{+}
C NH_{4}^{+}
*D $\mathrm{NH}_{2}{ }^{-}$
E OH

31 What is the general trend observed for the first ionization energies of the elements in groups 13 through 17?

A Ionization energies tend to increase from left to right in a period, and are approximately constant in a group.
*B Ionization energies tend to increase from left to right in a period, and decrease from top to bottom in a group.

C Ionization energies tend to decrease from left to right in a period, and increase from top to bottom in a group.

D Ionization energies tend to decrease from left to right in a period, and decrease from top to bottom in a group.

E lonization energies are approximately constant in a period, and decrease from top to bottom in a group.

32 What is the hybridization of the sulfur atom in the $\mathrm{SO}_{3}{ }^{2-}$ ion?

A sp
B sp^{2}
${ }^{*} \mathrm{C} \mathrm{sp}^{3}$
D $\mathrm{sp}^{3} \mathrm{~d}$
E $\mathrm{sp}^{3} \mathrm{~d}^{2}$

33 The phase diagram for an unidentified substance is shown below.

Temperature

Which of the following statements is true?
A Liquid can be converted to solid by increasing the pressure at constant temperature.

B The melting temperature of the solid increases as pressure increases.

C Solid cannot be converted into gas without first being converted to liquid.
*D There is only one combination of temperature and pressure for which solid, liquid and gas can coexist.

E More than one of the statements above are true.

34 When the following equation is balanced using the smallest whole number coefficients, what is the coefficient of O_{2} ?

$$
\mathrm{NH}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}
$$

A 2
B 3
C 4
*D 5
E 6

35 What is $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]$ at equilibrium if 0.10 moles of $\mathrm{CH}_{3} \mathrm{COOH}$ and 0.15 moles of NaOH are dissolved in enough water to make 1.0 L of solution at $25^{\circ} \mathrm{C}$? For $\mathrm{CH}_{3} \mathrm{COOH}, K_{\mathrm{a}}=1.8 \times 10^{-5}$ at $25^{\circ} \mathrm{C}$.

A $0 \mathrm{~mol} \mathrm{~L}^{-1}$
B $1.8 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$
C $5.6 \times 10^{-10} \mathrm{~mol} \mathrm{~L}^{-1}$
*D $1.1 \times 10^{-9} \mathrm{~mol} \mathrm{~L}^{-1}$
E $1.3 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$

36 The following diagram is sometimes used to illustrate the structure of benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$.

Which of the statements concerning the structure of benzene is false?
*A The double bonds oscillate rapidly back and forth between adjacent pairs of carbon atoms.

B The H-C-C angles are 120°.
C The carbon atoms form a flat hexagonal ring.
D The oxidation state of carbon is -1 .
E The carbon-carbon bonds are all the same length.

37 A particular substance, X, decomposes such that its concentration decreases by a factor of two every 35 s . If the initial concentration of X was $1.0 \mathrm{~mol} \mathrm{~L}^{-1}$, what is [X] after exactly 140 s ?

A $0.33 \mathrm{~mol} \mathrm{~L}^{-1}$
B $0.13 \mathrm{~mol} \mathrm{~L}^{-1}$
C $0.25 \mathrm{~mol} \mathrm{~L}^{-1}$
*D $0.063 \mathrm{~mol} \mathrm{~L}^{-1}$
E $0.67 \mathrm{~mol} \mathrm{~L}^{-1}$

38 The bond dissociation energies for F_{2} and Cl_{2} are approximately 158 and $242 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively. Given that the enthalpy change for the reaction below is $\Delta H=-54 \mathrm{~kJ} \mathrm{~mol}^{-1}$, what is the bond dissociation energy for the $\mathrm{F}-\mathrm{Cl}$ bond?

$$
1 / 2 \mathrm{~F}_{2}(\mathrm{~g})+1 / 2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{FCl}(\mathrm{~g})
$$

A $200 \mathrm{~kJ} \mathrm{~mol}^{-1}$
*B $254 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C $146 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D $454 \mathrm{~kJ} \mathrm{~mol}^{-1}$
E $346 \mathrm{~kJ} \mathrm{~mol}^{-1}$

39 Which of the following has the greatest number of unpaired electrons in its ground electronic state?

A Al
B Cl
${ }^{*} \mathbf{C} \mathrm{Ti}^{2+}$
D Zn^{2+}
E S^{2-}

40 Let HA represent a weak monoprotic acid with $K_{\mathrm{a}}=1.0 \times 10^{-5}$. In an experiment, a 50.0 mL sample of $0.10 \mathrm{~mol}^{-1} \mathrm{HA}(\mathrm{aq})$ is titrated with $0.10 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NaOH}(\mathrm{aq})$. At which point during the titration are the equilibrium concentrations of H^{+} and OH^{-}equal?

A after the addition of exactly 25.0 mL of $\mathrm{NaOH}(\mathrm{aq})$
*B after the addition of slightly less than 50.0 mL of $\mathrm{NaOH}(\mathrm{aq})$

C after the addition of exactly 50.0 mL of $\mathrm{NaOH}(\mathrm{aq})$
D after the addition of more than 50.0 mL of $\mathrm{NaOH}(\mathrm{aq})$

E The equilibrium concentrations of H^{+}and OH^{-}are never equal.

