| Attribute | Performance indicators | |--|--| | Attribute | (" graduates from UWaterloo should be able to") | | Knowledge Base | 1a. Demonstrate understanding of concepts in mathematics | | | 1b. Demonstrate understanding of concepts in natural science | | | 1c. Demonstrate understanding of engineering fundamentals | | | 1d. Demonstrate understanding of specialized engineering knowledge | | Problem Analysis | 2a. Formulate a problem statement | | | 2b. Develop models to solve engineering problems including identifying approximations, | | | assumptions and constraints | | | 2c. Critically evaluate solutions of engineering problems | | Investigation | 3a. Create ¹ investigative studies of complex engineering problems | | | 3b. Gather information from relevant sources ² to address complex engineering problems | | | 3c. Synthesize information from multiple sources to reach valid conclusions | | Design ³ | 4a. Define design requirements and specifications for complex, open-ended engineering | | | problems ⁴ | | | 4b. Critically evaluate and compare design choices | | | 4c. Generate and refine potential solutions to complex, open-ended design problems | | Use of Engineering Tools | 5a. Select appropriate engineering tools ⁵ , considering their limitations | | | 5b. Modify and/or create appropriate engineering tools, identifying their limitations | | | 5c. Use engineering tools appropriately | | | 6a. Contribute as an active team member or leader ⁶ to complete individual tasks | | Individual and Team Work | 6b. Collaborate with others to complete tasks effectively ⁷ as a team | | Communication skills | 7a. Orally present information within the profession and to society at large | | | 7b. Communicate in a written format within the profession and to society at large | | | 7c. Interpret information, including instructions | | Professionalism | 8a. Articulate the roles and responsibilities of the professional engineer in society with | | | reference to the protection of the public and its interest. | | | 8b. Describe the importance of codes, standards, best practices, laws, and regulations within | | | engineering. | | Impact of Engineering | 9a. Identify the relevance of and uncertainty associated with the different aspects (social, | | | cultural, economic, health, safety, legal, environmental), of an engineering project. | | | 9b. Analyze the social, health, safety, and environmental aspects of an engineering project, | | | incorporating sustainability considerations and environmental stewardship in making | | | decisions. | | Ethics & Equity Economics & Project Management | 10a. Identify ethical and unethical behavior in professional situations | | | · | | | 10b. Identify how an engineer is accountable to multiple stakeholders in engineering | | | practice. 10c. Identify equitable and inequitable situations or behaviors | | | | | | 11a. Apply project management techniques and other business practices in engineering projects, with attention to risk and change. | | | 11b. Perform economic analyses of engineering projects with attention to uncertainty and | | | | | Life-long Learning | limitations. | | | 12a. Identify gaps in their knowledge, skills and abilities | | | 12b. Obtain and evaluate information or training from appropriate sources | | | 12c. Reflect on the use of information or training received | ¹Identifying factors that affect a system, and planning studies/experiments to determine their relationships ²Experiments, field data, literature, and other sources ³The design process can be iterative and may require going back and forth between any of these performance indicators ⁴ Including health and safety risks, applicable codes/standards, economic, environmental, cultural, and societal considerations as appropriate ⁵'Tools' is defined broadly, to include physical tools and to also include software, hardware, techniques ⁶A leader can lead by example, not necessarily in the leadership role ⁷Effective collaboration includes conflict management and fair distribution of tasks