Monday, September 20, 2021

Monday, September 20, 2021 — 11:03 to 11:03 AM EDT

Title: Spectral Properties of the exponential distance matrix

Speaker: Kate Lorenzen Affiliation: Linfield University Zoom: Contact Soffia Arnadottir

Abstract:

Given a graph $G$, the exponential distance matrix is defined entry-wise by letting the $(u,v)$-entry be $q^{dist(u,v)}$ where $dist(u,v)$ is the distance between the vertices $u$ and $v$ with the convention that if vertices are in different components, then $q^{dist(u,v)}=0$. We establish several properties of the characteristic polynomial (spectrum) for this matrix and the inertia of some graph families.

S M T W T F S
26
27
28
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
  1. 2023 (55)
    1. June (3)
    2. May (12)
    3. April (5)
    4. March (17)
    5. February (10)
    6. January (8)
  2. 2022 (150)
    1. December (8)
    2. November (18)
    3. October (15)
    4. September (11)
    5. August (2)
    6. July (17)
    7. June (17)
    8. May (10)
    9. April (12)
    10. March (18)
    11. February (10)
    12. January (13)
  3. 2021 (103)
    1. December (3)
    2. November (7)
    3. October (6)
    4. September (12)
    5. August (6)
    6. July (10)
    7. June (12)
    8. May (7)
    9. April (9)
    10. March (13)
    11. February (8)
    12. January (10)
  4. 2020 (119)
  5. 2019 (167)
  6. 2018 (136)
  7. 2017 (103)
  8. 2016 (137)
  9. 2015 (136)
  10. 2014 (88)
  11. 2013 (48)
  12. 2012 (39)
  13. 2011 (36)
  14. 2010 (40)
  15. 2009 (40)
  16. 2008 (39)
  17. 2007 (15)