Tuesday, January 18, 2022

Tuesday, January 18, 2022 — 3:00 PM EST

Title: Enumerating Matroids and Linear Spaces

Speaker: Mehtaab Sawhney Affiliation: MIT Zoom: Please email Shayla Redlin

Abstract:

We show that the number of linear spaces on a set of $n$ points and the number of rank-3 matroids on a ground set of size $n$ are both of the form $(cn+o(n))^{n^2/6}$, where $c=e^{\sqrt 3/2-3}(1+\sqrt 3)/2$. This is the final piece of the puzzle for enumerating fixed-rank matroids at this level of accuracy: there are exact formulas for enumeration of rank-1 and rank-2 matroids, and it was recently proved by van der Hofstad, Pendavingh, and van der Pol that for constant $r\ge 4$ there are $(e^{1-r}n+o(n))^{n^{r-1}/r!}$ rank-$r$ matroids on a ground set of size $n$.

S M T W T F S
26
27
28
29
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2
3
4
5
  1. 2022 (71)
    1. June (2)
    2. May (17)
    3. April (12)
    4. March (18)
    5. February (10)
    6. January (13)
  2. 2021 (103)
    1. December (3)
    2. November (7)
    3. October (6)
    4. September (12)
    5. August (6)
    6. July (10)
    7. June (12)
    8. May (7)
    9. April (9)
    10. March (13)
    11. February (8)
    12. January (10)
  3. 2020 (119)
  4. 2019 (167)
  5. 2018 (136)
  6. 2017 (103)
  7. 2016 (137)
  8. 2015 (136)
  9. 2014 (88)
  10. 2013 (48)
  11. 2012 (39)
  12. 2011 (36)
  13. 2010 (40)
  14. 2009 (40)
  15. 2008 (39)
  16. 2007 (15)