Monday, December 12, 2022

Monday, December 12, 2022 — 11:30 to 11:30 AM EST

Title: Cameron-Liebler Sets in Permutation Groups

Speaker: Venkata Raghu Tej Pantangi Affiliation: University of Regina Location: Contact Sabrina Lato for Zoom link

Abstract: Let $G \leq S_{n}$ be a transitive permutation group. Given $i,j \in [n]$, by $x_{i\to j}$, denote the characteristic function of the set $\{g \in G\ :\ g(i)=j\}$. A Cameron-Liebler set (CL set) in $G$ is a set which is represented by a Boolean function in the linear span of $\{x_{i\to j} \ :\ (i,j)\in [n]^2\}$. These are analogous to Boolean degree 1 functions on the hypercube and to Cameron-Liebler line classes in $PG(3,q)$. Sets of the form $\{g\ : g(i)\in X\}$ and $\{g\ : \ i \in g(X)\}$ (for $i \in [n]$ and $X \subset [n]$) are canonically occurring examples of CL sets. A result of Ellis et.al, shows that all CL sets in the $S_{n}$ are canonnical. In this talk, we will demonstrate many examples with ``exotic'' CL sets. Of special interest is an exotic CL set in $PSL(2,q)$ (with $q \equiv 3 \pmod{4}$), a 2-transitive group, just like $S_{n}$. The talk is based on ongoing joint work with Jozefien D'haeseleer and Karen Meagher.

Monday, December 12, 2022 — 3:00 PM EST

Title: When all holes have the same length

Speaker: Cléophée Robin Affiliation: University of Waterloo Location: MC 6029

Abstract: A hole is an induced cycle of length at least 4. For an integer k ≥ 4, we denote by Ck, the class of graphs where every hole has length k. We have defined a new class of graphs named blowup of ℓ-templates whose all holes have length 2ℓ + 1. Using earlier results on other related classes of graphs, we did obtain the following structural theorem :

S M T W T F S
29
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
1
2
3
4
  1. 2023 (35)
    1. March (17)
    2. February (10)
    3. January (8)
  2. 2022 (150)
    1. December (8)
    2. November (18)
    3. October (15)
    4. September (11)
    5. August (2)
    6. July (17)
    7. June (17)
    8. May (10)
    9. April (12)
    10. March (18)
    11. February (10)
    12. January (13)
  3. 2021 (103)
  4. 2020 (119)
  5. 2019 (167)
  6. 2018 (136)
  7. 2017 (103)
  8. 2016 (137)
  9. 2015 (136)
  10. 2014 (88)
  11. 2013 (48)
  12. 2012 (39)
  13. 2011 (36)
  14. 2010 (40)
  15. 2009 (40)
  16. 2008 (39)
  17. 2007 (15)