Monday, June 19, 2023

Monday, June 19, 2023 11:30 to 11:30 AM EDT

Title: Partial geometric designs, directed strongly regular graphs, and association scheme

Speaker: Sung Song Affiliation: Iowa State University Location: Please contact Sabrina Lato for Zoom link

Abstract: A partial geometric design with parameters $(v, b, k, r; \alpha, \beta)$ is a tactical configuration $(P, \mathcal{B})$ (with $|P|=v$, $|\mathcal{B}|=b$, every point $p\in P$ belonging to $r$ blocks, and every block $B\in\mathcal{B}$ consisting of $k$ points) satisfying the property:

{for any pair $(p, B)\in P\times \mathcal{B}$, the number of flags $(q, C)$ with $q\in B$ and $C\ni p$ equals to $\alpha  \mbox{ if } p\notin B$ and to $\beta  \mbox{ if } p\in B$.}

Neumaier studied partial geometric designs in detail in his article, ``$t\frac12$-designs," [JCT A {\bf 28}, 226-248 (1980)]. He investigated their connection with strongly-regular graphs and gave various characterizations of partial geometries, bipartite graphs, symmetric 2-designs, and transversal designs in terms of partial geometric designs.

Monday, June 19, 2023 1:00 PM EDT

Title: A Primal-Dual Extension of the Goemans--Williamson Algorithm for the Weighted Fractional Cut Covering Problem

Speaker: Nathan Benedetto Proenca Affiliation: University of Waterloo Location: MC 6029

Abstract:

A cut in a graph \(G = (V, E)\) is a set of edges which has precisely one endpoint in \(S\), for a given subset \(S\) of \(V\). The fractional cut-covering number is the optimal value of a linear programming relaxation for the problem of covering each edge by a set of cuts. We define a semidefinite programming relaxation of fractional cut covering whose approximate optimal solutions may be rounded into a fractional cut cover via a randomized algorithm.

Monday, June 19, 2023 2:30 PM EDT

Title: An invitation to monotone operators and their applications in optimization

Speaker: Walaa Moursi Affiliation: University of Waterloo Location: MC 5479

Abstract: In this talk, I give an overview of the theory of monotone operators and its connection to optimization algorithms. This talk is a good introduction to how abstract theoretical results serve as bases for successful algorithms in practice.  

S M T W T F S
28
29
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
  1. 2023 (146)
    1. December (6)
    2. November (17)
    3. October (14)
    4. September (10)
    5. August (7)
    6. July (19)
    7. June (21)
    8. May (12)
    9. April (5)
    10. March (17)
    11. February (10)
    12. January (8)
  2. 2022 (150)
    1. December (8)
    2. November (18)
    3. October (15)
    4. September (11)
    5. August (2)
    6. July (17)
    7. June (17)
    8. May (10)
    9. April (12)
    10. March (18)
    11. February (10)
    12. January (13)
  3. 2021 (103)
  4. 2020 (119)
  5. 2019 (167)
  6. 2018 (136)
  7. 2017 (103)
  8. 2016 (137)
  9. 2015 (136)
  10. 2014 (88)
  11. 2013 (48)
  12. 2012 (39)
  13. 2011 (36)
  14. 2010 (40)
  15. 2009 (40)
  16. 2008 (39)
  17. 2007 (15)