Self-Concordant Barriers for Hyperbolic Means

Adrian S. Lewis and Hristo S. Sendov

Abstract The geometric mean and the function $(\det(\cdot))^{1/m}$ (on the m-by-m positive definite matrices) are examples of “hyperbolic means”: functions of the form $p^{1/m}$, where p is a hyperbolic polynomial of degree m. (A homogeneous polynomial p is “hyperbolic” with respect to a vector d if the polynomial $t \mapsto p(x + td)$ has only real roots for every vector x.) Any hyperbolic mean is positively homogeneous and concave (on a suitable domain): we present a self-concordant barrier for its hypograph, with barrier parameter $O(m)$. Our approach shows, for example, that the function $-m \log(\det(\cdot) - 1)$ is an m-self-concordant barrier on a natural domain. Such barriers suggest novel interior point approaches to convex programs involving hyperbolic means.