Packing Odd-Circuits in Eulerian Graphs

James F. Geelen and Bertrand Guenin

Abstract Let \mathcal{C} be the clutter of odd circuits of a signed graph (G, Σ). For nonnegative integral edge-weights w, we are interested in the linear program $\min(w^t x : x(C) \geq 1$ for $C \in \mathcal{C}$, and $x \geq 0)$, which we denote by (P). Solving the related integer program is clearly equivalent to the maximum cut problem, which is NP-hard. Guenin proved that (P) has an optimal solution that is integral so long as (G, Σ) does not contain a minor isomorphic to odd-K_5. We generalize this by showing that, if (G, Σ) does not contain a minor isomorphic to odd-K_5 then (P) has an integral optimal solution and its dual has a half-integral optimal solution.