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1. Consider the univariate function

f(x) :=

{
ex for x < 0,
x+ 1 for x ≥ 0.

(a) Show that this function is convex. Any standard theorem that characterizes con-
vexity of functions may be used.

(b) Show that the gradient of this function is Lipschitz continuous, and find L, the
Lipschitz constant of the gradient.

(c) Since f ′ is Lipschitz continuous, Zoutendijk’s theorem for minimizing f using steep-
est descent is applicable. State Zoutendijk’s theorem and the conclusion as it applies
to this function f .

(d) Suppose that xk = 0 on the kth iteration of the steepest descent method. Identify
an interval of positive width of choices for xk+1 that satisfy the Wolfe conditions.
(Select any reasonable values for the constants appearing in Wolfe’s conditions, and
state what values you used.)
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2. Let n be a positive integer.

(a) Assume f : Rn → (−∞,+∞] is positively 1-homogeneous. Show that it is subad-
ditive if and only if it is convex.

(b) Recall, if f : Rn → R satisfies

(i) f(x) > 0,∀x ∈ Rn \ {0},
(ii) f(u+ v) ≤ f(u) + f(v), ∀u, v ∈ Rn,

(iii) f(λx) = |λ|f(x),∀x ∈ Rn,∀λ ∈ R,
then f is a norm on Rn. Let

F := {f : f is a norm on Rn} ,

and

C := {C ⊂ Rn : C is compact, convex, 0 ∈ int (C) and C = −C} .

Prove that (with γ being the gauge function)

f(·) := γ(C; ·) and C := {x ∈ Rn : f(x) ≤ 1}

define a one-to-one correspondence between F and C.
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3. Let n be a positive integer and f : Rn → (−∞,+∞] be convex.

(a) Define the notion of subgradient of f at x̄ ∈ Rn.

(b) Define the notion of subdifferential of f at x̄ ∈ Rn.

(c) Let f(x) := ||x||∞. What is the subdifferential of f at a given x̄ ∈ Rn? Prove your
claims.

For the remaining parts of this question, let m and n be positive integers such that
n ≥ m+ 1, and consider linear programming problems in the form

(P)

p∗ := min c>x
s.t. Ax = 0

e>x = n
x ∈ Rn

+,

where A is a given full row rank m-by-n matrix, c ∈ Rn is also given. e ∈ Rn is
the vector of all ones. Assume that Ae = 0, p∗ = 0 and c>e > 0. In your answers,
you may use the Fundamental Theorem of LP, provided you state it clearly and
correctly. For every q ∈ R++, define

φq(x) :=

{
(q + 1) ln

(
c>x
)
− ln (minj{xj}) , if x ∈ Rn

++

+∞, otherwise,

and consider the optimization problem

(Pq)
v(Pq) := inf φq(x)

s.t. Ax = 0
e>x = n.

(d) Prove that for every q ∈ R++, v(Pq) = −∞ (i.e., (Pq) is unbounded). Further
prove that for every q ∈ R++, (P) and (Pq) are equivalent (by stating a suitable
definition of equivalence and proving it).
Hint:

• (P) has optimal solution(s),

• (Pq) has feasible sequences in the domain of φq which certify unboundedness
of (Pq).

(e) Let f : Rn
++ → R be defined by f(x) := − ln (minj{xj}). What is the subdifferen-

tial of f at a given x̄ ∈ Rn
++? Prove your claims.
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4. Let a1, . . . , an ∈ Rd be given, and consider the following optimization problem in which
x1, . . . , xn ∈ Rd are the unknowns (i.e., nd total variables), λ > 0 is a fixed parameter,
and all norms are Euclidean:

min
x1,...,xn

f(x) :=
1

2

n∑
i=1

‖xi − ai‖2 + λ
∑

1≤i<j≤n

‖xi − xj‖.

(Note: This formulation arises in “sum-of-norms” clustering.)

(a) What is the definition of “strongly convex”? Suppose g, h : Rn → R are two convex
functions such that g is strongly convex. Prove that g + h is also strongly convex.

(b) Apply the result in (a) to the function at hand to conclude that f is strongly
convex. Justify your answer.

(c) By introducing auxiliary variables, rewrite the problem of minimizing f as a con-
strained optimization in standard conic form min cTx subject to Ax = b, x ∈ K (not
necessarily the same x), where the convex cone K is a Cartesian product of second-
order cones. The following standard trick may help: the convex quadratic constraint
s ≥ ‖x‖2/2 may be expressed in second-order cone form:

1

2
(s+ 1) ≥

∥∥∥∥[x;
1√
2

(s− 1)

]∥∥∥∥ ,
where the notation on the right-hand side indicates concatenation of a vector and
scalar.
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