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1. Consider the univariate function

e’ for z < 0,
f(:B)_{ x+1 forz>0.

(a) Show that this function is convex. Any standard theorem that characterizes con-
vexity of functions may be used.

(b) Show that the gradient of this function is Lipschitz continuous, and find L, the
Lipschitz constant of the gradient.

(c) Since f’ is Lipschitz continuous, Zoutendijk’s theorem for minimizing f using steep-
est descent is applicable. State Zoutendijk’s theorem and the conclusion as it applies
to this function f.

(d) Suppose that xx = 0 on the kth iteration of the steepest descent method. Identify
an interval of positive width of choices for xp,; that satisfy the Wolfe conditions.
(Select any reasonable values for the constants appearing in Wolfe’s conditions, and
state what values you used.)



2. Let n be a positive integer.

(a) Assume f:R" — (—o0,400] is positively 1-homogeneous. Show that it is subad-
ditive if and only if it is convex.

(b) Recall, if f: R™ — R satisfies
(i) f(z)>0,vx € R\ {0},

(ii) f(u+wv) < f(u) + f(v),Vu,v € R",

(iii) f(Ax) = |A|f(x),Vx € R", VA € R,

then f is a norm on R™. Let

F:={f:fisanormonR"},
and
C :={C Cc R": C is compact, convex, 0 € int (C') and C' = —C'}.
Prove that (with  being the gauge function)

f():=~(C;-) and C:={x e R": f(z) < 1}

define a one-to-one correspondence between F and C.



3. Let n be a positive integer and f : R" — (—o00, +00] be convex.

(a)
(b)
()

Define the notion of subgradient of f at z € R".
Define the notion of subdifferential of f at x € R".
Let f(z) := ||z||,. What is the subdifferential of f at a given z € R"? Prove your

claims.

For the remaining parts of this question, let m and n be positive integers such that
n > m + 1, and consider linear programming problems in the form

*

pfi=min c'z
st. Az =0
(P) T,
r € RY,

where A is a given full row rank m-by-n matrix, ¢ € R" is also given. e € R" is
the vector of all ones. Assume that Ae =0, p* =0 and c¢'e > 0. In your answers,
you may use the Fundamental Theorem of LP, provided you state it clearly and
correctly. For every ¢ € Ry, define

(¢4 1)In(c'z) — In (min;{z;}), ifz € RY,
—+00, otherwise,

o) = {
and consider the optimization problem

v(P,) :==inf ¢,(z)

(P,) st. Az =0
e’z =n.
Prove that for every ¢ € Ry, v(P,) = —oo (i.e., (F,) is unbounded). Further

prove that for every ¢ € Ry, (P) and (F,) are equivalent (by stating a suitable
definition of equivalence and proving it).
Hint:
e (P) has optimal solution(s),
e (P,) has feasible sequences in the domain of ¢, which certify unboundedness
of (P,).

Let f: R}, — R be defined by f(z) := —In (min;{z;}). What is the subdifferen-
tial of f at a given € R} | 7 Prove your claims.



4. Let ay,...,a, € R?be given, and consider the following optimization problem in which
T1,...,7, € R? are the unknowns (i.e., nd total variables), A > 0 is a fixed parameter,
and all norms are Euclidean:

. RS
min f(x) 3:§Z||$i—ai||2+/\ >l —all.
=1

T1,...,T
yeeeydm 1§z<]§n

(Note: This formulation arises in “sum-of-norms” clustering.)

(a) What is the definition of “strongly convex”? Suppose g, h : R™ — R are two convex
functions such that g is strongly convex. Prove that g + h is also strongly convex.

(b) Apply the result in (a) to the function at hand to conclude that f is strongly
convex. Justify your answer.

(¢) By introducing auxiliary variables, rewrite the problem of minimizing f as a con-
strained optimization in standard conic form min ¢’z subject to Az = b, x € K (not
necessarily the same z), where the convex cone K is a Cartesian product of second-
order cones. The following standard trick may help: the convex quadratic constraint
s > ||z]|?/2 may be expressed in second-order cone form:

<o)l

where the notation on the right-hand side indicates concatenation of a vector and
scalar.
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