University of Waterloo
Department of C&O

PhD Comprehensive Examination in Cryptography
Spring 2003
Examiners: A. Menezes and E. Teske

July 2, 2003
1:00 pm — 4:00 pm
MC 5158A
Instructions

Answer as many questions as you can. Complete answers are preferred over fragmented ones. Questions have equal value.

Questions

1. Chosen-plaintext attack on two-key Triple-DES
 Recall that DES is a block cipher with key space \(K = \{0,1\}^{56} \), plaintext space \(M = \{0,1\}^{64} \), and ciphertext space \(C = \{0,1\}^{64} \). Encryption for two-key Triple-DES is defined as follows:
 \[
 E_k(m) = \text{DES}_{k_1}(\text{DES}^{-1}_{k_2}(\text{DES}_{k_1}(m)))
 \]
 where \(k = (k_1, k_2) \), and \(k_1, k_2 \in \{0,1\}^{56} \) is the secret key. Design a chosen-plaintext attack on two-key Triple-DES that takes roughly \(2^{56} \) steps. (A step is a DES encryption or decryption operation.) Provide an explanation of why your attack works, and a careful estimate of its space and time requirements. (Hint: your attack may need a lot of chosen plaintext/ciphertext pairs.)

2. Elementary number theory
 (a) Prove that if \(p = 2^m + 1 \) is prime, then \(m \) is a power of 2.
 (b) Suppose that \(p = 2^m + 1 \) is prime. Prove that any quadratic nonresidue is a generator of \(\mathbb{F}_p^* \).
 (c) Suppose that \(p = 2^m + 1 \) is prime. Prove that 5 is a generator of \(\mathbb{F}_p^* \), except in the case \(p = 5 \).

3. Partial key-exposure in RSA
 This exercise shows that if the encryption exponent in RSA is \(e = 3 \), then the left half of the bits of \(d \) can be very easily computed. (More precisely, the possible values for the left half of the bits can be narrowed to one or two.)
 Let \(n = pq \) where \(p \) and \(q \) are primes with \(5 \leq p < q < 2p \). Let integers \(e \) and \(d \) satisfy \(1 < e, d < \phi(n) \) and \(ed \equiv 1 \pmod{\phi(n)} \).
 (a) Prove that there exists an integer \(k \) satisfying \(ed - k\phi(n) = 1 \) and \(1 \leq k < e \).
 (b) Let \(\tilde{d} = \lfloor \frac{kn+1}{e} \rfloor \). Prove that \(|\tilde{d} - d| < 3\sqrt{n} \).
 (c) Prove that if \(e = 3 \) then \(k = 2 \).

4. Diffie-Hellman problem
 This exercise shows that the hardness of the Diffie-Hellman problem does not depend on the choice of generator.
 Let \(G \) be a (cyclic) group of prime order \(n > 2 \), and let \(\alpha \) be a generator of \(G \). We assume that the group operation in \(G \) can be computed in polynomial time. Recall that the Diffie-Hellman problem for \(G \) with respect to \(\alpha \) (DHP\(_\alpha\)) is the following: given \(\alpha^a \) and \(\alpha^b \), compute \(\alpha^{ab} \). In this question, you are given a polynomial-time algorithm \(A \) which solves DHP\(_\alpha\).
 (a) Devise a polynomial-time algorithm which on input \(\alpha^a \) and a positive integer \(k \), outputs \(\alpha^{ak} \).
 (b) Devise a polynomial-time algorithm which on input \(\alpha^a \) (with \(a \not\equiv 1 \pmod{n} \)), outputs \(\alpha^{a^{-1}} \).
 (c) Let \(\beta \) be a generator of \(G \). Devise a polynomial-time algorithm for solving DHP\(_\beta\) (i.e., given \(\beta^a \) and \(\beta^b \), compute \(\beta^{ab} \)).
5. **Security of the basic ElGamal public-key encryption scheme**

Let G be a (cyclic) group of prime order $n > 2$, and let α be a generator of G. We assume that the group operation in G can be computed in polynomial time. Recall that the Diffie-Hellman problem for G with respect to α (DHP$_{\alpha}$) is the following: given α^a and α^b, compute α^{ab}. The decision Diffie-Hellman problem for G with respect to α (DDHP$_{\alpha}$) is the following: given α^a, α^b and α^c, decide whether $c \equiv ab \pmod{n}$.

In the basic ElGamal public-key encryption scheme, Alice's private key is an integer $a \in [1, n - 1]$, and her public key is $\beta = \alpha^a$. To encrypt a plaintext message $m \in G$ for Alice, Bob selects $k \in_R [1, n - 1]$, and sends the ciphertext $C = (\alpha^k, m\beta^k)$ to Alice.

In the following, we consider ciphertext-only attacks on the basic ElGamal public-key encryption scheme. The attacker has knowledge of the group parameters, Alice's public key β, and one or more ciphers.

(a) The ElGamal-decrypt problem is the following: Given a public key β and a ciphertext C, compute the corresponding plaintext. Prove that the ElGamal-decrypt problem is polynomial-time equivalent to DHP$_{\alpha}$.

(b) Prove that the semantic security of the basic ElGamal public-key encryption scheme (under ciphertext-only attack) is polynomial-time equivalent to DDHP$_{\alpha}$.

(c) Is the basic ElGamal public-key encryption scheme semantically secure against chosen-ciphertext attacks? (Justify your answer.)

6. **Elliptic curves**

Let q be a power of an odd prime, $q \equiv 2 \pmod{3}$.

(a) Prove that the mapping $x \mapsto x^3$ is a 1-1 map of \mathbb{F}_q to itself.

(b) Consider the elliptic curve $E : y^2 = x^3 + b$ defined over \mathbb{F}_q. Prove that the number of points in $E(\mathbb{F}_q)$ is $q + 1$.

(c) Prove that $E(\mathbb{F}_q)$ is cyclic.