University of Waterloo
Department of C&O

PhD Comprehensive Examination in Cryptography
Summer 2007
Examiners: D. Jao and A. Menezes

June 26, 2007
1:00 pm — 4:00 pm
MC 5158A
Instructions

Answer as many questions as you can. Complete answers are preferred over fragmented ones. Questions have equal value.

Questions

1. Hash functions

(a) Is a collision-resistant hash function necessarily preimage resistant?

(b) Let \((n, e)\) be an RSA public key, where \(n\) is 2048 bits in length. The corresponding RSA private key is not known to anyone. Define a hash function \(H : \{0, 1\}^* \rightarrow [0, n - 1]\) as follows: \(H(m) = \overline{m^e} \mod n\), where \(\overline{m}\) denotes the integer whose binary representation is \(m\). Is \(H\) preimage resistant? (Justify your answer.) Is \(H\) collision resistant? (Justify your answer.)

(c) Let \(IV \in \{0, 1\}^n\) be a fixed initialization vector, and let \(f : \{0, 1\}^{n+r} \rightarrow \{0, 1\}^n\) be a compression function. Define the hash function \(H\) as follows: to hash a message \(x\) of bitlength \(b < 2^r\), the message is first divided into \(r\)-bit blocks: \(x = x_1, x_2, \ldots, x_t\) (where the last block is padded with 0 bits if necessary). Define \(x_{t+1}\) to be the right-justified binary representation of \(b\). Define \(H_0 = IV\) and \(H_i = f(H_{i-1}, x_i)\) for \(i = 1, 2, \ldots, t + 1\). Then \(H(x)\) is defined to be \(H_{t+1}\).

Prove that if \(f\) is collision resistant, then \(H\) is also collision resistant.

2. Elementary number theory

(a) Let \(p\) be an odd prime. Prove that a quadratic residue modulo \(p\) can never be a generator of \(\mathbb{F}_p^*\).

(b) Let \(p\) be an odd prime. Prove that \(-3\) is a quadratic residue modulo \(p\) if and only if \(p \equiv 1 \pmod{3}\).

(c) Let \(p > 3\) be a Mersenne prime. Prove that 3 is a quadratic nonresidue modulo \(p\).

3. Discrete logarithm problem

Let \(p = 2^{2^k} + 1\) be a prime number. Describe and analyze a polynomial-time algorithm for solving the discrete logarithm problem in \(\mathbb{F}_p^*\). (Recall that the DLP in \(\mathbb{F}_p^*\) is the following: given \(p\), a generator \(\alpha\) of \(\mathbb{F}_p^*\), and \(\beta \in \mathbb{F}_p^*\), find the integer \(l \in [0, p - 2]\) such that \(\beta = \alpha^l \mod p\).)

4. Security of the basic ElGamal public-key encryption scheme

Let \(G\) be a (cyclic) group of prime order \(n > 2\), and let \(\alpha\) be a generator of \(G\). We assume that the group operation in \(G\) can be computed in polynomial time. Recall that the Diffie-Hellman problem for \(G\) with respect to \(\alpha\) (DHP\(_\alpha\)) is the following: given \(\alpha^a\) and \(\alpha^b\), compute \(\alpha^{ab}\). The decision Diffie-Hellman problem for \(G\) with respect to \(\alpha\) (DDHP\(_\alpha\)) is the following: given \(\alpha^a\), \(\alpha^b\) and \(\alpha^c\), decide whether \(c \equiv ab \pmod{n}\).

In the basic ElGamal public-key encryption scheme, Alice’s private key is an integer \(a \in [1, n - 1]\), and her public key is \(\beta = \alpha^a\). To encrypt a plaintext message \(m \in G\) for Alice, Bob selects \(k \in_R [1, n - 1]\), and sends the ciphertext \(C = (\alpha^k, m\beta^k)\) to Alice.

In the following, we consider ciphertext-only attacks on the basic ElGamal public-key encryption scheme. The attacker has knowledge of the group parameters, Alice’s public key \(\beta\), and one or more ciphertexts.
(a) The ElGamal-decrypt problem is the following: Given a public key β and a ciphertext C, compute the corresponding plaintext. Prove that the ElGamal-decrypt problem is polynomial-time equivalent to DHP$_\alpha$.

(b) Prove that the semantic security of the basic ElGamal public-key encryption scheme (under ciphertext-only attack) is polynomial-time equivalent to DDHP$_\alpha$.

(c) Is the basic ElGamal public-key encryption scheme semantically secure against chosen-ciphertext attacks? (Justify your answer.)

5. Weil pairing
Let E be an elliptic curve over a field, and suppose $P, Q \in E[n]$ for some $n > 0$.

(a) Give the formula for the Weil pairing $e(P, Q)$ of P and Q.

(b) Prove that the choice of divisors in the formula does not affect the value of $e(P, Q)$. You may assume Weil reciprocity.

(c) Prove that the Weil pairing is bilinear.

6. Embedding degree
Let E be an elliptic curve defined over \mathbb{F}_q, and denote by n the largest prime factor of $\#E(\mathbb{F}_q)$. Recall that the embedding degree of E is by definition equal to the multiplicative order of q in $(\mathbb{Z}/n\mathbb{Z})^*$.

(a) Let k be an integer. Prove that the embedding degree of E divides k if and only if $n \mid (t-1)^k - 1$, where t is the trace of E.

(b) Suppose $q = p^2$ and $t = p$ where p is prime. Determine the embedding degree of E.