CORR 99-04

Computing Discrete Logarithms in High-Genus Hyperelliptic Jacobians in Provably Subexponential Time

Andreas Enge*

Abstract

We provide a subexponential algorithm for solving the discrete logarithm problem in Jacobians of high-genus hyperelliptic curves over finite fields. More precisely, the running time for instances with genus g and underlying finite field \mathbb{F}_{q} satisfying $g \geq \theta \log q$ for a positive constant θ is given by $O\left(e^{\left(\frac{5}{2 \sqrt{3}}\left(\sqrt{1+\frac{3}{\theta}}+\sqrt{\frac{3}{\theta}}\right)+o(1)\right) \sqrt{(g \log q) \log (g \log q)}}\right)$. The algorithm works over any finite field, and its running time does not rely on any unproven assumptions.

