CORR 99-18

The Size of the Fundamental Solutions of Consecutive Pell Equations

M.J. Jacobson, Jr. and H.C. Williams*

Abstract

Let D be a positive integer such that $D, D-1$ are not perfect squares; denote by $X_{0}, Y_{0}, X_{1}, Y_{1}$ the least positive integers such that $X_{0}^{2}-(D-1) Y_{0}^{2}=1, X_{1}^{2}-D Y_{1}^{2}=1$; and put $\rho(D)=\log X_{1} / \log X_{0}$. We prove here that $\rho(D)$ can be arbitrarily large. Indeed, we exhibit an infinite family of values of D for which $\rho(D) \gg D^{1 / 6} / \log D$. We also provide some heuristic reasoning which suggests that there exists an infinitude of values of D for which $\rho(D) \gg \sqrt{D} \log \log D / \log D$, and that this is the best possible result under the Extended Riemann Hypothesis. Finally, we present some numerical evidence in support of this heuristic.

