CORR 99-18

The Size of the Fundamental Solutions of Consecutive Pell Equations

M.J. Jacobson, Jr. and H.C. Williams*

Abstract Let D be a positive integer such that D, D - 1 are not perfect squares; denote by X_0, Y_0, X_1, Y_1 the least positive integers such that $X_0^2 - (D-1)Y_0^2 = 1, X_1^2 - DY_1^2 = 1$; and put $\rho(D) = \log X_1 / \log X_0$. We prove here that $\rho(D)$ can be arbitrarily large. Indeed, we exhibit an infinite family of values of D for which $\rho(D) \gg D^{1/6} / \log D$. We also provide some heuristic reasoning which suggests that there exists an infinitude of values of D for which $\rho(D) \gg \sqrt{D} \log \log D / \log D$, and that this is the best possible result under the Extended Riemann Hypothesis. Finally, we present some numerical evidence in support of this heuristic.