CORR 99-32

New Quadratic Polynomials with High Densities of Prime Values

Michael J. Jacobson, Jr. and Hugh C. Williams

Abstract

Hardy and Littlewood's Conjecture F [10] implies that the asymptotic density of prime values of the polynomials $f_{A}(x)=x^{2}+x+A, A \in$ \mathbb{Z} is related to the discriminant $\triangle=1-4 A$ of $f_{A}(x)$ via a quantity $C(\triangle)$. The larger $C(\triangle)$ is, the higher the asymptotic density of prime values for any quadratic polynomial of discriminant \triangle. A technique of Bach [2] allows one to estimate accurately $C(\triangle)$ for any $\triangle<0$ given the class number of the imaginary quadratic order with discriminant \triangle. The Manitoba Scalable Sieve Unit (MSSU) [18, 17] affords us with the ability to rapidly generate many discriminants \triangle which $C(\triangle)$ is potentially large, and new methods for evaluating class numbers and regulators of quadratic orders [12] allow us to compute accurate estimates of $C(\triangle)$ efficiently, even for values of \triangle with as many as 70 decimal digits. Using these methods we were able to find a number of discriminants for which $C(\triangle)$ is larger than any previously known examples.

